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A systematic study of the two-quark transition amplitude, s +u ~u +d +y, and its ef-

fect on the radiative weak decays of baryons is made. A model involving the single-

quark transition amplitude, s ~d +y, and the two-quark transition amplitude is shown to
be consistent with the existing data.

I. INTRODUCTION
G 2 2

r(s d})=- (Ia I'+Ib I')k', (1.2)

The radiative weak decays of baryons have at-

tracted considerable attention recently. Although
these decays occur at the level of a few tenths of a
percent in branching ratio one would like to under-

stand these decay rates and the asymmetry parame-
ters within the context of the unified electroweak

theory. The data at this stage is very sparse. One
has the branching ratios for X+~py (Refs. 1 —3)
and:- ~Ay (Ref. 3), the asymmetry parameter for
X+—+py (Refs. 1 —3), bounds on the rates for
:- ~X y and:" ~X y (Refs. 3 and 4).

Earlier theoretical attempts ' have used a
combination of techniques including pole models

and internal-symmetry assumptions. Although
these attempts produced the rates at the right order
of magnitude the asymmetry was more difficult to
obtain.

VA'th the advent of the electroweak theory one
would like to understand these decays at the
quark-lepton level. Most attempts up to this stage,
including those that investigate the short-distance
behavior of current operators, study the single-

quark transition operator [see Fig. 1(a)] for s ~dy.
The remaining two quarks are assumed to be spec-
tators. The single-quark transition operator is of
order Gze and the transition matrix element can be
parametrized as
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where s and p are unit vectors along the s-quark

spin and the momentum of the d quark. The de-

finition of the asymmetry parameter a is

(1.3}

2 Re(ab~)

Ia I'+ Ib I'

The asymmetry parameter is independent of the

overall normalization of a and b. It has the same

value for 8;—+Bfy as for s~dy in the single-

quark transition model.

(1.4)
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where k is the photon momentum. In the single-

quark transition model the rate for the baryon

weak radiative decay is given by Eq. (1.2) up to an

overall normalization factor.
The angular distribution relative to the s-quark

spin is of the form

M =GFed(a + by5)Its,
5 U u

where d and s stand for the Dirac spinors with the
obvious flavor. a and b are the parity-conserving
and parity-violating amplitudes, respectively. If
quarks were observed as free particles this ampli-

tude would yield a decay rate

FIG. 1. Single-quark, two-quark, and three-quark

transition mechanisms. All permutations of these dia-

grams have to be considered.
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The U-spin properties of the weak and elec-

tromagnetic Hamiltonians imply that the parity-
violating part of the radiative weak decay X+~py
vanishes in the U-spin-symmetry limit, that is,
a=0.' ' If one assumes that mdQm„ then the
ratio of the parity-violating amplitude to the
parity-conserving amplitude is (m, —md )/
(m, +m~), implying a small but positive asym-

metry parameter. The old measurement' of a++
was —1.03+04,2 while the new CERN measure-
ment yields a&+ ———0.53+0 36. Although the er-

rors are large the asymmetry appears to be nega-
tive. One way to obtain a negative asymmetry
parameter would be to invoke right-handed weak
currents though this is disputed by some authors. '

Gilman and Wise' take a different approach
and parametrize the single-quark transition opera-
tor by two parameters, a and b of Eq. (1.1). These
are determined from I (X+~py) and a&+. They

then generate all the other baryon radiative-weak-

decay rates through the quark-model SU(6) wave

functions. They find that their predicted rate
I'(:- ~X y) violates the experimental upper
bound and unexpectedly large branching ratios are
generated for A —+ny and 0 —+= y. It was,
therefore, concluded that a single-quark transition
model is inadequate in describing the baryon radia-
tive weak decays. Note that the parameter b in

Eq. (1.1) must be proportional to (m, —md) in or-
der to satisfy the U-spin constraint. '7

In Secs. II and III of this paper we have investi-

gated a model of two-quark transition amplitude
with one spectator [see Fig. 1(b)]. The model we

investigate involves a systematic nonrelativistic
evaluation of the quark-quark weak bremsstrah-

lung amplitude s+u~u+d+y. Because of the
exchange of W+-the quark flavors are as indicated
and the matrix element is proportional to
Gzesin0ccosOc. The spectator quark can have any
flavor. This two-quark transition amplitude con-
tributes to the same order in coupling constants as
the single-quark transition model of Fig. 1(a).
Indeed a three-quark transition amplitude, Fig.
1(c), which has no spectators will also contribute to
the same order in coupling constants. There is no
compelling reason to assume that any of the pro-
cesses of Figs. 1(a)—1(c) would dominate the phys-
ics. In Sec. IV we demonstrate that a three-
parameter model which combines the effects of
single-quark and two-quark transition amplitudes,
Figs. 1(a) and 1(b), successfully describes the exist-

ing data. The paucity of data at this moment does
not warrant inclusion of the three-quark transition

amplitude of Fig. 1(c). We conclude the paper
with a brief discussion in Sec. V.

II. TWO-QUARK TRANSITION AMPLITUDE

The general idea is to evaluate the effective elec-

troweak Hamiltonian for s +u ~u +d +y with

one spectator quark and sandwich it between

baryon wave functions. This calculation can be

done either in configuration space or in momentum

space. As the effective Hamiltonian turns out to
be quark momentum dependent the calculation is

much cleaner in momentum space. In configura-

tion space the quark momenta Fourier transform

into space derivatives with the result that the cal-

culation is much more cumbersome.

In the baryon radiative weak decays the energy

available to the photon is =100—200 MeV. If the

photon were soft one would expect the quark-

quark weak bremsstrahlung amplitude of Fig. 1(b)

to diverge like -1/k. In the two-body baryon de-

cays the photon is monochromatic and far from

soft. We, therefore, carry out an expansion of the

amplitude in k such that each stage of expansion is

gauge invariant. A natural expansion parameter

which appears from the nonrelativistic reduction of
the quark Dirac spinors is k/2m, where m is the

quark mass. We shall use m for the u- and d-

quark mass and m, for the strange-quark mass.

%e work in the Coulomb gauge; eo ——0, e k =0.
The matrix element for the one process shown in

Fig. 1(b) (without the permutations) for s(p& )

+u (p2)~u (p3)+d (p4)+y(k) is

e„GFsin0~cosoc

v22k p,
X u(2e p3+ek)y„(1 y5)sdy—&(1—y5)uqq .

(2.1)

The factor qq comes from the spectator quark. All
external quarks have been assumed to be on their
mass shells. In the soft-photon limit the terms

proportional to e.p3/k. p3 diverge like (1/k). We
shall see later that these terms do not contribute to
the baryon radiative weak decays.

Our procedure is to evaluate the matrix element
for the process of Fig. 1(b) and all its permuta-

tions, taking care to antisymmetrize the amplitude
as appears to be essential to satisfy the U-spin con-
straint on the parity-violating amplitude for
X+~py (see Fig. 2),

s(p&)+u (p2)~u (p3)+d(p4)+y(k) . (2 2)
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X [uglcy„(1 y, )sd—y„(1—y, )u](qq) . (2.3)

Notice that this term is gauge invariant by itself.
All other permutations of Fig. 1(b) shown in Fig. 2
are also, similarly, gauge invariant.

H, ff in Eq. (2.3) carries k dependence through
two factors: the propagators 1/k.p3 and the quark

The spectator quark momenta are p5 in the initial
state and p6 in the final state with p5 ——p6. Then
we extract the parity-conserving and parity-vio-
lating parts of the matrix element. Finally we car-

ry out the nonrelativistic reduction of the Dirac
spinors neglecting terms of order (p /2m). The
effective Hamiltonian so obtained is then
sandwiched between baryon wave functions in
momentum space. The procedure is outlined in
the Appendix. Consider first the term in Eq. (2.1)

proportional to e p3/k p3, with similar terms com-

ing from other permutations shown in Fig. 2. In
Coulomb gauge this term is proportional to
e p3/k p3. Once such terms are sandwiched be-
tween baryon wave functions in momentum space
and the quark momenta p; integrated over, one
can only generate terms proportional to e k, as k
is the only available free momentum. By gauge in-

variance these terms, therefore, vanish.
The remaining term in Eq. (2.1) arising from

Fig. 1(b) above is

GFsin0ccos0c e„
vz

brackets. The propagators expanded in powers of
k yield

p; k

2p k 2mk mk
1+ (2 4)

On integrating over the quark momenta p; the
propagator results in a leading term of 0(1/k) and
a nonleading term of 0(k ). The quark brackets
in Eq. (2.3) on nonrelativistic reduction, result in
leading terms of 0 (k) and nonleading terms of
0(k ). By taking products of appropriate orders
we can generate H, rf of 0(k ) and 0(k), the only
two orders we are interested in.

To proceed further we define the following sym-
bols:

eG(k) =
2p3 k 2p) k 2p4 k 2p2 k

and (2.5)

eH(k) = — +
2p3 k 2p)-k 2p4. k 2p2 k

We demonstrate, in some detail, the evaluation
of the parity-conserving (PC) effective Hamiltoni-
an. The same detail will not be provided for the
parity-violating part of the effective Hamiltonian.
We evaluate the contribution from all graphs of
Fig. 2 with appropriate antisymmetrization and
carry out the nonrelativistic reduction of the quark
brackets. The resulting parity-conserving H, ff so
obtained is

pc eG~sin0& cos0~
H eff v2 (q q) (utc7 esdtcr k. u uter ks—dto eu)G(k") i(e Xk—).(u otsd tu utsdtou)H—(k)

+ Iu e [o X(pl —p3)]sd u usd e —[o X(p2 —p4)]u]G(k)
2m

tu E [cr X(p2+p4)]sd"u —u sd e.[o X(p~+p3)]u]H(k)
2m

Iutcr (p)+p, )sd o"eu ufo" esd cr (p2+ p4)u—JG(k)
2m

+ Iu o"lsd (cpr~ —p3)u uo"(p2 p—4)sd o"eu—]H(k)
2m

i use.—(cr Xp&)sdtuG(k) —i u sdte (crXp&)uK(.k)
2m 2m

uter p&sdtcr euG(k) uo" esd o"p~—uH(k)
2m 2m

(2.6)
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U

W

are not interested in terms higher than 0(k). As a
consequence we are not required to handle terms in

p; of order higher than the first. The resulting

G(k) and H{k) are

FIG. 2. Permutations of Fig. 1(b) with proper
antisymmetrization.

where

G(k) (2+3/)
6mk

H(k)=-
6mk

(2—g)
36m

(3+/)
36m

(2.9)

g=(m, —m)/m, . (2.7)

In order to calculate the baryon radiative-weak-

decay amplitudes H,ff is sandwiched between the
baryon wave functions, in momentum space, and
the quark momenta are then integrated over. As
demonstrated in the Appendix the evaluation of
the space part of the integral leads, up to an
overall factor, to the following replacement:

(2) The first two terms of (2.6) contribute both
to 0(k ) and 0(k) while the remaining terms con-
tribute to 0 (k). We ignore terms of order higher
than 0(k).

(3) Project H rr into photon helicity states
through

(pi, p2)~k/12, (pi, p4)~ —Sk/12 . (2.8)
(2.10}

The remaining calculation proceeds in the follow-

ing steps.
(1) Make the replacements shown in (2.4} and

(2.8) into (2.6). The replacement (2.8) can, in fact,
be made directly into (2.4) since, as stated later, we

H ff in A,
&
——+ 1 helicity state of the photon is

then derived to be [A,r= —1 projection is.not writ-

ten to avoid a proliferation of indices; 0($2} and

0(k ) terms are also dropped]

pc eGpsin8ccos8c t (2+3g)H,rr(~&=+1)= (q q) {u o sd o3u —u o'3sd cr u)
2 6m

+ (u to sdtu —u tsdto u)
6m

k t t k+ 2ua sdu — uo3sdo u
72m 72m

(2.1 1)

Note that the only surviving 0 (k) terms are proportional to g. In the degenerate-mass limit (g—+0) the
0(k) terms arising from the first two terms of Eq. (2.6} exactly cancel the 0(k} terms arising from the
remaining terms of Eq. (2.6). As g= —, and one has large denominators in the last two terms of Eq. (2.11)
we shall adopt the following as the model H,ff.

pc eGpsin8c cos8c
& (2 +3 g )H ff (Ay —+ 1)= (q q) (u cr sd a3u —u os o u)

2 6m

+ (u o sd u —utsdtcr u)
6m

(2.12)

The parity-violating (PV) part of H,rr is isolated in the same manner. The final form for H rr in the photon
helicity state A,

&
——+ 1 is

pv eGFsin8ccos8c t (2+3p)
H, gg

= (q q) (uter sdtu utsdto u—)+ (uto sdto3u —uto3sd o u)
2 6m 6m
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Again we have neglected terms of 0 (gk) as they
appear with large denominators as in the case of
H ff ~ g independent terms of 0 (k) cancel out in
precisely the same manner as in the case of H,ff.
In the degenerate-quark-mass limit H,ff is entirely
of 0 (k ), as is H, rr.

spin and flavor dependence. This is done by using
SU(6) wave functions. In Table I we have tabulat-
ed A and 8 up to an overall scale factor for the
various processes arising from Heff and Heff of
(2.12) and (2.13). 'As is evident from this table, the
parity-violating contribution to X+—+py vanishes
in the U-spin limit (g—+0) as it should. ' '

III. EXTRACTION OF BARYON-DECAY
AMPLITUDES IN TWO-QUARK MODEL

The gauge-invariant form of the radiative-weak-

decay amplitude 8;~Bf+y is

M =GJ;eBf(A +Bye)kEB;, (3.1)

(3.2)

where 8; and Bf are the Dirac spinors. The decay
rate is then given by

G 2 2

I (B; Bf+y)= (~A ~'+ ~B ~')k'

IV. A THREE-PARAMETER MODEL

The single-quark transition model, with two
spectators, is generally parametrized in terms of
two parameters. ' The s~d +y transition, in the
nonrelativistic limit, leads to an effective Hamil-
tonian

H,rr( 1-quark)

=end [ia(eXk) obk—e o]s(qtq)(qtq),

(4.1)

and the asymmetry parameter is

2 Re(AB*)

IA I'+ IB I'
A nonrelativistic reduction of Eq. (3.1) yields

M=GFeBf[iA(eXk) o Bko. E]—, "

(3.3)

(3.4)
H ff ( 1-quark) =eG+ka (d o s)(q q)(q q) (4.2)

where s, d, and q are two-component Pauli spinors.
a and b are two parameters. (qtq) arise from the
spectator quarks. The photon helicity A,

&
——+ 1

projections of (4.1) are

where 8; and Bf are two-component Pauli spinors.
Projecting out the two-photon helicity states one
gets

H,rr(l-quark) = eGpkb(dto. —s)(qtq)(qtq) .
(4.3)

M(A, =+1)=GFek(+A B)BfoB;—. .-(3.5)

Note that the parity-violating part does not change
sign while the parity-conserving part does.

The procedure we adopt to calculate the bary-
on-weak-radiative-decay matrix elements is detailed
in the Appendix. In order to extract A and 8 of
Eq. (3.5) we evaluate the A,r

——+ 1 amplitudes from
H ff and then utilize the proportionality

Following the method outlined in the Appendix
we evaluate the baryon matrix elements by
sandwiching the operators of (4.2) and (4.3) be-
tween baryon wave functions in momentum space.
Spin and fiavor dependence are generated by using
the SU(6) wave functions. The space part of the
matrix element for the single-quark and the two-

(Bf i
H,g (A, = +1)

i B;) kA,

(Bf
~
H, rr (k = + 1)

~
B; ) kB . —(3.6)

Decay Parity conserving Parity violating

TABLE I. Decay amplitudes in two-quark model up
to a scale factor.

The effective Hamiltonians for A,z
——+ 1 for

parity-conserving and parity-violating amplitudes,
displayed in (2.12) and (2.13), are to be sandwiched
between the baryon wave functions to generate the
baryon-radiative-weak-decay amplitudes. Indeed in
writing down (2.12) and (2.13) the effect of in-
tegrating over the spatial wave functions is already
incorporated. What remains now is to evaluate

sy
rO~ny
A —+ny

0 yOy

Ay
—+X y

0 —+ y

(2+ 3g)/U 2
g/2

—V 3(4+7()/6
—(&+/)

—(1+2g) /~3
0
0

—g/~2
—(2+g)/2

V 3(2+5$}/6
—(&+/)

(1+2)g)/~3
0
0
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TABLE II. Decay amplitudes in three-parameter model.

Decay Parity conserving Parity violating

XO~ny

A~ny
0 gOy

- -+Ay
—+g y

& ( —)~:- ( —)y'
3 1

—a+c(2+3()/V 2
—a /v 2+cd/2

9a/v 6—c(4+7/)/v 12

Sa /V 2 —c(1+()
3a/v 6—c(1+2()/v 3

5a

V6a/3

b ——cg/V 2

b /—v 2 c(2—+3))/2
9b/v 6+c(2+Sg)/v 12

Shiv 2 —c(1+))
3b/v 6+c(1+2(1/v 3

Sb

V 6b/3

0 (-, )~:- (——, )y'

'0 ( —,):- ( 2 ), etc. refer to the helicity states.

quark transition operators contains a factor
exp( —k /24a ), where k is the photon momen-

tum. With a-0.5 GeV and k, typically, 100—200
MeV we set this factor equal to unity for all de-

cays. The parity-conserving and parity-violating
amplitudes are then identified by writing the
baryon-decay amplitudes in the forms (3.1) and

(3.6). In Table II we have combined the single-

quark amplitude with that arising from the two-

quark transition model. As the overall normaliza-
tion of the latter amplitude is not known the am-
plitudes of Table I are scaled by a factor c before
entering them in Table II. The three parameters of
the model we discuss in this section are a, b and c.
In addition there are processes of the kind shown
in Fig. 1(c) which involve all the quarks, with no
spectators. The effective Hamiltonian arising from
the process shown in Fig. 1(c) is

sin8ccos8c
H, r(r3-quar k)=eG+ d(u sd u —u o~s.d ou)q (elk). oq .

2
(4.4)

G 2 2I 3

I (X+~py) = I[a —c(2+3()/v 2]

+(b +cg/V2)'I,

(4.5}

Notice that H, rr of Eq. (4.4) is purely parity con-
serving. The parity-violating part is of O(k ) and,
hence, neglected. d is an overall constant. There
is no reason to assume that any of the three pro-
cesses shown in Fig. 1 would dominate the physics.
The data at this moment is very sparse and a
four-parameter model cannot be exploited profit-
ably. In the following we consider a three-
parameter model which employs the single-quark
and the two-quark transition operators [Figs. 1(a)
and l(b)] only.

The three data points we choose to work with
are I (X+~py), ax+, and the bound on
I'(:- ~X y). In terms of a, b, and c of Table II,

ape k'
I (:- —+X y)= (25}(a +b~), (4.6}

Ax =—a —c(2+3$)/v 2=1.806,

Bx=b+cg/v 2= —0.484 .
(4.8}

2[a —c(2+3/)/v 2](b+cg/v 2)

[a c(2+3/)/v 2]—+(b+cg'/v 2)2

(4.7)

Equations (4.5) and (4.7) are used to derive a qua-
dratic in either (b+cg/ 2v) or [a —c(2+3()/
v 2] in terms of I (X+~py) and ax+. For
definiteness we used the branching ratio for
X+—spy=1.24X10 and a&+ ———0.5. The four
solutions so obtained are listed below. All parame-
ters a, b, and c are expressed in units of 10'
GeV' sec ' . /=0. 36 is used throughout. Solu-
tion I:
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a —c(2+3/)/V 2= —1.806,

b +cg/W2=+0. 484 .
(4.9)

Solution II is obtained by reversing the signs of A~
and 8~. Solution II:

Solution II:

—0.58 &a &+0.65,

+0.20& b & +0.34,

+0.56&c &+1.13 .

(4.13)

—1.13&c& —0.56 .
Solution II leads to an allowed domain

(4.10)

Solutions III and IV are obtained by the inter-
change (Axm8z) in solutions I and II, as Eqs.
(4.5) and (4.7) are invariant under this interchange.

Equation (4.8} determines a and b in terms of c.
Once this replacement is made in (4.6} we get a
quadratic inequality for c on using the bound for

~X y) with a branching ratio &1.2
&(10 . The domain of c for which this inequality
is satisfied for solution I is

a =0.58,

b =—0.34,

c =—0.56.

(4.14)

Solution B:

If we saturate the rate I (:- ~X y) then we get
the following two solutions from the solution set I.
Solution A:

0.56&c &1.13 . (4.11)

—0.65 &a &+0.58,
—0.34& b & —0.20,
—1.13&c & —0.56 .

(4.12)

Solutions III and IV do not lead to a real solution
for c. We do not consider these solutions any fur-
ther.

The use of Eq. (4.8) with the allowed range of c
given by (4.10) yields the allowed ranges for a and
b for solution I. A similar use of Eqs. (4.9) and
(4.11}generates the allowed ranges for a and b for
solution II. Thus the allowed ranges of all the
parameters are
Solution I:

a = —0.65,

b =—0.20,

c =—1.13 .
(4.15}

Similar solutions obtained from set II are obtained
by a reversal of sign of all parameters and gives us
no new physics. With the set of parameters shown
in Eqs. (4.14) and (4.15}we evaluated all the other
decay rates and the asymmetry parameters which
are displayed in Table III. The differences between
the solutions A and B is most striking in the asym-
metry parameters. It is clear from Table III that it
is possible to find a set of solutions in the three-
parameter model consistent with the existing data.

TABLE III. Rates and asymmetries.

Decay k (MeV)

Calculated branching ratio

Sol. A' Sol. B'
Calculated asymmetries

Sol. A' Sol. B'
Experiment

Branching ratio Asymmetries

225 1.24& 10 " 1.24)(10 —0.5b —o.s" (1.24+0.18))& 10 03+Q.52

—0 53—o'.36
+Q.38

XQ~ny

A~ny
Q gQy

:-Q~Ay
:-—+X y
Q —+= y

225

162

117

184

118
314

0.42'

5.97& 10
1.48)& 10

1.80' 10-'
1.20& 10

0.6X10-'

1.02'

1.70' 1O-'

0.23)(10
1.36y10-'
1.20)& 10

0.6~10-'

+ 0.76
—0.87
—0.3
—0.96
—0.87
—0.87

—0.26

+ 0.25
—0.99
—0.45

+ 0.56

+ 0.56

&7&10
(5+5)x 10-'
& 1.2X10

'Solutions A and B are shown in Eqs. (4.14) and (4.15), respectively.
Fitted values. We saturate the bound on I (:- ~X y).

'This is the ratio I (X —+ny)/I (X+—+py). Data from Refs. 1, 2, and 3.
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V. DISCUSSION

Since the single-quark transition model has been
demonstrated' to be inconsistent with the existing
data on radiative weak decays of baryons we have
studied the two-quark and three-quark transition
models in the nonrelativistic limit. Owing to the
paucity of data we have ignored the three-quark
transition mechanism and demonstrated that a
three-parameter model with the single-quark and
the two-quark transition operators is consistent
with the existing data. As more data accumulate it
will be worthwhile to include the three-quark tran-
sition mechanism in the discussion.
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APPENDIX:

DETAILS OF THE CALCULATION

Baryon wave functions

Let the initial quark momenta be (pi, p2, p5) and
the final quark momenta be (p3, p4, p6). ps and p6
are the spectator quark momenta with p5

——p6.
Define three independent variables with unit Jaco-
bian

P= ~ (pi+p2+p5),v'3

1
Pp= (Pi —P2)v2 (Al)

Evaluation of baryon-weak-radiative-decay
matrix elements

Consider first the terms in Heff which do not de-
pend on the quark momenta p;. We shall evaluate
here only the space part of the matrix element.
One has to remember that the flavor- and spin-
dependent parts have to be evaluated using SU(6)
wave functions. For such p;-independent terms in
Heff the baryon-weak-radiative-decay amplitude in-
volves evaluation of an integral of the kind

px= v- (pl+ p2 —2p5)~6
The corresponding contributions for (p3, p4, p6) are
P ', p p, and p ~.

The initial and final baryon wave functions in
the momentum space are (up to an overall normali-
zation)

~
8;}=5 (P)exp[ —(p 2+ px2)/2ix2] (A2)

P '+ expl —(P I
'+ p i')~2&'1

t

'rhe initial baryon is taken to be at rest and the fi-
nal baryon recoils against the photon with momen-
tum —k. The wave functions of (A2) correspond
to Gaussian wave functions in relative coordinates
in configuration space.

r

I= I 5 (P5—P6)5 (Pi+ p2 —p3 —p4 —k)5 (P)5 p '+

(P,'+Px')
+exp — exp

2(x

(P +Pi)
2 2 d Pd P'd dpp pp px pz.a (A3)

Momentum conservation is built in. On performing P, P ', and p i integrations one is left with an overall-
momentum-conserving 5 function. The remaining three Gaussian integrals can be evaluated simply, leading
to

kI=5 gp —gpI —k exp — (2~ & )
24a

where QPg —=Pi+p2+ps and gp~=p3+p4+p6. Equation (A4) is the space part of the matrix element.
The terms linear in p; in H,~~ require evaluation of integrals of kind
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f pi5'(ps —p6)5'(pi+p2 —p3 —p4 —k)& (P)&' P'+ expv3
(P,'+Px')

exp' —(P p +PA )/2& ]2'

Xd'Pd'P'd'pi, d'pi, d pad O'„=Ak . (A5)

This integral can only be proportional to k which is the only free momentum. The constant of propor-
tionality, 3, has to be evaluated. Once p& is expressed in terms of P, pP, and p~ and the integrations over
P, p P, and p ~ carried out one is led to

2

2

Ak= f pxd ppd pp d'pxexp — expv6 P P 2 2

(pp'+ ')
exp

2A

k
Pz —

~6
2(x

(A6)

On combining the p~ type of exponents and shift-
ing the origin, px~px+k/V 24, one gets

Ak= 'k,
12

(A7)

where I is defined in (A4). The result of this type
of calculation is that both p &

and p2 can be re-

placed by k/12I in the evaluation of the matrix

elements and that p3 and p4 can each be replaced

I

by —5k/12I so that p&+p2 —ps —p4
——k. Thus,

up to an overall normalization, the rule that
emerges is

(p), p2)~k/12, (p3, p4)~ —Sk/12 . (Ag)

A single overall normalization is fixed by the rate
1 (X+~py). The spin-flavor dependence is worked
out by using SU(6) wave functions for the baryons.
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