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Tachyons and the radiation of an accelerated charge
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The motion of an accelerated charge in vacuum is analyzed, via the superposition prin-
ciple and Fourier analysis, into uniform-motion components, which include bradyonic as
well as tachyonic contributions. It is shown that the former contribute only to the induc-
tion fields whereas the latter are the source of the radiation emitted by the charge, via the
Sommerfeld-Cerenkov mechanism. This result calls for a reexamination of some recently
formulated theories of superluminal particles.

We want to show that the origin of the radiation
emitted by an accelerated charge in Uacuum can be
traced to the Sommerfeld-Cerenkov mechanism,
i.e., to the fact that a charge moving in a given
medium with a velocity larger than the velocity of
light in that medium does radiate. '

As will be shown below, this comes about be-
cause the motion of an accelerated charge can be
analyzed into uniform-motion components, via
Fourier analysis. These components can be classi-
fied as tachyonic and bradyonic, and it is the
former, that is, the tachyonic components, which
give rise to the radiation fields of an accelerated
charge.

To illustrate this contention we shall discuss in
detail the case of a point charge q in vacuum per-
forming a general one-dimensional motion along
the z axis. The electromagnetic fields can be
determined from the potentials trz(r, t) and A, (r, t).
We shall consider in detail only the scalar potential
re(r, t); the vector potential A, (r, t) obeys similar
equations and can likewise be determined. Within
the Lorentz gauge the potential 4 satisfies

4~p( r,t)—1 B4
C2 gt2

4vrq5(x)5(—y)5(z —z (t)),
where z (t) represents the one-dimensional law of
motion of the charge.

By invoking the superposition principle we can

where
i (kz —cot)~e (2)

oo

g (k ) e ikz(t)—eicutdt
(2zr)'

Vhth this, we can write the source p( r, t) as a
sum of components p(k, to, r, t) which represent line
charge densities moving along the z axis with uni-
form velocities uk„——co/k, i.e.,

p(r, t) = f dk f drop(k, ro, r, t)

=f dk f dcoq6(x)6(y)g(k, co)

i(kz —apt)Xe

J,(r, t) = f dk f dcoj, (k, ro, r, t)

= f" dk f" d~ p(k, co, r, t)Uk„.

The solution of Eq. (1) can thus be written

Ct(r, t)= f dk f dtoqt(k, to, r, t) .

The component q&(k, co, r, t) satisfies an equation
analogous to Eq. (1) whose source is p(k, to, r, t)
Taking into account the symmetry of the problem
this equation reads

solve Eq. (1) performing a Fourier transform of the
factor 6(z —z(t)) in the form

5(z —z(t))= f dk f d gto(k, )ro

p y(k, ro, r, t) +0 (p(k, ro, r, t) = —4qg(k, co) e""'ik. t)

P dP dP P

where, p2 &2+y2 and g2 ~2/c2 P2
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For fl &0, which implies
~ vk„~ &c, the solution of Eq. (6) is

cp(k, ro, r, t) =2qg (k, to)Kp(g)e'I"'

where g=( —0 )' p and Kp(g) is the modified Bessel function which behaves as —in( for g« 1 and as

(tr/2()' e ~ for g&& l.
For Il & 0, which implies

~
vk

~

& c, there are two different solutions, depending on the sign of co, given

b 5

co &0: (p(k, to, r, t) = iraq—g(k, to)Hp '(q)e'~"'

io) 0: &p(k, to, r, t) =i trqg (k, to)Hp" (rt)e'"'

where g =(0 )'~ p and H p' (ti), H p '(g) are the Hankel functions which behave as +i (2/rr) ln g for g && 1

and as (2/art)' e-+-'" ' for ti)& 1.
It should be noted here that in the equations above all values of k and to are present. Therefore, all values

of the velocities Uk of the line charge densities are possible. This means that the field of a charged particle

performing an arbitrary one-dimensional motion will contain in general bradyonic and tachyonic parts. We
shall call the "bradyonic" part of the field that field associated with line charge densities moving with con-

stant velocities vk with
~
vk„~ &c. We use the word "tachyonic" for those fields associated with line charge

densities moving with constant velocities vk with
~
vk„~ & c. According to this, in building up the total

solution, we can split 4(r, t) into its bradyonic and tachyonic parts C&(r, t)=C& (r, t)+4 (r, t). The bradyon-

part is given by
00 fk fc4 (r, t)= f dk f dto2qg(k, to)Kp(g)e""' (9)

and the tachyonic part by
00 —fk fc4 (r, t) = f dk f des( itrq)g(k—, to)Hp '(ri)e'"'

+ f dk f dto(i~q)g (k, to)H p" (ri)e'~ (10)

By carrying out a similar analysis for the vector potential A, (r, t) we obtain A, =A, +A, , where A, [A, ]
is obtained from Eq. (9) [Eq. (10)] by replacing g (k, co) with (co/ck)g (k, to). Finally, from
E= —V4 —(1/c)dA/t)t and H= V )&A, we see that the electromagnetic fields of the charged particle split

in a natural way into bradyonic and tachyonic components, i.e., E=E +E and H=H +H . The bra-

dyonic fields are given by

Ee(r, t)= f f, 8'p(k, co, r, t)dkdto= f dk f dco2qg(k, to)( 0)'t K)(—g)e'"'
00 fk fc 0

E, (r, t)= f f, 8', (k, to, r, t)dk dto= f dk f dto2iqg(k, to) Kp(g)e'"'

fk fc
He(r, t)= f f, A e(k, to, r, t)dkdto= f dk f dto2qg(k, to) ( —II )' K&(g)e""'

and Eg =Hz =H, =0. Here K&(g) is the modified Bessel function which behaves as g
' for g«1 and as

(m/2g)' e & for g)) l.
The tachyonic fields are given by

Ee(r, t)= f f, 8' (k, to, r, t)dkdto= f dk f dto( itrq)g(k, to)(Q—)' HI (g)e'"'

+f dk f dto(itrq)g (k, to)(O )' HI" (rt)e'~

00 —fk fc 0E, (r, t)= f f, 8', (k, to, r, t)dk den= f dk f dtotrqg(k, to) Hp '(g)e'"'

Q0 00 0+f dk f de( trq)g (k, to) H p"—(ri)e'"' ", (12)

Htt(r, t)= f f A tt(k, to, r, t)dkdto = f dk f dto( itrq)g(k, to) —(0 )' HI '(g)e'
02&0 00 00 ck

+f dk f dto(t~q)g (k, co) (0 )'t H"'(g) ""'e
fk fc ck
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and Ee H——
p

H——, =0. Here H'1" (21), H) '(2)) are the Hankel functions which behave as +(2i/m)T. 1
' for

21 «1 and as +i (2/ir21)'/ e +'1-" / ) for 2) »1.
As described by Eq. (11), the bradyonic fields appear as a superposition of transverse magnetic (TM),

cylindrical euanescent maues. These are solutions of the wave equation in vacuum except at p=O. For
g=( 0—)' p=Ep » 1, they behave as (1/~Ep)e pe' "",giving no contribution to the energy flux

across a cylindrical surface of arbitrary radius coaxial with the particle's track. These evanescent waves

propagate along the z axis, bound to their sources, with the phase velocities ug =uk„——(co/k).

As given by Eq. (12), the tachyonic fields appear as a superposition of TM cylindrical outgoing waves. For

Ti =(02)'/ p=kpp » 1, they can be written as (0 & 0; co & 0; kpp » 1):

+i (kg+kz —
~

co
~
t —n./4j

g T(k ~
t) ~2 (k )k

1 +i (kpp "kz —
~

-~
I
i z/4—)

P (k )1/2

kp
(f', (k, co, r, t) =+~2nqg (k, co)

)
1/2

(13)

~Okp 1 +i(kg+kz —
~

a&
~

) n/4)—
e(k, co, r, 't) =- 2nqg (k,.co), e-

ck

which shows that, far from their sources, they
behave as outgoing cylindrical waves traveling with
the phase velocity

~

co
~
/(kp +k )' =c in the

direction of the "asymptotic wave vector" k,
=k& p+kz, while their sources travel with veloci-
ties uk with

~
uk„& c in the z direction. The angle

)p between k, and the z axis satisfies

(14)

This expression clearly diverges. But if we consid-

+k k c

(k 2+k2)1/2 N/c U„

which is just the Sommerfeld Cerenkov r-adiation

condition in vacuum The fi.elds given by Eq. (13),
which are transverse to the direction of prop-
agation, decay as p

' and therefore do represent
radiation fields in the sense that they contribute to
the energy flux across a cylindrical surface of arbi-
trary radius coaxial with the z axis.

Let us first consider the case of a particle mov-

ing with constant velocity, for which z(t) =uiit
(vo &0) and g(k, io)=(1/2ir)5(co kvo) For u—o &c.
only the bradyonic part of the field contributes [cf.
Eqs. (11) and (12)], giving the fields of the brady
onic particle resolved into cylindrical evanescent

waves. For a "real" tachyonic particle v0 & c and

only the tachyonic part of the fields is nonvanish-

ing [cf. Eqs. (11) and (12)]. From

Sp —— (c/4u)E, He the —total po.wer radiated by
the "real" tachyon results

P= J pd8 f Sp(p, O, z)dz

2 VO C2
cod& .

c v 0

I = J dt f 2mRS dz

=8' q f dk f de ~g(k, io)
~

2

x —k'
C2

(16)

l

er a charge of finite size and assume that the radi-

ation it emits is limited to the waves which are

larger than its diameter, we obtain a finite expres-
sion which results almost identical with that ob-

tained by Sommerfeld.
For general physical motions (

~

z(t)
~

& c), the

properties of the fields can be summarized in the
following three theorems, the proof of which will

be published elsewhere.
Theorem I. For any physical motion there are

always nonvanishing bradyonic fields, i.e.,

~)z(t)
~

&c ~3k, co

with ro /c &k such that g(k, co)+0.
Theorem II. For any charged particle in physi-

cal motion in which the acceleration is not identi-

cally zero there are always nonvanishing tachyonic
fields. And conversely, if in any physical motion
there are nonvanishing tachyonic fields, the
charge s acceleration is not identically zero, i.e.,
z(t) not identically zero ~gk, to with co /c &k'
such that g (k,co)@0.

Theorem III. For any physical motion the ta-

chyonic fields are the only ones which contribute
to the total energy radiated by the charge, which

results in
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Using the above given description of the fields

of an accelerated charge, we have worked out the
well-known example of the harmonic oscillator.
We found that the tachyonic fields in the dipolar

approximation give rise to the Larmor formula.

This example and some other applications will be

reported elsewhere.
Our present analysis shows, via the superposition

principle, that the radiation of an accelerated

charge in vacuum can be traced to the
Sommerfeld-Cerenkov mechanism of radiation by
faster-than-light particles. This result is at vari-

ance with the conclusion of several authors who,

either based on what they call "extended special
relativity" or using ad hoc procedures, ' claim to
have shown that uniformly moving charged ta-

V'

chyons do not emit Sommerfeld-Cerenkov radia-
tion in vacuum. If this were true, according to our
results, any accelerated charge would not emit ra-
diation at all. In particular the assertion due to R.
Mignani and E. Recami that "it is necessary not to
confuse electromagnetic Cerenkov radiation (ECR)
with usual electromagnetic radiation (UER) that a
charged particle emits (even in vacuum) when it is
accelerated"' should be reviewed in light of the
current analysis.
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'As early as 1904, Sommerfeld arrived at the conclusion
that radiation could be emitted in free space by a
charged particle moving with constant velocity
exceeding that of light [see A. Sommerfeld, Proceed-
ings of the Amsterdam Academy 8, 346 (1904)].
After the advent in 1905 of the Einstein theory of
special relativity, the Sommerfeld tachyonic solution
was discarded. Radiation by faster-than-light parti-
cles found its application in the explanation of the
Cerenkov effect given by Frank and Tamm in 1937
[P.Cerenkov, C. R. Acad. Sci. URSS 8, 451 (1934); I.
Frank and Ig. Tamm, C. R. Acad. Sci. URSS, 14, 109
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than c, but rather that it inhibits subluminal particles
from breaking the light barrier.

Superluminal particles were named tachyons by G.
Feinberg [Phys. Rev. 159, 1089 (1967)]. The name
bradyons for subluminal particles was proposed by R.
G. Cawley [Ann. Phys. (N.Y.) 54, 132 (1969)].

In this paper we consider only one-dimensional mo-

tions, but the conclusions can be generalized to three-
dimensional ones.

4See J. L. Agud&n and A. M. Platzeck, J. Opt. Soc. Am.

70, 1329 (1980).
5This can be inferred from Ref. 4 and from the fact that

Hp" (g), Hp '(g) are equal to +(2/m)iXp(+ig). The
choice between H p" and H p

' is made in order to ob-
tain only outgoing solutions.

See, for example, Ig. Tamm, J. Phys. 1, 439 (1939),
principally the discussion following Eq. (4.10), where
Sommerfeld's result is compared with the Frank and
Tamm formula for the Cerenkov radiation. It is
worth noting here that we have reobtained
Sommerfeld's result by summing up the fields
produced by all the tachyonic densities with Uk„——Up

which are the only ones excited by the tachyonic
particle.
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83A, 423 (1981).

J. L. Agudin and A. M. Platzeck, Lett. Nuovo Cimento
31, 421 (1981).

R. Mignani and E. Recami, Lett. Nuovo Cimento 7,
388 (1973); E. Recami and R. Mignani, Riv. Nuovo
Cimento 4, 209 (1974); H. Lemke, Lett. Nuovo
Cimento 12, 342 (1975).
C. M. Ey and C. A. Hurst, Nuovo Cimento 39B, 76
(1977); C. C. Chiang, Center for Particle Theory,
University of Texas Report No. CPT 117, 1971 (un-

published).
R. Mignani and E. Recami, Lett. Nuovo Cimento 9,
362 (1974).


