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For a system consisting of a classical electromagnetic field and a charged quantum-
mechanical particle, Poynting’s theorem holds for the energy density of the electromag-
netic field. For local energy conservation to hold, the power lost by the field is the power
gained by the quantum-mechanical particle. The power per unit volume transferred from
the field to the particle is E-7, which is shown to be the density of the quantum-
mechanical power operator. For the particle an energy theorem, similar to Poynting’s
theorem for the field, is satisfied in such a way that the energy of the total isolated sys-
tem is conserved. The energy density of the particle is the density of the energy operator
for the particle, which in this time-dependent problem is not the same as the Hamiltoni-
an. The energy operator is gauge invariant, while the Hamiltonian is not. When the
combined conditions of gauge invariance and local energy conservation are used, the ap-
propriate basis functions to use are the eigenstates of the energy operator. Transitions be-

tween these eigenstates are determined by matrix elements of the power operator.

I. INTRODUCTION

A manifestly gauge-invariant formulation of
charged quantum-mechanical particles interacting
with an external classical electromagnetic field has
recently been given."? In addition to the criterion
of gauge invariance, the correspondence principle
in its Newtonian form was used to construct
gauge-invariant operators for observables with clas-
sical counterparts. This formulation of a gauge-
invariant theory was criticized by Olariu et al.’ as
being too restrictive. They claim that the gauge
invariance of the theory is insufficient to determine
its form uniquely, and that the basis-determining
Hamiltonian can be chosen in a quite general way.
They thus say that the gauge-invariant formulation
developed previously? “simply exchange(s) a
dependence upon the gauge of the electromagnetic
potentials for a previously unrecognized depen-
dence upon the representation of basis states. . .
that is equivalent to a dependence upon gauge.”
They recommend a choice of a basis-determining
operator on intuitive grounds, in such a way that
the dynamic Stark shift and dynamic Zeeman shift
are apparently taken into account.
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In this paper it is shown that the principles of
energy conservation and gauge invariance when ap-
plied at every time are sufficient to determine the
theory uniquely to be the theory of Yang' and
Kobe and Smirl.2 Operators corresponding to ob-
servables are constructed from the correspondence
principle in its Newtonian form.* The physical in-
terpretation of the theory is then made using a
generalized form of Ehrenfest’s theorem.’

The role of energy conservation is emphasized in
this paper. When the classical electromagnetic
field and the quantum-mechanical particle are con-
sidered together as an isolated system, the energy
of the total system is conserved. For this semiclas-
sical formulation of the field-particle problem we
assume that Poynting’s theorem holds. Poynting’s
theorem for the electromagnetic field® states that
the energy of the field in an arbitrary volume can
change either by flow of energy through the sur-
face or by loss (gain) of energy to the charged par-
ticle. A similar energy theorem is assumed to hold
for the quantum-mechanical particle, which states
that the energy of the particle in an arbitrary
volume can change either by flow of energy
through the surface or by gain (loss) of energy
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from the field. The energy lost by the field is the
energy gained by the particle. Thus energy is con-
served locally as well as for the whole volume.
The energy operator of the particle in this time-
dependent problem is shown to be the operator
corresponding to the classical energy, not the Ham-
iltonian. Failure to recognize this distinction in
time-dependent problems involving electromagnetic
radiation has previously led to confusion,” which
was resolved when the distinction between the en-
ergy operator and Hamiltonian was made.®

In the next section the basic ideas of the gauge-
invariant formulation are discussed, and the energy
operator defined. The role of energy conservation
is discussed in Sec. III and it is shown that the
power lost by the field is the power gained by the
charged particle. In Sec. IV the time dependence
of eigenvalues of different basis-determining opera-
tors is discussed. The interpretation of expansion
coefficients is discussed in Sec. V. The conclusion
is given in Sec. VL.

II. GAUGE INVARIANCE

In this section we review the concept of manifest
gauge invariance for a single quantum-mechanical
particle in a classical electromagnetic field.” The
Hamiltonian for the particle is not a gauge-
invariant operator, in the sense that it does not
have a gauge-invariant expectation value. Thus the
Hamiltonian cannot be the energy operator for the
particle, since all operators corresponding to ob-
servables must be gauge invariant.!® The energy
operator is obtained from the correspondence prin-
ciple from the classical energy consisting of kinetic
and potential energies.'!

The Hamiltonian describes the time evolution of
the wave function ¥ in such a way that the
Schrodinger equation is form invariant under
gauge transformations. The Hamiltonian for a sin-
gle particle of mass m and charge ¢ coupled
minimally to an external electromagnetic radiation
field characterized by the vector potential A and
scalar potential 4 is
2

H(AAy)=— |p—TA
( o) 2m P c

+V 444, . (2.1)

The potential energy ¥ =V (T) is of electrostatic or
nonelectromagnetic origin. The Schrddinger equa-

tion for the particle is

H (A, Ao)p=i#dp /ot . (2.2)
A gauge transformation on the wave function is

Y =expligA/#ic)y , (2.3)

and the corresponding gauge transformation on the
potentials is

A'=A+VA 2.4)
and
1 0A
A’ :A — 7, 2.5
0 7 ¢ ot @.5)

where A is an arbitrary differentiable function of T
and ¢ called a gauge function. Under the combined
gauge transformations in Egs. (2.3)—(2.5) the
Schrodinger equation is form invariant,?

H (A", Ay =i#dy /ot . (2.6)

For an operator O(K,Ao) to correspond to an ob-
servable quantity, its expectation value must be
gauge invariant,®'°

(P 0(A,Ao)) = (W' | O(A",d5)') , 2.7)

where the new wave function ¢/ is given in Eq.
(2.3). The operator 6(A’,4,) is the same form as
the operator 6(A,4,), but the new potentials in
Egs. (2.4) and (2.5) replace the old ones. The ex-
pectation value on the left-hand side in Eq. (2.7)
can always be written as

(Y] 0A, Aoy =¥’ | 0'(A,A)Y') , (2.8)

where the prime on the operator denotes a unitary
transformation

0'(A,Ao)=expligA /#ic)0(A,A,)

xXexp(—igA/fic) . (2.9)

By a comparison of Egs. (2.7) and (2.8), an opera-
tor is called gauge invariant if it is form invariant
under a unitary transformation,

0'(A,49)=6(A",4}) . (2.10)

In other words, an operator is gauge invariant if a
unitary transformation on the operator induces a
gauge transformation on the electromagnetic po-
tentials on which the operator depends.

As an example of a gauge-invariant operator,



consider the kinetic momentum 7=pP —qA/c.

Under a unitary transformation the kinetic

momentum transforms as
=p—21A'=7", (@11

(7= |p—2A&

C

o e

and is thus form invariant under a unitary
transformation. The operator corresponding to the
energy, the zero component of the energy-
momentum four-vector, is my=1i%0/dt—qA,. It
transforms under a unitary transformation as

(o)’ =(i#3/0t —qA,)
=i#0/0t —qd o= , (2.12)

and is also form invariant under a unitary transfor-
mation.

In terms of the gauge-invariant operators 7 and
o, the Schrodinger equation in Eq. (2.2) can be
rewritten as

H(A,0)0¢p=mgt , 2.13)

where the operator
- e -
HA0)=——+V=%&(A) (2.14)
2m

will be called the energy operator.! The energy
operator is the kinetic energy operator plus the po-
tential energy, which is the same form as the clas-
sical energy.!* It is the Hermitian operator
corresponding to m in Eq. (2.13). Since mp and 7
are gauge invariant, H (A,0) is also,

H'(A,00=H(A",0) . (2.15)

The Hamiltonian H (K,AO), however, is not gauge
invariant because

H'(K,AQ)——_H(K',A0)=H(K"A(’))_{_.CIT_E:)_/:

+H(A"A4) , (2.16)

since the scalar potential is unchanged under the
unitary transformation.

In terms of the Hamiltonian, the energy operator
in Eq. (2.14) is

&(A)=H(A,A4y)—qA, . 2.17)

For time-dependent electromagnetic fields g4, is
not a potential energy, and must therefore be sub-
tracted from the Hamiltonian to obtain the energy.
The negative gradient of g4,
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= q dA
—Vgdg=qE++—, 2.18
qAdo=qE+ . o (2.18)
where E is the electric field, is not a force qE be-
cause of the vector potential term on the right-
hand side. A potential energy, like ¥ in Eq. (2.1),
is defined such that its negative gradient,

—VV=F,, (2.19)

is a conservative force.

In the gauge-invariant formulation of quantum
mechanics developed by Yang! use is made of the
eigenvalue problem for the energy operator

(AW, =€, (2.20)

where ¢, are the eigenfunctions and €, are the
eigenvalues which may depend on the time as a
parameter. The wave function in Eq. (2.2) is ex-
panded in terms of the eigenfunctions of the ener-
gy operator

=3 c, Uy . (2.21)

The expansion coefficients ¢, are gauge invariant,
and satisfy the set of equations

iﬁé" _Eﬂcn = E <¢n | 77'Ol[}m >Cm ’ (2.22)
ms£n
where
& =€y —(Un | TV ) (2.23)

is a “dressed” energy.?

Since the wave function is not an observable and
is not unique because gauge transformations in Eq.
(2.3) can be made on it, the state of the system
cannot be unambiguously specified by specifying a
wave function. A state can, however, be specified
by giving the equivalence class of all wave func-
tions gauge equivalent to a given wave function.
For the case of eigenstates of observable operators,
the eigenvalues are gauge invariant, and can thus
be used to specify the quantum-mechanical states
in the absence of degeneracy. In the more general
case, the equivalence class of eigenstates of an
operator corresponding to an observable can be
used to specify the states. The phase factor in Eq.
(2.3) does not depend on the state, so the concept
of state is gauge invariant, while the wave function
is not. For example, in Eq. (2.20) the eigenvalue
€, is gauge invariant, the energy operator is form
invariant under gauge transformation, but the wave
function ¢, is not gauge invariant. We shall use
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to denote the equivalence class [¢,] of all wave
functions differing from v, only by a phase factor,
generally depending on space and time, as in Eq.
(2.3).

To show definitively that & (A) is indeed the en-
ergy operator for the particle, we shall show in the
next section that it is the operator required in the
energy conservation theorem.

III. POWER OPERATOR

The system we consider in this paper is a single
charged quantum particle interacting with a classi-
cal electromagnetic field. In this section we shall
show that the energy operator obtained in Sec. II
can be used to construct the energy density of the
particle. The time rate of change of the energy of
the particle in a small volume is due to the energy
flux of the particle through the surface and the
power the particle gains from the electromagnetic
field. The corresponding time rate of change in
the energy of the electromagnetic field in the same
small volume is due to the energy flux of the field
through the surface and the power lost to the par-
ticle. Since Poynting’s theorem® applies to the
classical electromagnetic field, the power lost by
the field is J ‘E where J is the current density.
Energy conservation requires that the energy lost
by the field is equal to the energy gained by the
particle. We shall show that this energy is given in
terms of the quantum-mechanical power operator,
first introduced by Yang.!

A. Energy of the field

For the electromagnetic field characterized by
the electric field E and magnetic induction B, the
energy density (in Gaussian units) is

U= ——(E*+B?). 3.1)
8

From Maxwell’s equations the electromagnetic
field satisfies Poynting’s theorem®

O e/t +V* F em=—1E , (3.2)

where the energy flux 5 em 1S the Poynting vector

P en=——EXB . (3.3)
4

The electromagnetic field loses energy to the
charged particle at the rate J ‘E per unit volume,

where T is the current density inside the volume.
In quantum mechanics, the current density due to
a single particle can be written as

T =Rep*(T,1)gVi(T,t) , (3.4)

where Re denotes the real part. The velocity
operator V is defined as

1=

V=m™"'7, (3.5)

where 7 is the kinetic momentum in Eq. (2.11).
The power density J-E on the right-hand side of
Eq. (3.2) may be rewritten as

J-E=2=Rey*Py, (3.6)
where the Hermitian power operator P is defined

as

P=§—(V-E+E'V) ) 3.7)

In order to write Eq. (3.6) in this form we have
used the identity

Rey*V -Ey=Re{¢*[E-V—m ~i#aV-E]y) .
(3.8)
Since by Gauss’s law
V-E=4mp, (3.9

where the charge density is p=g1*1, the last term
in the square brackets on the right-hand side of
Eq. (3.8) vanishes when the real part is taken.
Poynting’s theorem in Eq. (3.2) can thus be rewrit-
ten as

OU e/ + V" F om=—P , (3.10)
from Eq. (3.6).

B. Energy of the particle

If the operator & (A) in Eq. (2.14) is the energy
operator for the particle, the energy density of the
particle is'*

%p=Rep*&(A)) . (3.11)

From the Schrddinger equation in Eq. (2.2) it can
be shown that the energy density of the particle sa-
tisfies

U, /3t 4V F =2 . (3.12)

The power density 2 is given by Eq. (3.6) and the
energy flux of the particle is
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Fp=1 Re[(V9)*& (K +¥*VE(A)y] .

(3.13)

The right-hand side of Eq. (3.12) is the power per
unit volume absorbed from the electromagnetic
field. For this reason we can identify & (A) as the
energy operator. Relativistic electrons® and nonre-
lativistic electrons with spin'> have previously been
treated.

C. Energy conservation

By adding Eqs. (3.2) and (3.12) the condition of
total energy conservation can be obtained. The to-
tal energy density

U=Uem+Up » (3.14)
and the total energy flux

F=F et Ty (3.15)
satisfy an equation of continuity

0% /ot+V-=0. (3.16)

Thus the total energy of the field and the particle
is conserved locally, because the power per unit
volume lost by the electromagnetic field is the
power per unit volume gained by the particle.

The physical significance of the conservation of
energy at all times can be illustrated by integrating
Eq. (3.16) over a volume () enclosed by a surface
o. If we assume that Q is sufficiently large that
the particle is completely confined within o at the
times of interest, then using Egs. (3.11), (3.14), and
(3.15) we get

gat—Re¢*[H(K,0)—qﬁ(o,t)-?]¢+v-[}p

where summation on repeated indices from 1 to 3
is implied. Thus it might be thought that the
operator H (A,0)—gE(0,7)-T could be interpreted
as the energy operator in this case. However, the
right-hand side of Eq. (3.22) is not 2 =E-J, the
power density supplied to the particle by the field.
Therefore, H (A,0)— qE (0,¢)-T cannot in general be
interpreted as the energy operator since the conser-
vation of total energy is violated. However, in the
case of a static field E, the right-hand side of Eq.
(3.22) vanishes. The term —gE(-T can then be ab-

d I
E—}[tﬂr @em—f—gjada'fem

d -
—EW»I EANY) . (3.17)

Under steady-state conditions, the electromagnetic
field energy in the volume 2 is constant, so

(¢|5§ W)=—F d5"F em . (3.18)

Thus, the measurement of the total net flow of the
electromagnetic energy across the entire surface o
is a measurement of the change of the average
value of the energy of the particle.

D. Electric dipole approximation

In the limit that the wavelength is long com-
pared to the atomic dimensions, the power density
Z in Eq. (3.6) that the particle gains from the
electromagnetic field can be written as

2 =qE(0,1) Rey*Vy) . (3.19)

The displacement density ¥* 1y satisfies
%¢*x,~¢+ V-7 =Ret*ny (3.20)

where x; is the ith component of the displacement
T (i=1,2,3). The “flux of displacement x;” .%; is
defined as

F =1 Re[ (V) *x; ¢+ Y *Vx; ] (3.21)

for i =1,2,3. If Egs. (3.19) and (3.20) are used in
the right-hand side of Eq. (3.12), and some rear-
rangements are made, we obtain

—gE(0,).7 ;1= —qE(0,0-4*Ty , (3.22)

sorbed into the potential energy of the partlcle, and
the energy operator is H (A, O)—qu

IV. BASIS-DETERMINING OPERATOR

When dealing with a time-dependent problem it
is often useful to expand the wave function in a
complete set of eigenstates of an appropriate opera-
tor. In the manifestly gauge-invariant formulation
the wave function is expanded in terms of the
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cigenstates of the energy operator (A)=H (A,0).
On the other hand, Olariu et al. propose expanding
the wave function in terms of eigenstates of a
basis-determining operator which involves two ar-
bitrary functions. In this section we compare the
two approaches.

Olariu et al. use for their representation eigen-
states of a basis-determining operator
2

p—L1A—1va
c c

Hp

1
2m
+V+4qd, 4.1)

where A and ¢, are arbitrary fixed functions of T
and t. The eigenvalue problem for the Hermitian
operator Hp is

HpX,=EX, , (4.2)

where X, are the (orthonormal) eigenfunctions and
E, are the corresponding eigenvalues, both of
which depend on the time as a parameter.

The wave function ¥ can be expanded in terms
of these eigenfunctions

2
sp=2+Rep* {(4m2%i#H) " | |7 —Lyr | 22
c
—L yr [qE—Lvi_vy
mc C

+q¢o

V=3 b,X, , 4.3)

where the expansion coefficients b, are convention-
ally interpreted as the probability amplitudes of
finding the system in the state X,. Olariu et al.
say that by a judicious choice of A and ¢, the
eigenvalues E, can describe the energies in a more
physical way than when Hp is the energy operator
(i.e., when A=0, ¢y=0). We shall now contrast
the behavior of Hp and E, with #(A) and ¢, in
Eq. (2.20), respectively.

If we consider the density of Hp in a manner
analogous to Eq. (3.11),

%B = Re‘(’/ *HB‘!/J , (4.4)

then the time rate of change of % p can be written
as

0%p -
RS EDS 4.5)
The flux of Hp is 7 g, defined as
Fp=5[(VO)*Hgy+*VHpy] . (4.6)

The source (or sink) of Hy is

Vv [d)o—%i 4V

¢o—l}k]'7l
C

v, 4.7

where the power density # is defined in Eq. (3.6) and the dot over a quantity denotes the partial time
derivative. There are many terms in Eq. (4.7) which are difficult to interpret physically. If we choose

VA =0, then Eq. (4.7) simplifies to

sp=2 +Rep* %(V-V¢0+V¢0-V)+q{bo .

The only term which we can interpret physically in
Eq. (4.8) is #, the power density, since the quanti-
ty in the square brackets in Eq. (4.8) is not a
power. If we wish Eq. (4.8) to reduce to a power
density we must choose both ¢,=0 and V¢,=0, so
¢o is a constant which can be chosen to be zero.
Since we have chosen both VA=0 and ¢,=0, Hp
in Eq. (4.1) becomes the energy operator in Eq.
(2.14). The conservation law in Eq. (4.5) reduces
to Eq. (3.12), and Eq. (4.6) for the flux reduces to
Eq. (3.13).

We can also consider the time rate of change of

(4.8)

|

the eigenvalue E, in Eq. (4.2). If the time deriva-
tive of Eq. (4.2) is taken, then

HBXn +HBin =Ean +Enin ’ (4.9)

where the dot denotes the partial time derivative.
If the inner product of Eq. (4.9) is taken with X,,,
we obtain

E,=(X, | HpX,) . (4.10)

Substituting the time derivative of Eq. (4.1) into
Eq. (4.10), we obtain
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@ o T
P——“—VA-E+qdy
mc

£~ (x, 4).

where P is the power operator in Eq. (3.7). The
time rate of change of the eigenvalue E, is the ex-
pectation value of a sum of the power operator P,
—(g2/mc)VAE, and g¢,. It is only the power
operator P that has physical significance. In par-
ticular if ¢y%0 when E=0, the eigenvalue E, con-
tinues to change in time even though no power is
being absorbed from the field.

On the other hand, the time rate of change of
the eigenvalue €, of the energy operator in Eq.
(2.20) is

.6,, =<wn |P¢n>
= [d* E-qRef} ¥4, , 4.12)

(4.11)

which is the expectation value of the power opera-
tor in the state ¢,,. Equation (4.12) states that the
energy eigenvalue for an electron in the state v,
changes at a rate given by the power absorbed
from the field. Equation (4.11) reduces to Eq.
(4.12) if we choose VA=0 and ¢y=0. If g¢, is a
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function of T alone, it is a potential energy. How-
ever, the potential energies of the problem are all
included in V. Therefore, the function ¢q=0. The
basis-determining operator Hp in Eq. (4.1) then
reduces to the energy operator in Eq. (2.14). The
eigenfunctions X, and eigenvalues E, in Eq. (4.2)
reduce to ¥, and €,, respectively, in Eq. (2.20).

V. PHYSICAL INTERPRETATION
OF EXPANSION COEFFICIENTS

We shall show in this section that in the formu-
lation of Olariu et al.’ the operator which couples
the states X, in Eq. (4.2) can in general couple the
states even when the field is zero. In contrast, the
quantity which couples states in the gauge-
invariant formulation of Yang' is related to matrix
elements of the quantum-mechanical power opera-
tor. When the electromagnetic field is zero there is
no coupling between the eigenstates of the energy
operator.

If Eq. (4.3) is substituted into the Schrodinger
equation in Eq. (2.2), the resulting equation for b,
is

i#iby—Epby =3 (X, | [H(A,Ao)—Hy —i#d /3t X, Yoy, . (5.1)
m

In the nondegenerate case (E,5E,,, ns=m) Eq. (5.1) can be rewritten as

ifiby — Xy | [H(A,A)—i#i3/3t X Yop =3 (E,—Ep)~ X, | [Hg,H(A,dg)—i#id/3t W Vb . (5.2)

ms£n

The commutator in Eq. (5.2) can be evaluated, and the resulting equation is

ifiby — (X | [H (A,do)—i#id/3t X, )b,

=Y i#E,—E, )-’<x,,

ms£n

—(g/mc)VA-(gE—VP)

—(q/2mec)

P +(q/2m)(7-Vo+ Voo 7)+qdo— (i#idm?)~! [n’z,

7—4dyx
[+

7—4dyp
C

|

7 %vx l I ]x,,,> b, , (5.3)

VA4 VA

where 7 is given in Eq. (2.11) and P is the power operator in Eq. (3.7). In Eq. (5.3) the states are coupled
by matrix elements of the power operator and terms which involve A and @,. In the case where the elec-
tromagnetic field is zero, E=0, Eq. (5.3) predicts that there is still coupling. Thus the eigenstates of the
Olariu et al. basis-determining operator are not stationary states in general in the absence of the field. If we
choose VA =0, then some of the terms in Eq. (5.3) vanish and it becomes

ity — (X, | [H(A,do)—i#d/3t1X, )b,

= 3 i#HE,—En) "X, | [P4(q/2m)(7Vo+ Vo 7)+qdolXm Ybm . (5.4)

ms£n
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As an example of this expression, let us make the electric dipole approximation (EDA) and take A =0,
$o(T,t)= —E(t)-T, as suggested by Olariu et al.’> Then in Eq. (5.4) the first term in the square brackets on
the right-hand side cancels the second, and it becomes

ifib, — (X, | [H(A,Aq)—i#d /311X, Vb, = 3, —iH(E, —E,,) " 'qE(1)-(X,, | TX o Vb, - (5.5)
ms£n

The coupling between the states X, and X,, is due to matrix elements of E(#)-F. This interaction is not a
power as discussed in Sec. IIID. At a time when E(¢)=0, E may not be zero, so according to Eq. (5.5) the
states may be coupled. Conversely, when E=0, E may not be zero, but there is no coupling according to

Eq. (5.5). However, classically, it is only when E;&O that the particle absorbs energy from the field.
On the other hand, for the nondegenerate case, Eq. (2.22) can be written as

iﬁén—'<¢n ‘ [H(K,O)-}-qu—l‘ha/al‘]lﬁn >Cn= 2 iTnm <¢n IP“/)m >cm ’ (56)

ms£n

where
Tm =H(€y —€p )} (5.7)

is a characteristic time associated with the transi-
tion from state m to state n. The gauge-invariant
formulation shows that the state m and the state n
are coupled by the quantity 7, (¥, | P¥,, ), i.e.,
the matrix element of the power operator times the
appropriate characteristic time. Thus the coupling
is induced by the power operator. There is no cou-
pling when the electromagnetic field is zero, in
contrast to Egs. (5.3)—(5.5).

Equation (5.3) reduces to Eq. (5.6) if we choose
VA=0, V¢, =0, and ¢y=0. If ¢, and V¢, are tak-
en to be zero, then ¢, is a constant which can be
taken to be zero. In this case the basis-determining
operator Hp in Eq. (4.1) then reduces to the energy
operator in Eq. (2.14), the eigenfunctions X, and
eigenvalues E, in Eq. (4.2) reduce to ¢, and ¢,
respectively, in Eq. (2.20). The expansion coeffi-
cients b, in Eq. (4.3) reduce to ¢, in Eq. (2.21).

VI. CONCLUSION

This paper emphasizes Poynting’s theorem and
energy conservation in providing a physical in-
terpretation of the quantum mechanics of a
charged particle when an external classical elec-
tromagnetic field is applied. As a result of energy
conservation, the power lost by the electromagnetic
field is the power gained by the particle. This con-

T

dition is satisfied if the energy operator of the par-
ticle is defined so that the time rate of change of
the average energy is equal to the expectation value
of the quantum-mechanical power operator. The
energy operator must also be gauge invariant,
which the Hamiltonian is not. In fact, all opera-
tors corresponding to observables should be gauge
invariant.!® The gauge-invariant formulation of
Yang! and Kobe and Smirl? maintains gauge in-
variance and energy conservation at all times.

Any set of basis functions may be used to calcu-
late the wave function ¥(¢) of the particle interact-
ing with the external classical electromagnetic
field. An eigenstate 1,(¢) is the eigenstate of the
energy operator & in Eq. (2.20). The probability
amplitude for finding the system in an energy
eigenstate ¥,(¢) at time ¢ is ¢, (£)= (¢, (¢) | ¥(1)).
If X, is an eigenstate of an operator Hy which is
not an observable, the amplitude b, (¢)
={(X,(¢) | ¢(£)) has no significance becasue 1 can-
not be projected into the function X,, by any meas-
urement.
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