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Axially symmetric, static self-dual SU(3) gauge fields and stationary Einstein-Maxwell metrics
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The stationary axially symmetric (AS) Einstein-Maxwell equations are shown to be a
special case of the static AS self-dual SU(3) Yang-Mills equations; they can become ident-
ical by imposing certain functional relations on the Yang-Mills fields. Certain techniques
developed for the Einstein-Maxwell equations are translated into the SU(3) Yang-Mills
equations, and a linear eigenvalue problem for the stationary AS Einstein-Maxwell equa-
tions is formulated.

I. INTRODUCTION determinant,

The main objective of the present paper is to
demonstrate that the stationary axially symmetric
(AS) solutions of the Einstein-Maxwell equations
are also solutions of the static AS classical self-
dual SU(3) Yang-Mills equations. Our work ex-
tends the result of %itten' who showed that the
stationary AS vacuum Einstein equations can be
identified with a subclass of the static AS self-dual
SU(2) Yang-Mills equations.

The self-dual Yang-Mills equations are more
conveniently described in the R gauge, first intro-
duced by Yang for the SU(2) case and subsequent-

ly extended by Prasad, Ardalan, and Brihaye et
al. to the SU(n) group. For this gauge group the
self-duality equations are

D, (P 'D, P)=0, a =y, z,
where P is an n )& n Hermitian matrix with unit
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and y and z are complex coordinates related to the
four-dimensional Euclidean-space Cartesian coordi-
nates by

1 . 1
(X 1 +tX2), 2= (X3 —lX4)~2 V2

Here and in the sequel the bar operation denotes
complex conjugation. Equation (1) is invariant
under the gauge transformation

I

P =APA

where A is a constant SL(n, C) matrix and the
dagger denotes Hermitian conjugation.

For the SU(3) equations a convenient parametri-
zation of the matrix P is given by

—1 —
y

—1 —I

Plttll PlP101 +tt1102 PlP301 +P241tt12

p341 plp3tt 1 +p24142 p3P3tt 1 +p2P201tt 2 + (b2

(3)

where $1, p2, pl, p2, and p3 are scalar fields in Eu-
chdean space. In terms of these fields Eqs. (1)
have already been given by Prasad who also gave
some SU(2) fields imbedded into the SU(3) gauge
group. As an example of one of these embedded
SU(2) gauge fields we give the following

41 4'2 0 P3 P Pl P2

Next we review the stationary AS Einstein-
Maxwell equations. These equations are usually

I

expressed in terms of the Ernst complex potentials
e and 4. The equations read

(e+e+244)V @=2(Ve)(Vs+2@V@),

(e+e +2&tT1)V C&=2( V@)(Vs+2@V@),

where V and V are, respectively, the three-
dimensional Oat-space gradient and Laplacian
operators, both acting on fields with azimuthal
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symmetry (signature +++—). In fact, for any
linear combination of the Killing fields of the sta-
tionary AS spacetime, a pair (e, C&) can be con-
structed which satisfies Eqs. (5). The gravitational
complex potential e is conveniently parametrized
as

e= f —44—+i P,
where f is the square of the norm of the chosen
Killing field and g is its twist potential; the elec-

tromagnetic complex potential 4 is constructed
from certain components of the vector potential.

II. THE IDENTIFICATIGN

The basic observation which leads to the identif-
ication of the Einstein-Maxwell and the SU(3)
self-dual Yang-Mills equations is the following.
First, we consider the 3 X 3 Hermitian matrix with
unit determinant

(e e—2—44—)
2

v2m

——,(e+ e —24&4)

iv 2C&r

——(e—e —24&4)
2

V (P, 'VP, )=0.
Second, we consider only the static, BP/Bx4 ——0,
and axisymmetric,

x, —x, P=0,
BX2 BX~

solutions of the SU(3) self-dual Yang-Mills equa-
tior's. With these assumptions Eq. (1) becomes

V.(P 'VP) =0,
where in both Eqs. (7) and (8) V and V are the
three-dimensional flat-space gradient and diver-
gence operators, respectively. Finally, to complete
the identification we specialize the matrix P in (3)
by setting

P, =i', =f= —, (e+e+—244),

pi =—
lpga

—v 24,
l

p, =—(F—e—244) .
2

(7)

and we write the stationary AS Einstein-Maxwell
equations (5) in terms of the matrix (6) alone; they
read

P, =AP, A (10)

where the constant SL(3,C) matrices A are given,
respectively, by

I

Witten's' result corresponds to the imbedding (4),
or equivalently to the C&=0 (vacuum) case in Eqs.
(9).

It is well known in general relativity that sta-
tionary AS Einstein-Maxwell Eqs. (5) are invariant
under the action of an eight-parameter group of
transformations. This group is generated by the
following transformations: (1) the Ehlers transfor-
mations (one real parameter), (2) the Harrison
transformations (two real parameters), (3) the grav-
itational gauge transformations (one real parame-
ter), (4) the electromagnetic gauge transformations
(two real parameters), and (5) the combination of
coordinate and gauge transformations (two real
parameters). These transformations can be cast
into the form

10y 1

A) ——01 0, A2 ——0
001 0

av 2 iaa—
1 —iav 2

0 1

100
A3 —— 010

a 01

1 0 0

Ag ——bv2 1 0
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p
—1 ia 0

e
—2io/3

0 —io/3pe
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where a, P, and y are arbitrary real and a and b

are arbitrary complex constants. The Ehlers (A &),

the Harrison (A2), and combinations of these with
each of the other transformations generate distinct
solutions of the Einstein-Maxwell equations from
old solutions. For instance, the Kerr-Newman
metric, which apparently presents the most general
black-hole solution of general relativity, can be
constructed from the Kerr metric by an application
of the Harrison followed by an electromagnetic
gauge transformation. In view of the identifica-
tion (9), the transformations (11) are nothing but
the gauge transformations of Eq. (2). Therefore,
although they have been used to construct new
solutions in relativity, they do not generate physi-
cally distinct solutions in the Yang-Mills theory.
In particular, the self-duality equations do not dis-
tinguish the Kerr and the charged Kerr black-hole
metrics.

In addition to the above continuous group, there
exist two discrete transformations, the inversion
and the Bonnor transformation, which preserve
Eqs. (5). In terms of the potentials (e,4) the inver-
sion is given by (e,4)= (e ', 4e '). The action of
the inversion on P„Eq. (6), is P, =P, ', which
justifies the word "inversion" and makes the
transformation immediately verifiable. For the
Yang-Mills fields it corresponds to Prasads "I"
transformation, which turns out to be a gauge
transformation.

Starting from any stationary AS vacuum solu-
tion of the Einstein equation with Ernst potential
E, the Bonnor transformation provides an electro-
vacuum solution described by

e= —EE,
(12)

4= —(&-&)
2

In this case, the resulting Yang-Mills matrix P, is
not related by a global gauge transformation (2) to
the one constructed from the vacuum pair (E,O).
Moreover, the topological density' of the SU(3)
solution (12) equals four times the topological den-
sity of the SU(2) solution (E,O). We conclude,
therefore, that among all the above algebraic
transformations the Bonnor transformation is the
unique one which provides physically distinct
Yang-Mills solutions.

A potentially more powerful technique for the
generation of solutions of both the Einstein-
Maxwell and the Yang-Mills equations which we

have not mentioned above could be the use of the
Kinnersley-Chitre" transformations. So far, this
technique has been proved very useful for con-
structing physically interesting solutions of the va-
cuum Einstein' and of the corresponding SU(2)
Yang-Mills equations. ' It would be very interest-
ing to extend these techniques to the Einstein-
Maxwell and the SU(3) Yang-Mills equations.

Since the expressions for the Yang-Mills poten-
tials and fields constructed from P involve the
terms ~P& and ~$2, the function f in (9), which
is the scalar product Pg, of the Killing field (that
we started with to construct the Ernst potentials)
with itself, must be positive. This constraint al-
lows only those regions of the spacetime where the
Killing field is spacelike. The regions of the appli-
cability of the technique therefore are bounded by
the Killing horizons. In the case of the Kerr
metric the rotational Killing field can be used in
the entire spacetime except the axis of rotation.
However, the Killing field which asymptotically
becomes a time translation can only be used in the
inside of the Killing horizon (the ergosphere) re-
gion. Killing horizons and the essential singulari-
ties of the spacetime are in fact the singularities of
the Yang-Mills fields.

III. CONCLUDING REMARKS

In this paper we have attempted to transfer the
knowledge accumulated in general relativity into
the self-dual SU(3) Yang-Mills fields. We would
like to remark that some insight can be gained for
the Einstein-Maxwell equations from the tech-
niques developed for the Yang-Mills equation (1).
For instance, recently Manakov and Zakharov'
have written a linear eigenvalue problem for Eq.
(1) in 2+ 1 dimensions. Their prescription for the
SU(3) group can be used for the stationary AS
Einstein-Maxwell equations. The relevant eigen-
value problem is

[A B-—A, '(By +8)+A ]4=0,
(13)

—.8, +KB-+A 4=0,1

2i

where 4=%(k,z,p) is a 3)&3 matrix,

A =—P, 'Pz, B=P, 'P~y,
1

A, is the constant eigenvalue of the system, and
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y =pe'~, z =z are equivalent to the cylindrical
coordinates. The integrability conditions of (13)
are

A, =2iB

8, =2i (A» —[A,B]),
(14)

which are equivalent to the Einstein-Maxwell equa-
tions (7).

The linear eigenvalue equations (13) are simpler
than those given by Aleksejev, ' and the Belinski-
Zakharov' eigenvalue equation for the vacuum is
formally identical to the one corresponding to the
embedding (4).

itlote added in proof: It has been shown" that a
slight modification of the Belinski-Zakharov
method of integrating the stationary AS vacuum
field equations can be applied to the stationary AS
Einstein-Maxwell equations.
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