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We introduce new graphical methods which simplify the manipulation of group-
theoretic factors involving spinors which arise, for example, in the evaluation of Feynman

diagrams. These methods are applicable to both internal and Poincare symmetries, and

form a natural extension of previous techniques for fundamental and adjoint representa-

tions, which are also reviewed in this paper.

I. INTRODUCTION

In this paper we shall introduce a new diagram-
matic method for simplifying the calculation of
group-theoretic weight factors involving spinors,
such as those arising from Feynman diagrams.
This is a generalization of Cvitanovic's work. ' We
use the term group-theoretic weights to mean the
factors arising from the group-theoretic matrices in

the Feyman rules for a Lagrangian field theory
with some symmetry, such as a gauge theory.
These weights are not to be confused with the
weight diagrams of Cartan. In order to explain the
motivation for this we must answer three ques-
tions: Why do we use a diagrammatic notation?
What are the advantages of our new algorithm?
Why are we interested in spinorial group-theory
weights?

The first question is simply answered by noting
that diagrams satisfy the criteria for a good nota-
tion to a greater extent than the usual tensor nota-
tion does. For one example, diagrams do not re-

quire quantities such as dummy indices, so the
operation of relabeling such indices becomes un-

necessary; for another it is far easier to identify to-
pologically identical diagrams than it is to recog-
nize the equivalence between the corresponding
tensor expressions. A further advantage follows
from the universal use of Feynman diagrams to
represent terms in field-theory perturbation expan-
sions (which themselves are used for much the
same reasons as those outlined above) since often
the "group space" graph can be read directly from
the Feynman diagram, and our notation will be
chosen to emphasize this similarity.

The second question requires an analysis of what
the alternative methods for simplifying spinorial
expressions are. Apart from a set of somewhat ad

hoc trace identities and contraction theorems, these
consist of a variety of methods based on Chisholm
identities, such as the Kahane algorithm. ' The
latter are unfortunately only applicable for SO(4)
spinors [or their analytic continuation to the
Lorentz group SO(3,1)], and therefore fail for
many of the interesting applications to be discussed
below. Our method, based on Fierz identities, is a
synthesis and simplification of the former identi-
ties which enables them to be used more easily and
in a more efficient manner.

Finally we address the third question as to why
such a simplification method is useful. For inter-
nal symmetries our method completes the graphi-
cal methods introduced by Cvitanovic' for funda-
mental and adjoint representations of simple Lie
groups (and in principle all tensor products of such
representations) by extending them to spinor repre-
sentations of the SO(n) groups. The analysis of the
weights arising from such internal-symmetry

groups has several uses apart from the obvious one
of just evaluating Feynman diagrams, %here the
parameter integrals are often a harder problem
anyway. Such an analysis may be useful in search-
ing for patterns of cancellations of infrared singu-
larities, or in analyzing the behavior of a theory
when it is dominated by group-theoretic factors, as
in the 1/n expansion. So far our discussion of the
need for spinorial simplification has been con-
cerned with internal symmetries, whose importance
with the rise to popularity of non-Abelian gauge
theories is not to be underestimated: Spinor repre-
sentations of internal symmetries are used for in-
stance in SO(10) grand unified models. There is
however another use for the method, namely in

simplifying the Dirac algebra arising from the
Poincare invariance of relativistic field theories in-

volving fermions.
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With the use of dimensional regularization the
treatment of spinor algebra in n dimensions has be-

come a subject of practical importance, and we
shall show how our methods may be applied
directly in 4+@ dimensions. We consider mainly
even-dimension orthogonal groups, but the general-
ization of our results to odd dimensions is easy:
We shall not consider it explicitly as its complica-
tions appear to add only minor technical difficul-
ties without revealing any essentially new properties,
and also it currently has no important applications.

For the sake of mathematical correctness we

point out that throughout we shall follow the usual
abuse of notation by referring to spinors as
transforming according to representations of SO(n),
rather than those of its universal covering group
spin(n). As we shall be concerned with the proper-
ties of the associated Lie algebras, the distinction is
in any case unimportant for our purposes.

The paper is organized as follows: In Sec. II we

give a review of Cvitanovic s techniques for simpli-

fying group-theoretic weights involving adjoint and
fundamental representation of SO(n), together with
various additional results which follow easily from
them. Section III explains the basic rules for deal-

ing with spinor representations by the use of Fierz
transformations, and Sec. IV is concerned with the
analytic continuation of our explicit expression for
the Fierz coefficients to complex dimensions.

Apart from Sec. IV, the paper is based on a
large number of graphical proofs and examples to
which the text is meant to be an adjunct, which we

believe is in keeping with the nature of the subject
matter. In particular, Fig. 1 gives a summary of
the elements of our diagrammatic notation and is,
we hope, fairly self-explanatory: The way in

which the various forms are combined and used
will be explained in the following sections.

II. A REVIEW OF THE FUNDAMENTAL
AND ADJOINT REPRESENTATIONS

In this section we briefly explain Cvitanovic's'
techniques for calculating the group-theoretic
weights of Feynman diagrams for the group SO(n),
and we will try to illuminate their significance and
origin. We use the term "fundamental" to describe
the defining representations of the groups, and
"adjoint" to describe the representation induced by
the natural action of the generators on themselves,
corresponding to Cvitanovic"s use of the terms
"quark" and "gluon" representations, respectively.

The first set of rules (shown in Fig. 2) is merely

{a) Adjoint propagator

(b ) Fundamental propagator

{C) Spinor propagator

I~~]

-----ba &ab

{d) Generators in

Fundamental representation p = v

I k

(e) Structure constants -iCijk

{f} Dirac motrices

a ----b -- --b0

(y ]I)b t ~yp4b

(g) Levi-Ciyita tensor
( } /(. .

)

v} v2 v

{h} Kronecker tensor p = o

;+"I"2" n

(l) Symmetrization

a restatement in graphical notation of the general
relations which hold for all Lie algebras, such as
the commutation relations for the generators [T;,
T&] =ic,jkTk [Fig. 2(a)], the Jacobi identity [Fig.
2(e)], and so on. We choose to introduce an arbi-
trary constant a into the normalization condition
on the generators tr(T; T~) = a5J [Fig. 2(d)], to
make the notation more flexible.

The rules specifying the allowed deformations of
a diagram —that is those which do not affect the
value of the expression to which it corresponds-
are conveniently summarized by imagining each
line ("propagator" ) to be an elastic string and each
vertex to be a block onto which the strings are at-
tached. Valid deformations are those in which no
strings are broken or detached from the blocks
they were initially attached to. The blocks may be
arbitrarily rotated or translated, but care must be
taken if they are turned upside down (the vertices
are oriented). The external lines correspond to
strings whose end points are fixed throughout the
deformations. Finally, any subdiagram may be re-

placed by another subdiagram equivalent to it.
The significance of these rules may be made clear
by studying Fig. 2(b).

The last two relations, Figs. 2(h) and 2(i), require
a little more explanation. The basis of Cvitano-
vic's method is the classification of the various
simple Lie algebra according to their invariant ten-

O} Antisyrnmetrization rf(1st
=

j ( t t t t
—

)k t t + t}k t
—

)
BH

FIG. 1. Diagrammatic notation for group-theory fac-
tors in adjoint, fundamental, and spinor representations.
Square brackets [ ] around indices indicate antisym-
metrization, parentheses ( ) indicate symmetrization.
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{el

(Ti) (Tj)), (Tj ) (Tj)k =
cijk(~k)/L

{e)
cjkmciml+ ckimcjml + cijmckml = 0

(b)

-icijk icjik ~c fijk]
(s)

(c) Y///////i//A
t t I

(d)

tr (Ti T;)

=o
I

FIG. 2. General identities for the fundamental and adjoint representations: (a) the commutation relations fop the
generators of a Lie group; (b) the antisymmetry of the structure constants; (c) the tracelessness of the generators; (d) the
normalization for the generators; (e) the Jacobi identity obeyed by the structure constants; (f) the dimension of the fun-
damental representation; (g) the dimension of the adjoint representation; (h) the invariance condition for the' Levi-Civita

tensor; (i) the invariance condition for the Kronecker 5 tensor for SO(n).

sors (or equivalently their invariant polynomials).
For example, SU(n) preserves the tensor 5& (i.e., a
sesquilinear metric) and the n-dimensional volume
element derived from the Levi-Civita tensor

e» . . . &, SO(n) preserves in addition to these 5&,' &n'

(i.e., a bilinear metric); similar invariants character-
ize the simplectic and exceptional algebras as well.
To express the invariance of these tensors in a con-
venient and compact form it is useful to consider
the action of an infinitesimal group transformation
5'; T; on some antisymmetric tensor f ~

5f ~ "'"=5' (T ) f"~ "+5' (T ) ~f "''''.
+5' (T ) f ~'''".

Iff is an invariant, then 5f=0, and using f 's an-

tisymmetry [as well as the tracelessness of the gen-

erators, (T, )&&=0] we obtain

(T. ) [&f'PP ~] ()

The corresponding condition for symmetric invari-
ant tensors follows analogously.

Given the basic diagrammatic rules of Fig. 2, we
can derive a family of identities which are particu-
larly useful for simplifying graphs, and these are
given as Fig. 3. The first relation is just the well-
known identity relating the product of two Levi-
Civita tensors to the generalized Kronecker 5 ten-
sor, and it follows by noting the definition of e:
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1 if p &, . . . , p„ is an even permutation of 1, . . . , n

e& . . .
&

—— —1 if p&, . . . , p„ is an odd permutation of I, . . . , n' i"n

0 otherwise,

1 if pt, . . . , p„ is an even permutation of v&, . . . , v„
e&, . . . z e ' "= —1 if p&, . . . , p„ is an odd permutation of v~, . . . , v„

0 otherwise

V)'''V=—&~, ~ ~". .

The second relation, Fig. 3(b), is just a straightfor-
ward combinatorial identity. Figure 3(c) gives a
relation which enables the "three-adjoint vertex" to
be rewritten in terms of traces in the fundamental
representation; its proof will be given as an exam-

ple of graphical techniques in Fig. 4(a).
Figures 3(d) and 3(e) give the diagrammatic

forms of the quadratic Casimir invariant, whose
derivations will also be given later. Notice that

CF, the value of the Casimir invariant in the fun-
damental representation, may be expressed as

aN/n for all simple groups, whereas the adjoint
Casimir invariant Cz has a form dependent on the
particular group in question.

Finally we come to the "gluon projection opera-
tors" which play the central role in Cvitanovic's al-

gorithm for simplifying group-theoretic weights.
The simplest case occurs for SU(n), where the rela-
tion of Fig. 3(f) holds: From the graphical form it
is obvious how this may be used to eliminate ad-
joint lines (e.g. , gluons) sandwiched between funda-
mental ones (e.g., quarks). This is slightly less

{a)

{e} = CA ww~
2an SU(n)

a(n-2) SO(n)

(k+
V/////gA " = ' 5/8

(n)

n

8 "(... 8 "k g Pi g6 =(k+(~ g 'i
( I

P'k Pl P& (n~ ( )
P'kl

k)

(c}

=CF = aN
n

g- i )(- Q Y//////A

FIG. 3. Reduction identities for the fundamental and adjoint representations: (a) the relationship between the Levi-

Civita tensor and the generalized Kronecker tensor; (b) a useful combinatorial identity; (c) reduction of the three-adjoint
vertex into canonical form in terms of fundamental representation traces; (d) the quadratic Casimir invariant for the
fundamental representation and its value for an arbitrary Lie algebra; (e) the quadratic Casimir invariant for the adjoint
representation, and its value for SU(n) and SO(n) algebras, respectively; (f) the gluon projection operator for SU(n), this

is the basic formula for removing internal adjoint lines ( gluons in the terminology of Ref. 1); (g) the identities obeyed

by the Kronecker 6 tensor; (h) the gluon projection operator for SO(n).
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+b

CF =0
I

CF

a
aN

FQ F

(e)

=0

c=-I; b=O

(c)

c,

(c- —)-~CA

2

FIG. 4. Examples of diagrammatic reductions for the fundamental and adjoint representations: (a) proof of the
identity of Fig. 3 (c) from the commutation relation of Fig. 2(a); (b) derivation of the general form of the quadratic
Casimir invariant CF of Fig. 3(d); (c) simplification of a "vertex correction" in terms of the adjoint quadratic Casimir in-

variant Cz [Fig. 3(e)]; (d) simplification of another vertex correction group weight factor in terms of Casimir invariants;
(e) derivation of the SO(n) gluon projection operator of Fig. 3(h); (f) the relationship between the dimensions of the ad-

joint and fundamental representations for SO(n); (g) derivation of the form of the adjoint quadratic Casimir invariant

C& for SO(n) [Fig. 3(e)]; (h) proof that reversing the sense of a fundamental loop with an odd number of external ad-

joint lines changes its sign, making use of the identity of Fig. 3(g); (i) reduction of the three-adjoint vertex into canoni-
cal form in terms of a fundamental representation trace for SO(n), utilizing the last result [Fig. 4(h)] in Fig. 3(c).
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=CF =nCF = aN

= —(n -n)2
2

N = —n (n- I)
I

2

2

CF ——= — =& C~= a(n-P)CA

2 2

FIG. 4. (Continued ).
clear from the corresponding expression in terms
of generators, viz. ,

While we shall not give proof of this result here,
we want to point out here that it corresponds to
the fact that the adjoint representation of SU(n) is
equivalent to that acting on the traceless part of
the tensor product of two C" vectors, one
transforming according to the fundamental repre-
sentation and the other according to its conjugate.

The SO(n) analog in Fig. 3(h) is slightly more
complicated since it involves the extra Kronecker
tensor invariant of that group. This tensor has the
basic properties summarized in Fig. 3(g), namely
the trivial identity 5t' 5„~=8& and the relation

( T; )„"5„p+5„„(T; )~'=0,

or equivalently (T; )&&
———( T; )&&, which follows

from the invariance of the Kronecker tensor
through Fig. 2(i). We shall give a derivation of the
SO(n) gluon projection operator in Fig. 4(e), and
we shall also develop further the idea which it
encapsulates —namely that the adjoint representa-
tion is equivalent to that acting upon the antisym-

metric product of two fundamental SO(n)
vectors —in Fig. 5.

In order to explain the rather abstract formula-
tion of the identities above we give a variety of ex-

amples of their application in Fig. 4. We include
diagrammatic proofs of some of the identities of
Fig. 3 among our examples. A particularly simple
example illustrating the power of graphical
methods is given in Fig. 4(a), in which we prove
the result of Fig. 3(c). The reader is urged to
reconstruct the proof in tensor notation to see how

the operations of reordering terms and relabeling
dummy indices are made redundant by the implicit
structure of the graphical notation.

The example of Fig. 4(b) derives the general ex-

pression for the quadratic Casimir invariant of the
fundamental representation given in Fig. 3(d). The
key point illustrated here is how, after taking the
trace of the expression defining CF, we have a
graph which may not only be viewed as a "self-
energy correction" to the fundamental line but also
as a "self-energy" bubble in the adjoint line, which

may then be simplified using Fig. 2(d).
The ease of distorting a graph from one form to

another, and of recognizing some graphs which
have been drawn in different ways actually to be
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I ~P- P
v- 2 -cr

(b) a

(e)

=)+ =2'

Cpv, per, xk = 2'A 8+[a Sp][XSK]v

-iC
p,p, per, ]cX

=p a'= a
C =

a(n-I
F 2

(2)
(l)

20

a (n-2)

Cq = a(n-2)
FIG. 5. An example of tensor product representations: The SO(n) adjoint propagator as an antisymmetric pair of

fundamental propagators. (a) The correspondence between the previous notation for the adjoint propagator and the no-

tation for it as an antisymmetric product of two fundamental propagators; (b) the notational correspondence for the
fundamental generators; (c) the notational correspondence for the structure constants; (d) the normalization condition in

the tensor product notation; (e) simplification of the commutation relations for the tensor product representation giving
an explicit form for the structure functions in terms of Kronecker tensors; (f) derivation of the form of the quadratic
Casimir invariant CF of Fig. 3(d) for SO (n) [cf. Fig. 4(b)]; (g) derivation of the form of the adjoint quadratic Casimir
invariant Cz of Fig. 3(e) for SO(n) [cf. Fig. 4(g)].
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identical, is at the heart of the graphical method.
This point is clearly demonstrated in Fig. 4(d),
which derives an expression for the "vertex correc-
tion" graph in terms of the quadratic Casimir in-

variants, using the result of Fig. 4(c) which is in

turn derived in a manner quite similar to our first
example. Although the translation from diagrams
to equations should be quite clear by now, we write
the tensor form of the result of Fig. 4(d) below just
to show that not only the proof but also the state-
ment of such identities is simplified by graphical
methods:

(&;)„~(&))p (&;)g"=(&p —,Cg)—(~, )„".
%e are now prepared to tackle the marginally

more involved example of deriving the expressions
for the gluon projection operators. As usual SU(n)
provides the simplest example, but the SO(n) case
can be easily dealt with too. The analogous results
for the other simple groups are remarkably similar,
and we refer the reader to Cvitanovic's paper for
details. The derivation involves three steps: First
we write the most general form of the answer in

terms of the available invariant tensors, second we

insert the appropriate invariance relations of Figs.
2(h) or 2(i) for the invariants of the group in

question in order to find the relative weights of
each term present from the first step, and finally
we find the overall normalization constant using

Fig. 2(d).
As we do not use the SU(n) gluon projection

operator in this paper, and it has been adequately
explained elesewhere, ' we shall omit its derivation
here. The procedure is shown for SO(n) in Fig.
4(e). For the first step the only available tensors
are the Kronecker tensors 5& and 5z„, leading to
three terms and three arbitrary parameters, A, b,
and c. Notice that even for SO(2) where one might
have expected an extra term involving the Levi-
Civita tensor e&„ this form is correct, as Fig. 3(a)
shows that the extra term is not in fact indepen-

dent of those already included. For the second

step this form is inserted into the invariance rela-

tion for 5„,(multiplied by a generator in the fun-

damental representation in the obvious way), and

on connecting the appropriate fundamental lines,
in the same way for each term of course, we find
that b must equal 0 and c = —1. Finally an appli-
cation of the normalization relation of Fig. 2(d),
and the tracelessness condition of Fig. 2(c) shows
that 3 =a/2, giving the desired result of Fig. 3(h).

Figures 4(f) and 4(g) derive the relation between

the dimensions of the adjoint and fundamental rep-
resentations, and the expression for the quadratic

Casimir invariant C&. The remaining two exam-
ples, Figs. 4(h) and 4(i), illustrate how the proper-
ties of the Kronecker tensor given by Fig. 3(g) may
be used to prove that reversing the direction of an
SO(n) fundamental loop changes its sign if it has
an odd number of adjoint legs, and leaves it un-

changed if it is has an even number of them; and
further how this may be used to simplify the
reduction rule of Fig. 3(c) for the SO(n) three-

adjoint vertex.
This completes our review of Cvitanovic s di-

agrammatic techniques. Before proceeding to dis-
cuss an extension of the method to deal with spi-
nor representations, however, we want to study
briefly tensor product representations, partly to
throw some light on the significance of the gluon
projection operator and partly to show how di-

agrammatic techniques can be extended to this case.
As is well known, higher-dimensional irreducible

representations of SO(n) may be constructed from
tensor products of the fundamental representation

by reducing the tensors carrying the representation
with respect to the action of the symmetric group
on their tensor indices, and then removing all pos-
sible traces. In particular, the adjoint representa-
tion may be constructed on the antisymmetric
product of two fundamental vectors, as is shown

by the correspondences of Fig. 5(a). We have in-

troduced a streamlined notation in which both
Kronecker tensors and arrows on fundamental
lines have been dropped as both may be reinserted
at will (the reader is advised, however, to observe

Fig. 4(h) and use this notation with due care).
This correspondence induces the form of the
fundamental-adjoint vertex of Fig. 5(b), where a'
is an as-yet-undetermined normalization constant;
this may also be viewed equivalently as an explicit
realization of the generators (T;) ~ in terms of
Kronecker tensors. The correspondence also in-

duces an expression [Fig. 5(c)] for the structure
constants (three-adjoint vertex), whose explicit
form we shall deduce shortly. To fix the constant
a' of Fig. 5(b), we insert the expressions of Figs.
5(a) and 5(b) into the Cartan normalization condi-
tion of Fig. 2(d) to obtain a' = a [Fig. 5(d)]. In a
similar fashion the commutator of Fig. 2(a) gives
the exp1icit form

ftV, pCr, KA, a
~p[g~p j[g~g ]~

for the SO(n) structure constants as is shown in

Fig. 5(e): notice the similarity of the graphical
form of this result with the three-adjoint vertex of
Fig. 4(i). Now that we have found out how to
translate problems involving the adjoint representa-
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tion into ones involving only the fundamental rep-
resentation we may proceed to re-solve some previ-
ous examples in the new notation. Figures 5(f) and

5(g) show how the computation of CF and C„,
respectively, are reduced to mere combinatorial
manipulations, and although they are more
cumbersome than our previous methods, they do il-

lustrate the significance of the techniques.

III. SPINOR REPRESENTATIONS AND USE
OF FIERZ TRANSFORMATIONS

A. Spinors

The methods of the previous section illustrate
the rules for computing group-theoretic weights in
all the representations of SO(n) which can be con-
structed from tensor products of the defining fun-
damental representation. There is one very impor-
tant representation which is not included in this
class, namely the double-valued' spinor represen-
tation, and it is the purpose of this section to show
how graphical methods may be developed to deal
with this case also. "

The properties of spinors are particularly simply
derived by considering a set j y& ] of generators of
a Clifford algebra (that is, they obey the anticom-
mutation relations I y&, y„]=25&„) which
transform into each other under the action of the
fundamental representation of SO(n):

is an n X n matrix representing a finite SO(n)
transformation, which therefore obeys the relation

Qq" 0,;6q ——6p

The important observation is that the structure of
the Clifford algebra is preserved by this transfor-
mation, since

I }'„}'.I- I 7p'7" ] =&,"&-'
t }', 1'. }

As the algebra can be represented faithfully by the
complete algebra of 2" g 2" complex matrices
(for n even' ), a simple theorem tells us that every
automorphism of the algebra is necessarily an
inner automorphism: In other words there is an
(invertible) element S(Q) of the Clifford algebra
such that the structure-preserving SO(n) transfor-
mation above may also be written as

y„=Q„"y„=S '(Q)y„S(A) .

Up to a factor these quantities S(A) provide a rep-
resentation of SO(n), for

S(Q, )S (Qp) =CS(B,Q2),

and therefore we have a new representation given
by the matrices representing the quantities S(A)

2n/2 7carried by vectors in C

B. Spinor diagrams

To represent these quantities graphically we in-
troduce the propagator 6,b for a spinor and draw it
as a dashed directed line [Fig. 1(c)], and the vertex

(y„),b [Fig. 1(f)] connecting the spinor and funda-
mental lines. The basic rules for manipulating
such quantities are given in Fig. 6.

Most properties of the Clifford algebra follow
from the basic recursion relation illustrated in Fig.
6(d),

~~i i ~&i ~&i+—i

p —1

i=1

This last formula may be expanded out to give the
trace of an even number of y's (the trace of an odd
number vanishes) as the sum over all possible ways
of connecting the fundamental lines with a minus
sign for every time two such connecting lines cross
and an overall factor of tr[l]. This is shown for
four y's in Fig. 6(d) and for six y's in Fig. 6(e), and
this latter example makes the disadvantages of the
naive application of the formula especially clear:
The number of terms involved in taking the trace
of p y's is (p —1)!!which grows exponentially with
p. As we showed previously" we can introduce an
algorithm for the reduction of traces which is only

I

of polynomial order in the number of y's occur-
ring, provided we make greater use of the sym-
metries of the problem under consideration. Be-
fore stating the necessary results we wish to intro-
duce a few useful elementary graphical rules.

The first of these [Fig. 6(f)] shows that we are
free to reverse the direction of a closed spinor loop
whenever we please. This follows from the obser-
vation that the mapping y~y leaves the algebraic
structure of the y's unchanged,

T T = T=

which in more mathematical terminology means
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2
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FIG. 6. Basic identities for the spinor representation: (a) notation for the trace of the unit matrix; (b) definition of
the totally antisymmetric basic tensors I; (c) tracelessness condition for the I"s; (d) an example of the basic reduction
identity for traces, we connect the external fundamental lines in all possible ways with a minus sign for each time the
lines cross and multiply by tr[1]; (e) an example of the basic reduction identity applied to a trace of six y matrices,
showing how the number of terms proliferates and also showing the relationship to the recursive reduction formula for
traces given in the text; (f) the reversibility of the sense of a spinorial trace; (g) the orthogonality condition satisfied by
the I"'s; {hl the general contraction identity for the I"'s [this generalizes the familiar result yzy„y = 12—n)y,]; (i) the
Fierz identity (the Fierz coefficients Fjk are derived in Fig. 7); (j) reduction formula for the trace of three I s; (k)
"Clebsch-Gordan" series for I"s.
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that it furnishes an outer automorphism of the

Clifford algebra, and by the previously stated
theorem on complete matrix algebras there must
also be an inner automorphism which performs the
same transformation, ' yr=g 'yg.

We next introduce the orthogonality theorem for
the basis elements I of the Clifford algebra in Fig.
6(g); notice that the fundamental line indices

p~, . . . , pz, v&, . . . , vt, are written in cyclic order
around the diagram in accordance with the previ-
ously stated rules. This result is helpful in that if
allows us to project out a particular basis element

by multiplying by a I and taking the trace.
The next result, shown in Fig. 6(h), plays a key

role in deriving the important Fierz transformation
identity. It is a purely combinatorial contraction
theorem whose proof may be found in Ref. 11.
The coefficients

n Ftl
,.'-:5: ', li =Z

k=o
]

Yj /J4

k
/

'i-!
Vj jjt v j/A

$1
~ k

Fk

n8.(
Fn

k! Sk)'i ~

)! ). ())~()P n !i-8!i i ~i

j-p p

have some interesting relationships as we shall see
in the following, demonstrating their underlying
group-theoretic significance. From this result we
shall derive (Fig. 7) the general form for the Fierz
transformation shown in Fig. 6(i). This equation
will provide the basis for our treatment of spinors
in the diagrammatic approach to group-theory
weight factors. The reader will immediately see
the similarities between the Fierz transformation
and the gluon projection operator of the previous
section, and indeed they will be used in very simi-
lar ways; nevertheless their derivations are quite
different and they have some quite distinct differ-
ences as well as similarities. The Fierz coefficients
are given by the following formula:

&~I,
Fj k!

)Ji, j' gJ )p
n —k k

kiddo ~ P P

The remaining two results are again combinatori-
al, the first being based on the observation that if
we connect together three basis tensors I'J', I' ',
and I ' ' in all possible ways in order to evaluate
the trace tr[I'J)I'")1 '"] on the left-hand side of the
diagrammatic identity of Fig. 6(j) according to the
recursion formula illustrated in Figs. 6(d) and 6(e),
then there is only one structure possible for the
right-hand side which is consistent with the sym-
metry. A simple calculation then shows that the
number of lines connecting the generalized
Kronecker tensors must be s, t, and u as shown in

FIG. 7. Diagrammatic derivation of the Fierz
transformation coefficients.

the figure, and furthermore the combinatorial coef-
ficient for the whole tensor on the right-hand side
must be j!k!l!/s!t!u~.

This leads easily to the result of Fig. 6(k), which
is the spinorial analog of the Clebsch-Gordan
series, expressing I '"I ' ' as a sum over the single
basis elements I ' '. To derive this result we ex-

pand the product of basis elements in terms of the
complete set of basis tensors I' ' and then deter-
mine the coefficents in this expansion by projecting
them out using Figs. 6(g) and 6(j).

This last formula [Fig. 6(k)] may be used to
reduce any y-matrix expression into a sum of com-
binations of generalized Kronecker tensors of the
form appearing on the right-hand side of the equa-
tion, " and furthermore this reduction may be per-
formed for an expression involving p factors in ap-
proximately p steps. Naturally we are still left
with the problem of simplifying the tensor expres-
sion this procedure leaves us with, which may be
quite a nontrivial problem, but sensible use of the
known symmetries of the original expression can
make this task much easier (for an approach to
how this may be done see the paper by Canning6).
We shall not follow this approach further here; al-

though it is an eminently suitable method for use
on a computer it very rapidly becomes very
cumbersome for hand calculation. Instead we shall
introduce a new method based on the Fierz
transformation formula exhibited in Fig. 6(i).
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C. Application of Fierz transformations

Let us now show how the Fierz transformation
provides a convenient method for performing
diagrammatic spinor calculations. As a simple ex-

ample, let us consider the expression

tr[y„y„yzy y'Py y~] shown in Fig. 8(a). As this
is the first example of the use of the method we
shall go through all the stages involved in detail,
although it is usually possible to combine many of
the steps together in actual use. The first step is to
redraw the figure so as to make things clearer, and
we have done so by moving a couple of spectator
lines to the outside of the spinor loop and by
pinching the loop near the fundamental line to
which we are going to apply the Fierz transforma-
tion. We now apply the Fierz identity [Fig. 6(i)]
for the case where j= 1 (there is a single funda-
mental line of the left-hand side of the identity),
and we obtain two terms from the sum on the
right-hand side. This is because the traces remain-

ing after the Fierz reordering vanish if we intro-
duce more than two antisymmetrized fundamental
lines between them and also if we introduce an odd
number of such lines. For simplicity we shall as-

sume that n =4, so F&2 vanishes, and only the first
term survives. We now use the orthogonality
theorem of Fig. 6(g) for the bubble on the left, and

again redraw the remaining graph to make it clear
how it can be reduced once again by the Fierz
identity. Only one term survives this time, as can
be seen by using the identity of Fig. 6(c) (traceless-
ness of the I 's), and this can be reduced yet again
by the Fierz identity to remove the final funda-
mental line from the graph to give the result

(F~D )' tr[1], which is easily calculated to be 64
tr[1]. The only real difficulty with this technique
is in deciding which fundamental line should be re-
moved by an application of the Fierz transforma-
tion, as there are often several inequivalent choices,
but once this decision has been made the applica-
tion of the identity is quite straightforward.

An interesting example of some of the other
techniques which may be of use in simplifying y-
matrix expressions is the commutation relation of
Fig. 8(b). It is well known that the generators of
SO(n) transformations for the spinor representation
are proportional to the tensors I,b, and this calcu-
lation will therefore explicitly check whether the
necessary commutation relations are obeyed in this
case. Using the fact that the external fundamental
lines are pairwise antisymmetric we can write the
commutator in terms of the three possible I ten-
sors with three undetermined coefficients 3, 8, and
C: The tensor form of this graphical expansion is

In order to determine these coefficients we use the
orthogonality property of Fig. 6(g) to project out
each term in turn. In step (1) we project out the
I' ' component by multiplying by I ' (which be-

ing the unit matrix has no effect) and then taking
the trace over the spinor indices. When we have
untwisted the second term from the commutator
we get the difference of two terms which differ
only in the direction of the spinor loop, and using
the result of Fig. 6(f) we therefore find that 3=0.
In step (2) we project out the I' component simi-

larly, and again we get the vanishing difference of
two terms differing only in the sense of a spinor
loop; this time we must make use of the fact that
reversing the order of the lines on I' ' has no ef-
fect, because

I (4) ~(4)
PvPcT CTpVP

In step (3) we turn to the determination of the
coefficient 8, and this time we get a nonzero

I

answer because there is an additional minus sign
arising from reversing the order of the lines on
I' '. This does indeed give the expected result for
the commutator, namely that it is a multiple of the
generator I ' ', and furthermore the form of the
structure constants obtained in terms of general-
ized Kronecker tensors is consistent with that
found using the fundamental representation in Fig.
5(e). Indeed, we extend the correspondences of
Figs. 5(a) —5(c) by identifying the generators in the
spinor representation (T~),s with a particular mul-

tiple of I"' ', namely,

(T; )zb~ I ~y
(2)

4

as is shown in Fig. 8(c).
The next three examples are related to the qua-

dratic Casimir invariants Cz and C& introduced in

Sec. II. We introduce the analogous quantities for
the spinor representation Czz and Cqz defined in

Figs. 8(d) and 8(e), respectively:
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FIG. 8. Examples of diagrammatic methods for spinors in {even) integer-dimensional spaces: {a) four-dimensional
reduction of tr[y&y„yzy y"y y yg using Fierz reordering; (b) derivation of the commutation relations for the generators
in the spinor representation [cf. Fig. 5(e)]; (c) correspondence between Fig. 2(a) and the results of Fig. 8(b); (d) spinor
fundamental quadratic Casimir invariant C&F,

. {e) spinor adjoint quadratic Casimir invariant C», {f) general spinor qua-
dratic Casimir invariant Cqj. , {g) a spinor vertex correction to a y matrix; {h) a spinor vertex correction to a generator in

the spinor representation [cf. Fig. 6(h)].
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16

and the simple manipulations shown in the figures
gives the result that C&z ——n and C~z ——aN/8.
Both of these calculations were of course straight-
forward anyhow, as formulas such as y&y&

——n are
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FIG. 9. Examples of diagrammatic method for spinors in 4+@ dimensions: (a) reduction of tl[yp ypy y"y&y yg us-

ing Fierz reordering [cf. Fig. 8(a)]; (h) simplification of the expression y&py„pP using Fierz transformations.

quite familiar, but they show the way in which the
Fierz coefficients Fjk summarize all the usual iden-

tities. Many other similar identities are shown by
the natural generalization to the family of spinorial
quadratic Casimir invariants Csj. of Fig. 8(f).

Figure 8(g) shows how to compute the group-
theoretic weight associated with a vertex correction
diagram. Once again it is a simple application of a
Fierz transformation and the orthogonality proper-
ty [Fig. 6(g)]. Figure 8(h) derives a similar result
for a correction to the adjoint-spinor vertex, and
quickly leads to a simple answer. We should not
be surprised at the simplicity of these results as
they are only special cases of the general spinor
vertex correction graph of Fig. 6(h) from which we
derived the expression for the Fierz coefficients in
the first place.

IV. THE ANALYTIC CONTINUATION
OF FIERZ TRANSFORMATIONS

A. Definition

So far we have been primarily concerned with
spinorial representations of internal SO(n) symme-
try groups, but of course one of the most impor-
tant applications of spinors is that they carry the
representation of the Poincare group which de-
scribes fermions. Within the context of dimension-
al regularization it is not sufficient to perform the
Dirac algebra in four dimensions —it becomes
necessary to calculate in its n-dimensional generali-
zation to a Clifford algebra. The techniques ex-
plained in the previous section apply to all' in-

teger values of n, and therefore they are quite ade-
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TABLE I. The Fierz coefficients FJ'I,
' (defined in the Appendix) arising in the expansion

of F~q+' in powers of e.

12

24

24

12

—24

0
0

I

2

12

I

6
I

3

I

24
I

6
I

2

I

120
I

20
4
15
13

10

5

32

192

1

720
I

90
I

12
3

5

43

10

256

quate to compute the group-theoretic weights for a
Feynman diagram as a function of n These. can
then be "analytically continued" into the complex
n plane, but it is not clear that this is the best way
of setting about the calculation.

One reason for doubting this is that we calculate
an expression f(n) whose Taylor expansion' about
n =4 often involves high powers of the new vari-
able e—=n —4, whereas we usually are only interest-
ed in the first few terms of this expansion. The
obvious solution to this problem is to calculate f
directly as a function of e, and then not to gen-

erate any powers of e higher than those we need

during the calculation. For this reason we shall

show how to analytically continue the expression
for the Fierz coefficients in n dimensions,

&~a
F~g = I!

ykj! gj y, n —k k

k!„0 .J P . P. .

The simplest way to do this is based upon the
definition of the Jacobi polynomials' (which are
the most general classical orthogonal polynomials
with a quadratic weight function)':

n

P„' '~'(x):—g — ~ (x —1)" ~(x +1)~ (a) —1,P) —1) .
m=0 '

From this we immediately see that

Fn J ~

( y'k2jp(n —k —J,k —J)(p) (n)k+j —l,j &k+1),

which we shall take as the definition of the Fierz coefficients for noninteger values of n when the Jacobi
polynomials are analytically continued into the complex n plane.

TABLE II. The Fierz coefficients F~k' (defined in the Appendix) arising in the expansion
of I'JI,

+' in powers of e.

26

50

24

—24

—38

36

48

I

2

I

2

32

—60

I

6
5

6
4

72

I

24

S

25

12
103

12

31

—129

I

120

120
29

30
29

4
1531

30
IS46

5

I

720
17

720
103

&eo

1079

&eo

443

15
8963

30
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TABLE III. The Fierz coefficients F~q' (defined in the Appendix) arising in the expansion

of Fjk+' in powers of e.

5

35

50

—26

—13

60

34

1

2
3

2
13

2

35

—13

I

6
3

2

35

6
20

3
103

3

1

24
5

8
131

24
145

4
2627

12

1

120
7

40
55

24
145

6
13937

60

1

720

80
467

720
661

72
42 467

360

In practice it is easy to calculate any particular Fierz coefficient. For example, the value of F35 follows at
once from the above expressions:

n —33n +332n —1020 e 7e 29' 13

120 120 40 30 10

where n =4+a. The Appendix and Tables contain most of the Fierz coefficients likely to be of practical use in

(4+ e)-dimensional calculations.
We may also find the generic form of the expansion of the Fierz coefficients I'Jk+' in powers of e for arbi-

trary j and k, although this is less useful in practice. After expanding the I functions we find'

J
F +'=I (j+1.)I (5 —k)( —V" g—

I (J —p + 1)1 (k —p + 1)I (p + 1)1 (p —k —j+5)

1 —(Wo(P j—k +5)—Wo(5 —k)]&

+ l0o'(P j k+ 5)—2—t('o(—5 —k)fo(P j k+5)——

2—QI(p —j—k+5)+go (5 —k)+ p](5 —k)] +O(e ),.
2

so, for example, setting j =3 and taking the limit as k~5 we find

TABLE IV. The Fierz coefficients Fjk' (defined in the Appendix) arising in the expansion

of FJI,
+' in powers of e.

0
0
0
1

10

35

15

25

1

2

—3
5

2
135

2

1

6
7

3
95

6
135

2

1

24
11

12
275

24
875

8

1

120
1

4
107

24
499

8

0

1

720
19

360
175

144
1063

48
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TABLE V. The Fierz coefficients Fjk' (defined in the Appendix) arising in the expansion

of F~q+' in powers of e.

10

25 —35

1

2

25

2

1

6
10

3
205

6

1

24
5

4
505

24

1

120
1

3
185

24

I

720
5

72
293

144

F35+' ——lim 61 (5 —k)( —)
"

k~5,
1 1

61 (2—k)l (k + 1) 21(3—k)l (k)

1 1

2I (4—k)I (k —1) 61"(5—k)l (k —2)
+O(E) =—„+O(e) .

B. Properties and Applications use of the simple identity

The Fierz coefficients have several interesting
symmetries which were discussed in Ref. 11 and
these are related to symmetries of the Jacobi poly-
nomials. For example, the identity

n +ca
Pl

n +P 2n +a+P
n —m n+P

+n+aP n

m+P n —m
2n +a+P

n

~~ p~ I (n+P+1)I (n +a+1)2~
I (n+ 1 )I (n+a+P+ 1)(x + 1)~

follows from the Fierz symmetry

(n —k)!j!
n —k)!k i

and this result may be checked directly with the

With the (4+@)-dimensional Fierz coefficients
given in the Appendix, spinor graphs can be sim-
plified in noninteger dimensions just as easily as
they could for integer dimensions; for example,
Fig. 9(a) repeats the calculation of Fig 8(a) except
taking n =4+a rather than 4. In the first step
only the terms involving F~o+ and F&2+' are includ-
ed as further terms in the Fierz expansion vanish
(they involve traces of y matrices which are an-

TABLE VI. The Fierz coefficients FJ'k' (defined in the Appendix) arising in the expansion
of FJI,

+' in powers of e.

0
0
0
0
0
1

0
0
0
0

0

0
1

2

15

2

1

6
9

2

1

24
13

8

1

120
17

40

1

720
7

80
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TABLE VII. The Fierz coefficients FJI,
' (defined in the Appendix) arising in the expansion

of Fjp+' in powers of E.

0
0
0
0
0
0

1
1

2

1

6

1

24

1

120

1

720

tisymmetrized on more than half their indices).
The identity shown in Fig. 3(b) proves useful in the
penultimate step in the derivation. Although we
have given the exact result, which involves terms

up to order e", it is of course only necessary to cal-
culate the result to the order in e appropriate to
the probelm under consideration; for instance, one
could drop all but constant terms and terms linear
in e for a one-loop Feynman diagram calculation
where dimensional regularization can give at most
a simple pole in e.

This last example is of course somewhat unreal-
istic insofar as the fermion propagators in Feyn-
man diagrams are of the form (pr+m)/ (p —m )

and are not just proportional to the spinorial unit
matrix. A more realistic example is given in Fig.
9(b) which performs the Dirac algebra for the one-

loop vertex correction in massless quantum electro-
dynamics. We have labeled some of the external
fundamental lines with a momentum p to indicate
the quantity p in a natural way. For such calcula-
tions the graphs become a little cumbersome —and
even more so when massive fermion propagators
are included —but this is only to be expected as in
general the result itself is of a comparable degree
of complexity. In the cases where this is not so,
such as when there are only one or two momenta

and masses from which to form invariants which
can appear in the answer, it is often possible to ex-

ploit the symmetries in the momenta to simplify
the manipulations.
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APPENDIX

We give the values of the Fierz coefficients Fjk
in 4+@dimensions for small values of j and k.
%e write

F4+a ~ F(r) P

jk = ~ jk &

n=0

where the values of F,'k' are given in Tables I—VII.
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