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Dirac field theory in rotating coordinates
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The Dirac field in Minkowski spacetime is quantized in a rotating coordinate system.
In contrast to the scalar case, the natural procedure of defining particles via the Killing
vector of the rotating observer yields a canonical quantization scheme. This scheme is

inequivalent to the usual Minkowski quantization, and in contrast to the scalar case the

rotating observer sees in the inertial vacuum a (nonthermal) spectrum of particles and an-

tiparticles.

I. INTRODUCTION

Recent investigations into possible alternative
quantization schemes in Minkowski spacetime were

motivated by Hawking's' quantum-field-theoretic
result on black-hole evaporation. Earlier, Fulling
had shown that quantization in Rindler coordi-
nates leads to an inequivalent quantization scheme
and the accelerated observer sees the Minkowski
vacuum as a thermal bath of particles with tern-

perature proportional to acceleration. The
relevance of these various quantization schemes in

the context of black-hole evaporation was elucidat-

ed by Unruh, who by considering a model particle
detector in an accelerated state of motion showed

that indeed the detector observes the above spec-
trum. In earlier papers we have generalized the
above results to the spin-half fields. Recently, Sci-
ama, Candelas, and Deutch have examined more
critically the above results and stressed that the
detector essentially measures the spectrum of vacu-

um fluctuations. The investigation of the depen-
dence of the detector response on its state of
motion necessitates the construction of quantiza-
tion schemes in the relevant system of coordinates.
In this connection Letaw and Pfautsch have ex-

. amined the scalar field in a rotating system of
coordinates. Here we study the Dirac field, both
massless and massive, in rotating coordinates and
construct a set of complete orthonormal modes.
Employing these we show that the natural defmi-
tion of positive frequency yields, unlike the scalar
case, a canonical quantization scheme. The quanti-
zation is inequivalent to the quantization in inertial
coordinates and we exhibit the corresponding Bo-
goliubov transformation. The results are contrast-
ed with the spin-zero case and interpreted physical-

ly in terms of the choice of vacuum states for the
rotating and inertial observers.

II. THE DIRAC EQUATION
IN ROTATING COORDINATES

In what follows latin indices are tetrad labels
and run over 0 to 3 while greek indices are coordi-
nate labels. The Dirac equation in general coordi-
nates may be written as

) V, /+ipse=O,

where y' are the 4X4 flat-spacetime Dirac ma-

trices satisfying

lr'1 )+=2m"
and

(3)

Here eg are the chosen tetrad fields and I
& the

spinor affine connections given by

I p= —41 1 eaesyt4

To proceed further we note that in coordinates
adapted to an observer traveling in a circle with
constant angular velocity 0, the Minkowski space
is given by

ds =(1—II r )dt 2Qr dPdt —rdP—
—dr —dz

The metric is stationary and the coordinates
(t,r,Pg) are related to the cylindrical Minkowski
coordinates (t', r',P'g') by

fIt', z=z'. —
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With the nonvanishing tetrad field components
chosen to be

t r z
eo ——e] ——e3 ——1,

e]= n—, ef= 1
(7)

P(co, m, k;») =exp[ i—(co m—Q)t]

&( exp[i ( m P+ kz) ]

X (ri(r), g(r) }

where g(r) satisfies

(14)

the corresponding I &'s are

r, =nr, , r, = ——,'y'y', r„=r,=o.

Employing Eqs. (7) and (8) the Dirac equation in

rotating coordinates is explicitly given by

[y'(a, —na, )+y' a, +—+—y'a,

crt cl„+—+ crz+ikcr3 ic—o ri(r)=0. (15)
2p r

Putting

q(r)=(Ri(r), Rp(r))r

yields the following coupled equations for R
1 and

R2.

+y'a, +ii ]y=o. (9}

We shall first discuss the neutrino (p=0) case.
In this case, as is well known, the spin of the neu-

trino is antiparallel to its momentum and hence it
satisfies the additional condition

d 2m+1+ R ~ =i (co k)R i-,ll 2&

2m —1
R i i (co+——k)Rg .

2p'

(17a)

(17b)

(1+iyq)/=0 .

In the standard representation we work in

(10)
Eliminating Rl from Eqs. (17) yields the follow-

ing decoupled equation for R z ..

0 i

i 0

and setting

w&th

r'- +r +Q'r —(m+ —, )' Rz(r)=0
dr~ dr

(18)

g +( 2 k2)l/2

4=(ni nz)'

in Eq. (10), where gl and gq are two-component

spinors, yields,

I1 92

(12}

(13)

Equation (18) is a Bessel equation of order

(m + —,) in variable Qr, whose solutions are taken

to be J +«z(gr}. Employing Eq. (17a) and the re-

currence relations for the Bessel functions yields

From Eq. (13) and (t,Pp} independence of Eq.
(9), it is obvious that the solutions for the neutrino

case can be taken in the form

Ri(r}=Q
i (co—k)

so that the normal modes are written as

(20)

|I('(co m k'»)=exp[ —t (cot —mP —kz)](QJ~-1/»i(co —k)Jm+1/2 QJm I/2 t (co—k)J +&I&)

where

(21)

co=co—mQ, J +~/z=J~+&/&(Qr) . (21a)

As would be expected these solutions are the Minkowski modes transformed to the rotating coordinates
since the Dirac field is a scalar under coordinate transformations.

From the conserved current for the Dirac equation (1) one defines an inner product on the space of the
above solutions by

(4i 6)—= I & gfiA~d'»—
t =constant

where

(22)

(23)
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In our case Eq. (22) reduces to the form

(P),P2)= rg, gzdrdgdz .
t =constant

writing J +&&2(Qr) in terms of spherical Bessel functions j~(Qr} and employing the relation

f j~(«)J'I(k'r)r'dr = 5(k —k'),
0 2k

it can easily be shown that the modes, Eq. (21), are orthogonal and yield

(g'(co, m, k), g'(co', m', k'))=8m
~

co —k
~

6(co —co')6lk —k')6 ~

(24)

(25)

(26)

g(co, m, k;x) =—[2m (2
~

co —k
~

)
'c

] 'P'(co, m, k;x )

are a convenient set of orthonormal modes for the neutrino field in rotating coordinates. It should be no-
ticed that as expected the Dirac modes have positive norm for all values of 6. In terms of these normal
modes an arbitrary Dirac field may be expanded as

II
dco f dk[a( corn, k)tP( corn, k; x) +b (co,m, k)g( —co, —m, k;x)] .

a) g0 —(co
(

(27)

The above mode decomposition differs from the
usual Minkowski expansion in that the rotating ob-

server defines positive frequency via his Killing
vector d/c}t so that modes with co & 0 are his parti-
cles. For the inertial observer the natural choice is
in terms of the Killing vector dldt' Thus th.e
co & 0 modes are the Minkowski particles. With
this comment Eq. (28) may be inverted to yield

a {co,m, k) =(g(co,m, k;x),%}, co & 0, (29a)

b (co,m, k) ={/(—co, m, k;x),%),—co &0 .

(29b)

The Lagrangian density for the Dirac field is
given by

and complex conjugates.
For our case @=0. Using Eqs. (29), (32), and

(26) it follows that

[a (co, m, k),a (co', m', k')]~

=5(co—co')6(k —k')5~ ~ . (33)

Similarly,

[b (co, m, k), b (co', m', k')]+

=5(co—co')5(k —k')5 ~ . (34)

All other anticommutators vanish.
The rotating observer defines his vacuum by

W(x)=& —g (iqcy'V, 4 p+qi) .—

The momenta conjugate to the fields are

(30) a(co, m, k)
~

0)n b(co, m, k)
~

0)——n
=0, co&0 . (35)

H(x) =— =i & g+—B.N
O'0,

H*(x)—: =0 .aw
8%',

(31)

[q'(z), q'(x )],=[H'(x), H'(x )],=0,
[H'(x), ql"(x'))+ =i5(x —x')5'

{32)

Field quantization is effected by imposition of the
equal-time anticommutation relations

As mentioned earlier, the rotating observer clas-
sifies as particles the modes with co &0. Thus his
natural vacuum

~
0)n has no particles, i.e., co & 0

states and all modes with co &0 (holes) are filled.
To relate the above creation and annihilation

operators with the usual Minkowski operators re-
call that Eq. (21) would be precisely the Minkowk-
si modes. However, the inertial observer calls the
~ & 0 solutions the positive-frequency modes.
Hence he has

f dco f dk[a( , co,m)gk( , co,mxk)+b (comk)g( —co, —m, k;x)] (36)
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with a(ro, m, k) and b(co, m, k) satisfying the canoni-
cal anticommutation relations as before. He de-

fines his vacuum by

a(ro, m, k)
l 0)M b(——ro, m, k)

l
0)M

=0, N)0 . (37)

so that all co) 0 states are empty and all "holes"
ro &0 are filled. From Eq. (29a)

a(ro, m, k)= f & gd'—xP (ro, m, k)4 . (38)

Expanding + in terms of the Minkowski modes,
Eq. (36), it can easily be shown that

a (ro, m, k) =a(co, m, k) co & 0,
a(co, m, k)=b ( —io, —m, k), co&0.

(39a)

(39b)

Similarly

b(co, m, k) =b(ro, m, k), co &0,

b ( r,omk) =a ( —ro, —m, k), ro & 0 .

(40a)

(40b)

We thus find that the modes with co) 0 but
ro &0 are related by a Bogo1iubov transformation.
To examine the result further let us compute the
number of "rotating" particles in the Minkowski
vacuum. Employing Eqs. (39) we have

M (0
l Nn+ (~,m, k)

l
0 &M

M(OI a—'(~ m k)a(~ m k)
1 »M

=0, co) 0

=1, co (0, (41)

=0, N)0
=1, co(0 . (42)

The above results can be understood in a physi-

where we have for convenience converted the con-
tinuous values co and k to discrete ones in the usual
way.

Similarly it follows that

(0
I Nn (co,m, k) 10)M

=M (0
l
b (ro, m, k)b(co, m, k)

l
0)M

FIG. 1. The figure shows the vacuum states of the
inertial and rotating observers. The open circles
(squares) indicate that the Minkowski (rotating) vacuum
has no "particles. " The dark circles (squares) indicate
the filled negative-energy states as defined by the Min-
kowski (rotating) observer. The observers agree on their
definitions of particles and antiparticles in sectors II and
IV, respectively. To the rotating observer, the Min-
kowski vacuum seems to contain particles (sector III)
and antiparticles (sector I).

cal manner by reference to Fig. 1. From this fig-
ure in the (ro, m) plane it is obvious that in the
state

l 0)M, all states to the right of the co =0 line
are empty while all holes to the left are filled.
However, to the rotating observer all states below
the co =0 line are empty while those above are
filled. Thus if the rotating observer sees Min-
kowski vacuum, then he find states in sector III
filled (particles) and those in Sector I empty (an-
tiparticles). The Minkowski vacuum consequently
contains for the rotating observer a nonthermal
spectrum of particles and antiparticles for energies,
where 6 is positive but co is negative. However, it
can be shown that the charge operator for the ro-
tating observer

00 /ccp
f

Qn = g f dco f dk [ t( am', k) ( am', k) b(co, km)b ( m—co, k)]
m =—oo

(43)

is identical to that of the Minkowski observer QM.
Hence as would be desired he does not see any
charge in the inertial vacuum.

These results must be contrasted with those ob-

I

tained for the scalar field. Unlike the spin-zero
case we have been able to define particles as modes
with Fo) 0 and obtain a canonical quantization
scheme with a and b being interpreted as
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creation operators for particles and antiparticles,
respectively. This difference between the spin-half
and -zero cases is due to the following reason. For
the scalar field the positive-frequency solutions
have a positive norm whereas the negative-
frequency solutions have a negative norm, so that
the sign of the norm together with the canonical
commutation relation identifies the creation opera-
tors of the field. Consequently canonical quantiza-
tion was not possible for the scalar case because
though the frequency was classified via co the norm
of the modes was still determined by the sign of co

and not of ai. It is precisely for this reason that
quantization in rotating coordinates turned out to

be equivalent to that in inertial coordinates. For
the Dirac field on the other hand, all modes posi-
tive and negative have a positive norm so that the
criterion of the norm is not available to define the
creation operators. Thus in this case we define

particles as modes with positive frequency, i.e.,
co y 0 and this as proved above leads to a canonical

quantization scheme. One point should be noted.
Since the canonical anticommutation relations do
not force an identification of annihilation and crea-

tion operators, they may be redefined by a shift of
the zero of the energy scale. Thus if we expand

the field as

g f de f dk [a'(co, m, k)P(co, m, k)+b' (co, m, k)g( —co, —m, k)]
rn &0

+ g f da~ f dk [a'(co, m, k)i)'j(co, m, k)+b't(co, m, k)P( —co, —m, k)]
m&0

+ g f de f dk [a'(co, m, k)g( —co, m, k)—+b'"(co,m, k)g(co, m, k)],
m&0

(44)

the a'(co, m, k) and b'(co, m, k) will still satisfy the
canonical anticommutation relations. However,
these operators are not related to the Minkowski
operators by a Bogoliubov transformation.

Defining the vacuum by

P(ar, m, k;x) =exp[ i (cot —m—P —kz)]

X (i)i(r), ri~(r))

in Eq. (9) yields

(46)

a (ai m k)
I
0&n=b (co m k)

I
O~n

=0, co&0 (45)

o +—+ o +iko r)2 i (co ———p)rii,
d 1 im 2 3

dr 2r r

(47a)
we find that analogous to the scalar case one ob-

tains a quantization equivalent to the Minkowski
one. However, in this construction one has
sidestepped a desirable feature of the earlier con-
struction in that particles for rotating observers
have Fo p 0 while absence of co &0 states are an-

tiparticles.
The other important question to be answered is

whether the particle spectrum in the vacuum and
the excitation spectrum of the detector in the vacu-
um are identical. The extension of this analysis to
the spin-half case seems more involved and is
currently under investigation.

o +—+ o' +iko i)i i (co+a——)ri2 .
d 1 im 2 . 3

dr 2r r

(47b)

Eliminating i)i from Eqs. (47) we have

2d d
r +r —m +wm —

4dr2 dr

+ (co iJ, k)r ri2 =—0 . —(48)

Setting

III. THE MASSIVE DIRAC FIELD
rii(r) =(R (r),R+(r))

we find 8 —satisfy

(49)

The above results can be extended to the massive
Dirac field in a straightforward manner. In this
case, we do not have the chirality conditions, Eq.
(10). Putting with

d2ri +r +q r (m+ —, ) R- =0 (50)—
dr2 dr
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so that

+( 2 2 k2)1/2 (
2 k2)1/2 (5l) Employing Eq. (47a) 2i1 can be obtained and as be-

fore it can be shown that the normalized solutions
are given by

R-(r) =J1 -1/2(qr) . (52)

p(co, m, k;x)=(41r ~to —p ~

'
) 'exp[ i(—rot mp—kz)—]

&(((Q+ik)J 1/2(qr), —(Q+'k)J +1/2(qr)

i(to p—)J , 1/2(qr), i (to P)J—+1/2(qr))

An arbitrary massive Dirac field is now expressed as

CO I~. l

dc@ f dk[a(co, m, k)p(co, mk; x)+b (ro, m, k)tj/( —co, —m, k;x)] .
N», lNl &p —lol

m =—ao

(53)

(54)

From now on construction is essentially the same
as before and conclusions similar to the massless
case are obtained in a straightforward way.
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