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We give a comprehensive analysis of those vacuums for flat and conformally flat
space-times which can be defined by timelike, hypersurface-orthogonal, conformal Killing
vector fields, We obtain formulas for the difference in stress-energy density between any
two such states and display the correspondence with the renormalized stress tensors. A
brief discussion is given of the relevance of these results to quantum-mechanical measure-

ments made by noninertial observers moving through flat space.

I. INTRODUCTION

In this paper we give a systematic analysis of the
natural vacuum states for conformally flat space-
times. In flat space these vacuums are those de-

fined by the eight independent, timelike, curl-free
(hypersurface-orthogonal), conformal Killing vec-

tor fields; the Minkowski and Rindler vacuum
states are two well-known examples. The defini-
tion and description of these vector fields may be
found in Sec. IV.

The symmetries of the theories that we discuss
are such that it is possible to give simple, analytic
expressions for all quantities of interest. Indeed it
is possible to go further and give a coordinate-free
description. This is not always the most direct ap-
proach and we do not always adhere to it, but the
absence of coordinates does have the desirable ef-

fect of focusing attention upon the geometrical sig-
nificance of key elements of the theory. This is

particularly useful given the current status of gen-

erally covariant quantum field theory.
In Sec. II we develop those aspects of the quan-

tum theory that we require in Secs. V and VI. In
particular, we define for general curved spaces the
concept of a "normalized" stress tensor. For the
spaces we subsequently discuss this normalized
stress tensor can be shown to equal the more fre-
quently encountered renormalized stress tensor. By
working throughout with normalized stress tensors
we are able to avoid all problems of divergences
and operator-ordering ambiguities: we deal with
those elements of the quantum theory that are fin-
ite and independent of the ordering. It is also pos-
sible to make plain the interrelationship of renor-

malized stress tensors, their conformal transforma-
tion law, and the states of the field theory.

The expectation values of the stress tensor opera-
tor in the various vacuum states are derived and
discussed in Sec. V. In flat space they all have the
character of stress-energy densities for perfect
fluids in thermal equilibrium, with the flow lines

being the trajectories of the vector fields. The tem-

perature is either constant or variable along given
flow lines depending on whether the vector field is

Killing or conformal Killing. This picture is very
similar to the kinetic theory of massless gasses'
where, again, thermal equilibrium is possible not
only when there exists a Killing vector (constant
temperature) but also when there exists a confor-
mal Killing vector (variable temperature along tra-
jectories).

Section VI describes the physics of observers in
flat space whose world lines are the trajectories of
vector fields described in Sec. IV. All such ob-
servers have constant acceleration but their obser-
vations of a given state are shown to depend criti-
cally on the nature of the measuring apparatus and
the world lines of its component parts.

To conclude this introduction there are a few
points concerning the language and notation used
in the text: We say that a space is conformally
flat if the Weyl tensor vanishes and flat if the
Riemann tensor vanishes.

Minkowski space is the manifold R with the
flat Lorentz metric q. In terms of the natural
Cartesian coordinates (t, x, y, z) on R the line ele-

ment can be expressed

ds = —dt +dx +dy +dz
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We shall also use spherical polar coordinates (t, r,
8, P) and cylindrical polar coordinates (t, x, p, ttj).

In terms of these coordinates the line element is

ds = —dt2+dr2+r2dQ

and

for all scalars 4 and Q. This is a simple conse-
quence of the definition (2.1). The classical stress-

energy tensor for the scalar field 4 is defined in
terms of S by the equation

(2.3)

ds = dt —+dx +dp +p df,
where

dQ =d8 + sin Hdg

We say that a vector field K is curl-free (or hy-

persurface-orthogonal} if

curlE =0,

Functional differentiation of Eq. (2.2) with respect
to the metric g,k yields the transformation law for
the stress tensor,

7 ab(g .@) Q67.ab(Q2g .Q —1@) (2.4)

Differentiation of Eq. (2.2) with respect to 4 yields

(Cl —R/6)@=Q ( —R/6)(Q '4&), (2.5)

where

(curlK)'=rt' ' KbK,

Equation (1.1) is equivalent to K(,Kb ,)
=0.

where and R are defined with respect to the
conformal metric 0 g,~.

The quantum theory can be constructed in the
usual way: Let [uk(x)] be a complete set of com-

plex solutions to the wave equation

II. QUANTUM FIELD THEORY

In quantum field theory the absolute energy of a
given state is seldom an a priori well defined quan-
tity. When space-time is flat this problem is
avoided by measuring energies relative to the Min-
kowski vacuum. It is important to note that this
use of the Minkowski vacuum state is quite dis-
tinct from its role in Minkowski space where it is
the natural global vacuum. In any other flat space
it serves as a local reference state enabling one to
define normalized (or renormalized) expectation
values. The main objective of this section is to
generalize this process of normalization to curved
space-times. We shall define a local geometrical
vacuum

~

O, b, ) with respect to which curved-space
stress tensor operators can be normal ordered, or,
equivalently, their expectation values normalized.
We begin with some necessary groundwork.

We shall discuss properties of the simplest possi-
ble field theory, that described by the classical ac-
tion functional

$(g,„;4)—= ——, f d"xg'~ [4.,C&"

( —R/6)uk(x) =0 . (2.6)

Corresponding to the field-operator decomposi-
tion (summation over repeated indices)

4(x) =akuk(x)+akuk(x), (2.7)

the u vacuum
~

0, u ) is defined by

ak ~O, u)=0, (O, u ~O, u)=1. (2.8)

[ak ak'] ~kk' [ak ak'] =o . (2.9)

If [Uk(x) j is another complete set of solutions to
Eq. (2.6}, then we can also write

4(x) =bkvk(x)+bkvk(x), (2.10)

and define the U vacuum
~

O, U) by

bk iO, U)=0, (O, u iO, U)=1. (2.11)

The b's can be taken to satisfy the commutation
relations

Normalizations can be chosen so that the creation
and annihilation operators a~ and a~ satisfy the
commutation relations

+ (R /6) 4 ] . (2.1)

The theory is conformally invariant in the sense
that

$(g,k, 4&)= S(Q g,b, Q '4&)

[bk, bk'] ~kk'~ [bk, bk ]=0 .

The requirement of completeness implies that

"k(x) + kk' ku' (x)+0k ' kku' (x)

(2.12)

(2.13)

d xg'~ (4 Q 'Q") (22)
The matrices a and P then satisfy the usual Bogo-
liubov relations
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+kk'+k'l Pkk'Vk'l Ukl ~

Pkk'&k'I =&kk'Pk'I

%e also have the operator equations

~k +kk'bk'+Pkk'bk'

and

bk +kk'uk' Pkk'uk'

(2.14)

(2.15)

(2.16)

number and this does not affect the value of the
difference (2.18).

If we now take
i
S~ ) to be

i O, u ) and
i S2) to

ie
i

O, v ), we have the equations

(O, u i,*T'„
i

O, u) —(O, v i„*T', iO, v)

=(O, u i:„T':„
i

O, u )

(2.20)

When 4 satisfies the field equation (2.6) the
stress tensor operator derived from definition (2.3)
can be written

T~b(g j)) '
[ R~b(P2+4 j) &j) b''

(2.21)

where (:„)denotes normal ordering with respect to
the v vacuum and (:„)normal ordering with
respect to the u vacuum; for example,

u ak ~k' u =ak'ak

—g' [4.,C&'+(R/6)k'] ) .

(2.17)

%e shall require some easily established properties
of this operator: Let is&) and is&) be arbitrary
states and let,*T', denote any ordering of the
operator T' . Then the quantity

(2.18)

is independent of the ordering („*). This follows
because T' is a quadratic function of annihilation
and creation operators. Thus any given ordering
of it differs from any other by, at most, a c-

The operator:„T':„measures energy and momen-

tum relative to the u vacuum.
It is frequently convenient to represent the stress

tensor operator as the limit of a "point separated"
operator,

lim D' (x,x') [G„(x,x') —G„(x,x ')],
X ~X

(2.22)

where D' is a c-number, differential operator. By
so doing it is possible to derive properties of stress
tensors from the Green's functions of the theory.
Clearly there are many representations such as Eq.
(2.22); they can all be thought of as different or-
derings. They are most useful when calculating
quantities that are ordering independent. In partic-
ular, we can write

(O, u i:„T' (x):„
i
O, u ) = lim D' (x,x')[G„(x,x') G„(x,x')], — (2.23)

where

G„(x,x')—:(O, u
i
TI@( )4x( )x]

i
O, u),

(2.24)
and T denotes time ordering.

There is considerable flexibility in the choice of
the functions D' and 6 that appear on the right-
hand side of Eq. (2.23). We have chosen the Feyn-
man Green's function [Eq. (2.24)] for convenience.
D' (x,x') can be any differential operator that
yields Eq. (2.17) in the limit x'~x.

Point separation is commonly associated with

the notions of regularization and renormalization.
Notice that this is not its role in Eq. (2.23): it
merely provides a representation of a well-defined

quantity that is already finite. By contrast, renor-
malization is necessary when one seeks to assign a X [G„(x,x') —G, (x,x')], (2.25)

finite, absolute value to an otherwise ill-defined ex-
bpectation value such as (O, u

i

T'
i

O, u ). Let us

call this renormalized value TR (u), "the renormal-
ized expectation value of the stress tensor operator
in the u vacuum. " In subsequent sections of this

paper we shall be concerned with computing quan-
tities such as (2.23) and consequently we shall not
require renormalization techniques. However it is
of considerable interest, and a motivation for this

paper, to study properties of renormalized stress
tensors in relation to the states of the quantum
field theory. To assist in this discussion we give
the following schematic definition for Ta (u):

Tg~(u)= lim D' (x,x')
X ~X
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where, loosely speaking, G, (x,x') is the state-
independent singular part of G„(x,x'). G, (x,x')
can be, and usually is, taken to be the first few
terms of the locally defined series solution for any

symmetric Feynman Green's function G(x,x'):

G(x,x'):(4rr—) '[ 6'~ (a+i@)

V= ga„(x,x')cr",
0

(2.27)

and D = —det( —o,b ) is the Van Vleck-Morette
determinant; o(x,x') is one-half the square of the
distance along the geodesic joining x and x',

+ Vln(o+iE)+ W], (2.26) W= gb„(x,x')cr" .
0

(2.28)

where

b(x,x')=g '~ (x)D(x,x')g '~ (x')
The coefficients a„(x,x') and b„(x,x') are deter-
mined from the recursion relations

(n+ 1)(n+2)a„+,+(n+1)a„+~ ,o" (n. + l—)a„+&b, ' A., o"+—,(2—8/6)a„=O,

(n +1)(n +2)b„+&+(n +1)b„+~.,o"—(n +1)b„+&b '~ h.', o"+ —,(CI —8/6)b„

(2.29)

and the boundary conditions

+(2n +3)a„+&+a„+&.,o."—a„+&5 ' h. , o"=0, (2.30)

a, +a, . o' —a,a-'"a'"o"+ -'( —Z /6)a'"=0 .

bo must be chosen so that G(x,x') =G(x',x).
When b0 ——0 satisfies this condition we call the re-

sulting Green's function "elementary. " The series
solutions for V and 8' can be shown to be analytic
in those regions for which o is single valued.

In general, the singular part of G, G„will not it-
self be a Green's function. When this happens Tz
need no longer possess those symmetries of the
classical (unquantized) theory that require the field
equations to be satisfied. For example, the confor-
mal invariance of the theory will be broken; there
will be a conformal anomaly. In other words, Tz
cannot, in general, be represented as an inner prod-
uct in the Hilbert space of solutions to the classical
wave equation.

However, in all cases that we shall discuss the
spaces are such that the anomaly vanishes and G,
either is, or can be taken to be, a Green's function.
In these circumstances the renormalized stress ten-
sor can be represented as a normalized expectation
value of a normal-ordered operator. For this
reason we shall not attempt to make the definition
(2.25) more precise. Instead we make the notion of
normalization more precise: Consider a local
Feynman Green's function which is a purely
geometrical quantity that respects local symmetries
of the space. As such it can be thought of as im-
plicitly defining a local vacuum state; the local
character of the state being characterized by the
distance between the singularities of A(x,x'). If b
has no singularities this local vacuum also serves

T~"(u)= (O, u ~'„T'—, ~O, u)
—(0,6 ~„*T',)0,6) . (2.32)

It is necessary for the purposes of definition to
proceed, as we have done, via the state

~

0,6).
However, now that we have Eq. (2.32) we can ex-
press Tz in a form that most closely resembles the
tensor Tz, namely,

Tg (u)= lim D' (x,x')
Z ~Z

X[G„(x,x') —G(x,x')] . (2.33)

Tz coincides with T& whenever

lim D' (x,x')[G(x,x') G, (x,x')]=0 . (2.3—4)
Z ~Z

I

as a global vacuum in that it now respects all sym-
metries of the space. This would be the case for
empty Minkowski space, for example, where 6=1
everywhere.

Let us denote by
~
0,5) this local vacuum state.

It can be defined implicitly by the equation

(0,6
~
T[4( )4x( )x] ~0,6)=—G(x,x'),

(2.31)

where (O, b
~

O, b, ) =1 and G(x,x') is given by Eq.
(2.26). We can now define the "normalized expec-
tation value of the stress tensor operator in the
state

~

0, u )," Tz (u), as
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gab = ~~ gab (2.35)

If 4 is a solution to the wave equation on M then,

by Eq. (2.5), 4 is a solution on M where

It is much easier to work with Tz rather than
Tz" and in so far as they are equivalent for the
spaces we consider we shall continue to neglect
Tab

We next describe how the quantum theory
behaves under conformal transformations. We
denote by M and M two spaces that are conformal
to one another, having metrics gab and g,b, respec-
tively, where

4=0

G„(x,x') =Q '(x)G„(x,x')Q '(x') . (2.37)

In more general terms, let
~

U& be a state in the
Hilbert space of solutions to the wave equation on
M and let

~

U & be a state in the Hilbert space of
solutions to the wave equation on M. We shall say
that

~

U& is conformal to
~

U& (
~

U&=
~

U&) if
and only if

(2.36)

Thus corresponding to the u vacuum J O, u & on M
there is the conformal u vacuum

~
O, u & on M.

The Feynman Green's functions for these confor-
mal vacuums are related by the equation

I

&U~ T[4(x)C(x )I ~
U& „, &U~ Tt~(x)~(x')I

~

U& „, ,

&UiU& &UiU&

The equivalence relation (=) will prove useful in describing the vacuums of Sec. VI.
It is a simple consequence of Eqs. (2.4), (2.19), (2.23), and (2.37) that

&O, u ~:„T'"(g,d):„~o,u &=Q &0,u ~:,T' (g,g):, ~o, u & . (2.38)

The behavior of T~ (u) is more interesting. The normalized stress tensor for the u vacuum in the space
M, TN (u) is given by

T,"(u)=—&o, u ~*,T'",
~
o, u &

—&o, a ~', T'"„~o,a& .

It is related to Tg"(u) by the equation

Tg (u)=Q Tg (u)+Q &0,5 i,'T', io, b, &
—&O, b, i„*T', io, b & .

(2.39)

(2.40)

The crucial point is that
~

O, b, & need not be conformal to the state
~

O, b, &. In terms of Green's functions we

can have

G(x,x')QQ '(x)G(x, x')Q '(x'),

where by G we mean the same function of the geometry as G, evaluated now at g,b rather than g,b. Equa-
tion (2 40) can be written

T~(u)=Q Tg (u)+ lim D' (gd)[Q '(x)G(x,x')Q '(x') —G(x,x')] . (2.41)

(2.42)

Of course, both G and Q 'GQ ' are Green's functions on M; they simply need not be the same.

Equation (2.41) is the conformal transformation law for normalized stress tensors that is to be compared
with the conformal transformation law for renormalized stress tensors which, for conformally flat spaces,
can be written

T (u)=Q T (u)+(2880vr ) '[RR "—R',R' ——R' +g "(— R ——R + R,gR' )]—
where R,b is the Ricci tensor for the space M. When Eq. (2.34) is satisfied Eqs. (2.41) and (2.42) will be
identical.

Notice that the operation of normalization preserves conformal invariance whereas that of renormaliza-

tion, as may be seen in Eq. (2.42), does not; the trace of the normalized stress tensor, for conformally invari-

ant field theories, will always be zero.

III. CONFORMAL KILLING
VECTOR FIELDS

A space-time may be said to possess a "natural"
vacuum state either if it has or if it is conformal to

l

a space that has a globally timelike, curl-free, Kil-
ling vector field. One then has an unambiguous
definition for positive-and negative-frequency
solutions to the conformally invariant wave equa-
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tion. We show by means of the following three
theorems that the natural vacuums for any given
conformally flat space are conformal to certain
vacuums of three particular space-times, namely,
Minkowski space, the Einstein static universe, and
the open Einstein universe. (In Sec. V we shall see
that these vacuums can be taken to be the elemen-

tary vacuums
~

O, b ).)
Theorem I If.E' is a Killing vector field of the

metric 0 g,b, then E' is also a conformal Killing
vector of gab.

Proof. Killing's equations for the metric 0 g,b

are

O=~K(+ gab)=+ ~K(gab)+gab~K(+ ) ~

(3.1)

where Wz is the Lie derivative with respect to K.
These are equivalent to the conformal Killing
equations for g,b,

~ac(g.b) =2~g.b (3.2)

since W~E'=0. Thus E' is a Killing vector of
f g,b. Also

f ~g,bE'Eb= —1, (3.3)

so E' is globally timelike on the new space.
To prove the last part, note that the condition of

being curl free persists in the conformal space
since conformal transformations preserve "angles. "
Using (3.3) and Killing's equations it is easy to
show that

when A, is taken to be ——,(inQ ),E'. Thus if E'
satisfies (3.1) it clearly satisfies (3.2).

Theorem 2. If E' is a timelike conformal Kil-
ling vector field of the metric g,b, then it is a glo-
bally timelike Killing vector field on the space
with metric ( E'g,dE )—'g, b Further, i.f E' is
curl-free, then this space is ultrastatic (i.e., admits
a covariantly constant timelike vector field).

Proof. If E' is a conformal Killing vector of g,b

we have, writing f=( E'g,bE )'~ —and using
(3.2),

~pc(f 'g.b)=f '~a.g b f 'g.b~r.f—
2f ~gab+f gabE E ~Aged

=0,

space-time is locally Minkowski space, the Einstein
static universe, or the open Einstein universe.

Proof. The existence of a covariantly constant
vector field (3 4) implies that

RabcdK =0.
For a conformally flat metric g,b,

I

Rabcd ga [cRd]b +gb [dRc]a + 3 ga [dgc]b s

and hence

(3.5)

Rab (R /3——)(gab+EaEb ), (3.6)

IV. CONFORMAL KILLING VECTORS
IN FLAT SPACE

In this section we list and describe all timelike
curl-free, conformal Killing vectors in flat space.
We first find all solutions to Eq. (3.2) when g,b is
a flat metric. Let us define

(4.1)

where, by the Bianchi identities, R is constant.
Thus the three-surfaces orthogonal to K' have con-
stant curvature' which can only be zero, positive,
or negative corresponding to the three space-times
of the theorem.

Any connected component of a conformally flat,
ultrastatic space-time can therefore always be
analytically extended to one of the three space-
times of Theorem 3.

These theorems reduce the problem of finding
the natural vacuums for conformally flat spaces to
the simpler problem of finding the natural vacu-
ums on the conformally flat ultrastatic spaces.
These spaces are of the form R XM where M is
a space of constant curvature. We shall describe
their vacuums in Sec. V.

To find the natural vacuum for any given con-
formally flat space with a timelike, curl-free, con-
formal Killing vector field one first identifies the
corresponding ultrastatic space. This identification
will depend upon the structure of the vector field.
As an example, in the next section, we shall
describe in detail the timelike, curl-free conformal
Killing vector fields in flat space and explicitly ex-
hibit the correspondence with the ultrastatic
spaces.

K, .b
——0, (3.4) Equation (3.2) implies that

where Ea—:(f g,b)E" and the covariant deriva-
tive is with respect to f g,b.

Theorem 3. Any conformally flat, ultrastatic

Ea;bc (~;bgac +~;cgab ~;agbc ) ~

and hence

(4.2)
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E, .b,d
——0 . (4.3)

If we now choose Minkowski coordinates
(ds =ri,bdx'dx ), we can easily integrate Eq.
(4.3). The resulting general solution to Eq. (3.2) is
provided by"

K'=k'+0'bx +Ix'+2x'(m x)—m'x

(covariant derivatives are with respect to g). For
i E I 3,4, ...,7},R =24nm .It follows that

R is negative for Ki,E2,E5,E6,
R is zero for Ko,K3 K4,
R is positive for K7 .

where l, k', m', and 0'b are constants and

(4 4)
The conformally flat, ultrastatic space with nega-
tive curvature is the open Einstein universe with
line element

~ab ~ha (4.5) ds = dr—+( (dg +dy +dz ) (4.17)

We now determine those solutions that have
vanishing curl,

(4.6)

for —co & r,y, z & oo,' 0 & (& oo. Alternatively, we
can choose coordinates so that

ds = —d'T +dg

jap
——k', k &0, (4.7)

Ki ——1'(m x)—m'(1 x), 1 &O, m &0,1 m =0,

This is straightforward. Up to constant scalings
and shifts of origin of the coordinates, the distinct
solutions that are timelike somewhere can be listed
as follows:

+ sinh X(d8 + sin 81$ ), (4.18)

s = —dt' +d

where —00 &v. & oo, 0&X& oo', 0&0&+;
0&/ & 2nThe c..onformally flat, ultrastatic space
with positive curvature is the Einstein static
universe with line element

(4.8) + sin X(d6 + sin 0d(() ), (4.19)

E2 ——x',
Ks 2x'(m ——x) —m'x, m &0,

(4.9)

(4.10)

Kf=nm'+2x'(m x)—m'x, m =O, n &0,

(4.1 1)

Kq ——nm'+2x'(m. x)—m'x, m &O, n &0,

(4.12)

Kb nm'+—2—x'(m. x)—m'x, m &O, n &0,

(4.13)

gab ( K ) gab ~

where g,b is flat, can be written

R= —,(QK —3K CllnK )

6f'Uf—
(4.15)

(4.16)

K7 nm'+2x'(—m—x) —m'x, m &O, n &0 .

(4.14)
Before describing the subspaces of Minkowski
space where these vector fields are timelike it is
useful first to determine the correspondence with
the relevant ultrastatic space.

The constant curvature scalar 8 of the ultrastat-
ic space with metric

for —ao & t' & + co ', 0 &X,O & ir; 0 & P & 2m. The
conformally flat, ultrastatic space with zero curva-
ture is Minkowski space.

We shall now describe the eight vector fields in
turn. Let r(K) denote the set K & 0, r+(K) the set
K &0, K &0, r (K) the set K &0, K &0. The
trajectories are the curves

(4.20)

where an overdot denotes differentiation with
respect to proper time.

I Ko k' (M.inkoioski ——space).
Take k'=(1,0,0,0). r(KO)=r+(Ko) is the

whole of Minkowski space. The trajectories of Kp
are the parallel straight lines x =constant,
y =constant, z =constant.

2. KI ——1'(m x) —m'(I x);1 &0, m &0,
1 m =0 (Rindler space)

Take I' = (1,0,0,0) and m '= (0, 1,0,0), then

Ki ——(x, t, 0,0). r+(Ki) is the set x'& t, x &0;
(Ki ) is the set x & t, x &0. In the coordinates

defined by x =gcoshr, t =gsinhr, r+(K, ) is the
region 0&/& co, —

&x& &r& m, and the line ele-
ment becomes

ds =g [ dr +g (dg'+dy —+dz )] . .

The space I r+(Ki ); ( —Ki ) 'ds
I is the open
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Einstein universe.

K& is zero on the two-surface x =t =0 and is

null on
~

t
~

=
~

x
~

. The timelike trajectories of
K~, are determined by the equations y =constant,
z =constant, x t—=c (c &0). The future-

pointing timelike trajectories of E& are illustrated
in Fig. 1 (the diagram possesses the symmetry of
inversion in the origin; this determines the past-

pointing timelike trajectories in x &0). Dashed
lines are used to denote the horizon of E& which is
defined by K~ ——0. The zeros of K& are illustrated

by a solid dot while arrows indicate the direction
of the vector field on a trajectory.

The trajectories are all the familiar rectangular
hyperbolas associated with a motion of constant,
nonzero acceleration. This is a feature common to
all flat-space, curl-free conformal Killing vectors:
every trajectory has constant acceleration (this is

proved in Sec. VI).
3. K2 ——x' (The Milne Uniuerse)

r+(K2) is the region
~

t
~

& r, t &0; r (K2) is the
region

~

t
~

& r, t &0. In the coordinates defined by
t =e'coshp, r =e'sinhp, r+(K2) is the region

—oo & ~ & oo, 0 (p & Oo, K2 ———e ', and the line

element becomes

ds =e '( —dH+dp + sinh pdQ ),
where

dQ =d8 + sin Odg

The further transformation g
' = coshp

—sinhp cos0, y =(sinhp sin9cosg,
z =(sinhpsin8 sing takes the line element to

ds =e '[ —dH+g (dg +dy +dz )] .

In these coordinates r+(Kz) is the region
—oo &7)y,z& oo, 0&(& 00 ~

The space tv+(K2); ( —K2 ) 'ds I is the open

Einstein universe. E2 is zero at the origin and null

on the light cone of the origin. The timelike tra-
jectories are given by the equations 0=constant,
/=constant, t =Ar (

~

A
~

&1), and are illustrated

in Fig. 2.

Ks 2x'(m—x) —m'x; m &0
Take m'=( —1,0,0,0), then K3 —(x ) a——nd

'7(K3 ) =r+(K3 ) is Minkowski space without the
light cone of the origin.

FIG. 1. The future-pointing timelike trajectories of
the Rindler Killing vector field K~. The zero of the
field is illustrated by a solid dot while the horizon (de-

fined by KI ——0) is denoted by a dashed line. The ar-
rows on trajectories indicate the direction of the vector
field on a trajectory.

FIG. 2. The timelike trajectories of the Milne vector
field K2. The horizon is just the light cone of the ori-
gin.
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tended to the whole of Minkowski space. K 4 is
nowhere zero but is null on the plane t +x =0 as
illustrated in Fig. 4(a). The timelike trajectories
are given by the equations 1(j=constant,
p=A (t +x),

t —x —p =c(t +x)—1,2 2 2 =

and are illustrated in Figs. 4(b) and 4(c).
6. Ks nm '——+2x'(m x) —m 'x; m & 0, n & 0
Take m'=( 1,0,0,0) and n = 1. Then

K5 —[(t——+r) 1] [—(t r) —1].—r+(K5 ) is the
region ~t+r~ &1, ~t r~ —&1 and r (K5) is the
region ~t+r~ &1, ~t r~ &—1.

With the coordinate transformation t + r
tanh —,(t'+ r'), t r= t—anh —, (t' r'), —r+(K5 ) is

the region —oo & t '
& ao, 0 & r '

& oo and the line
element becomes

ds = —,sech —,(t'+r')sech —,(t' —r')

FIG. 3. The timelike trajectories of E'3.

X ( dt' +dr—' + sinh . r'dQ ) .

With the coordinate transformation (t + r)
=coth —,(t' —r'), t r= cot—h —,( t'+ r'),
r (K5 ) is the region —oo & t' & oo, 0 & r' & co and
the line element becomes

With the coordinate transformation t ' —r '

=(t +r) ', t'+ r'= (t r) ', r—+(K3 ) is the region
0&

~

t'+r'~ & 00, 0&
~

t' r'~ & oo —and the line
elem ent becomes

ds2 (ti2 ri2) —2( dt +dr i2+r /2df12)

The space [ r+(K3 ); ( —K3 ) 'ds ] can be
analytically extended to the whole of Minkowski
space.

K 3 is zero at the origin and null on the light
cone of the origin. The timelike trajectories are
given by the equations 8=constant, P =constant,
(r c) t =c (c+—0),—and are illustrated in Fig.
3.

5. K4 nm +——2x'(m x) —m'x; m =0, n &0
Take m'=( —1, 1,0,0), n = —1 and use cylindri-

cal polar coordinates in the y and z directions:

y =p cosl(t, z =p sing. Then K4O ——1+(t +x )2+p~
and K4 —— 4( t +x ) so r+ (K—4 ) is Minkowski
space minus the plane t +x =0.

With the coordiriate transformation t +x
=(t'+x') ', t —x =(t'+x') p (t' x'), — —
p =p'

~

t +x ~, P=P', r+(K4) is the region
0 &

~

t'+x'
~

& 00 and the line element becomes

ds =(t'+x') ( dt' +dx' +dy' +d—z' );
t r+(K4); ( —K4 ) 'ds ] can be analytically ex-

ds = —,csch —,(t'+r')csch —,(t' —r')

X( dt' +dr' +—sinh r'dQ ) .

By comparison with case 3 we see that (up to a
constant scale factor) the space t r+(Ks);
( —K, ) 'ds

] is the open Einstein universe.
K & has zeros at the points r =0, t = + 1 and on

the two-surface r = 1, t =0. It is null on the cones
r =

~

t+ 1
~

. The timelike trajectories are given by
the equations 8=constant, P =constant,
(r c) t =c —1(

~

c —
~

& 1) an—d are illustrated in

Fig. 5.
7. K& nm'+2——x'(m. x) —m'x; m & 0, n &0

Take m'=(0, 1,0,0), n = —1 and use cylindrical
polar coordinates in the y, z directions as for case
5. Then K 6

——2xt and

K,'= [t'—p' —(x —1 )']

X [t' —p' —(x + 1 )'] .

The region r(K6) is the union of the interiors of
the cones t =p + (x + 1 ) minus their intersection.
These cones are illustrated in Fig. 6(a), together
with the region r+(K6 ).

In the coordinates defined by t =z cosh 1',

p =r sinhX, K6 ——[(r—x) —1 ][(r+x) —1 ],
r+(K6) is the region r+x & 1, r —x & 1, and

(K6) is the region r+x & 1, r x& 1. In—
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(c)
8

aC'

FIG. 4. (Continued. )

0&/&2m. . Hence [r+(K6); ( K6 ) 'ds
I is th—e

open Einstein universe. r (K6) may be treated
similarly.

E6 is zero at the points t =p=O, x =+1 and on
the two-surface x =0, t —p =1, which is the in-

tersection of the two cones. It is null on the cones
(x+1) +p =t .

The timelike trajectories are defined by the equa-
tions g =constant, p =At,

(IA
I

&1, 1c I
&1)

and are illustrated in Figs. 6(b) and 6(c).
8. K7 nm'+2 (——xxm) —m'x; m &0, n &0
Take m'=( —1,0,0,0) and n =—1. Then

7 (K7 ) =r+(K, ) is the whole of Minkowski space,
and K7 = —[(t r) +1] [(t—+r) +1]. With the
coordinate transformation t r= tan —,(t' —r'), —
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V. STATES AND STRESS TENSORS

We first describe the natural vacuums and
Green's functions for the ultrastatic spaces. We
continue to denote by a tilde quantities in the
curved ultrastatic spaces. Thus 2o. is the square of
the geodesic distance, K the constant, timelike Kil-
ling field, and so on. The curvature scalar is
unambiguously denoted by R. Covariant deriva-
tives of quantities bearing a tilde will be with
respect to the metric g,b. The metric g,b will

denote a flat metric and K a conformal Killing
vector field on flat space. As in Sec. III:

(5.1)

(5.2)

and

K, .b
——0 . (5 3)

FIG. 5. The timelike trajectories of K~.

t +r = tan —,(t'+r'), r(K7) is the region

~

t'+r'
~

& rr,
~

t' r'
~

& rr, r—') 0. The line element
becomes

ds = —, sec —,(t'+r')sec —, (t' r')—
g( dt +dr'—+ sin r'dQ ) .

The space t r(K7); ( —K7 ) 'ds
I can be analyti-

cally extended to the Einstein static universe.

K7 has no zeros or horizons. All trajectories are
timelike and are defined by the equations 0=con-
stant, /=constant, (r c) t = 1+c (c &—oo )—
and are illustrated in Fig. 7. The trajectory corre-
sponding to c =0 is of special interest as it marks
the trajectory of greatest acceleration (the accelera-
tion a is given by the formula a ' =1+c ). This
trajectory is distinguished by a triple arrow in Fig.
7.

G(x,x') = [8m(cr+i E)]. (5.4)

where

(x,x') =(R/6)' ycsc(R/6)'r y, (5.5)

and y(x, x') is the geodesic distance on the spatial
section:

y =(E'cr , ) +2cr . .

In terms of the coordinates defined in Sec. IV
[Eqs. (4.18) and (4.19)]

(5.6)

Many of the formulas we use in this section are
valid for all three ultrastatic spaces; one need only
substitute the appropriate value for R: +

~

R ~,—
~

R ~, or 0. Where we need to distinguish the
spaces we append a subscript (or superscript), +,
—,or 0, to denote the positive-, negative-, or zero-
curvature versions of the relevant or equation.

The elementary (single geodesic' ) Feynman
Green's functions corresponding to Eq. (2.26) with

bp =0 can be given in closed form'

and

coshy (X,X', 0,0',P, P') =coshX coshX' —sinhX sinhX'cosI

cosy+(X,X',0,0';P,P') =cosY cosX'+sinX sinX'cosl

where

cosl—:cos0 cos0'+ sin0 sin0' cos(P —P') .
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and is singular when y+(x,x')
l

R /6
l

' =no.T. his singularity survives in the Green's function (5.4) and
for this reason it is not taken to define the global vacuum state for the Einstein static universe. One defines
instead the Green s function that can be obtained from (5.4) by making it periodic in y+. The analogous
function when R is negative is obtained from (5 4) by periodizing in iy T. his process results in the func-
tions

G (x,x')= —(R/6)[8a [cos(R/6)' K,a"—cos(R/6)' y+ie]I (5.9)

The function G+ defines the natural vacuum state for the Einstein static universe; it is the function that
is arrived at by summing over complete sets of modes that are defined to be positive frequency with respect
to Z+."

It is a consequence of the formulas given in Sec. III that the squares of the geodesic distances in flat
space and the curved ultrastatic spaces, 2o. and 20., respectively, are related by the equation

[K (x)K ( x')]'~ o(x,x')= —(R/6) '[ c os[(R/6)'~ K,cr'] —cos[(R/6)'~ y]I .

Thus we can reexpress Eq. (5.9} as

G~(x,x')=(Sm ) '[K (x)K (x')]'~ [o(x,x')+i@]

(5.10)

(5.1 1)

Written in this form it is immediately apparent
that the functions G are Green*s functions on the
ultrastatic spaces; they are merely conformal to the
Minkowski Green's functions Go. Equation (5.11)
also emphasizes the point made earlier that ele-

mentary Feynman Green's functions do not neces-

I

sarily map into one another under conformal
transform ations.

The ultrastatic vacuums corresponding to the
functions G and G are defined by the equations

(O, b,
l
T[4(x)@(x')]l 0,~) =G(x»'»

(0,7r
l
T[4(x)@(x')]

l
0,~) =G (»x') (5.13)

(5.14)

where

where (O, b,
l

O, b ) = (O,f
l

O, K) =1.
l

O, f. ) is a thermal state with respect to
l0, b, ) with temperature' i(2m) 'lR/6l'~.
l

O, v7+ ) is a thermal state with respect to
l

O, b+ )
with temperature (2n) ' R/6

l

'~ . The usual
Minkowski vacuum is defined by

(0
l
T[k(x)4(x )] 10)=Go(x x'»

(0l0) =1.
The vacuums in flat space corresponding to the

eight conformal Killing fields K; are obtained from
the ultrastatic vacuums by performing the relevant
conformal transformations. They are defined as
follows:

(O,Kg l
T[4(x)4(x')]

l
O,K; ) —=G;(x,x'),

(5.15)

where (0)K;
l

O, K; ) = 1, Ix,x'I cr+(K;) and

FIG. 7. The timelike trajectories of E7. The trajecto-
ry distinguished by a triple arrow is the trajectory of
greatest acceleration.

G;(x,x')—:[K; (x}K; (x')] '~ G (x,x') (5.16)

for i E [ 1,2, 5,6],
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G;(x,x')=[E; (x)K; (x')] ' Go(x,x'),

for i E [0,3,4];

G;(x,x') = [KI (x)K; (x')] ' G+ (x,x'),

(5.17)

where

D' (x,x') —= —, [ g (x)[——,R (x)—g,' V, V' ]

—2V'V +4gb V'V +R' (x)],
(5.25)

(5.18)

fori =7.
The states

~

O, K; ) for i =0, 1, 2, are the usual
Minkowski, Rindler, and Milne vacuums, respec-
tively. There is a slight redundancy in notation oc-
casioned by the degeneracy of the Minkowski va-

cuum in that

(

0)—:
[ O, KO) =

[ 0,6O) =
[ O, pro) .

Notice that the flat vacuums are defined in terms
of the elementary Feynman functions G. No new
vacuums for flat space are to be found by
transforming ultrastatic periodic functions G; by
Eq. (5.11) they all get mapped to Go(x,x') with x
and x' restricted to the appropriate region r(K; ).

We can describe the relations between the vari-
ous vacuums in terms of the notation of Sec. II:

and G and G are given by Eqs. (5.9) and (5.4),
respectively.

The calculation is given in the Appendix. It is
worth noting that one must calculate T~ (n. ) in a
way that is required by its more fundamental rep-
resentation, namely,

Tbr (rr) = (O, rr ~*, T' „~ O,Fr)

—(O, b, i*,T',
i

O, b, ) . (5.26)

Tbr (n)=a( , R. ) (g —+4K'K ),
where

(5.27)

By writing Eqs. (5.24) and (5.25) we have chosen
an ordering (~). This is quite legitimate, but once
chosen it must be adhered to and must be the same
for both functions G and G. The result is

~O, K;)=~O, b, ), iE[1,2, 5,6), (5.19)
a ' = 1440m (5.28)

~O, K;)= ~O, bo), i EI0,3,4], (5.20)

(5.21)

The flat-space expectation values are obtainable
from Eq. (5.27) and either formula (2.40) or (2.38).
Equations (5.19)—(5.23) identify the relevant con-
formal vacuums. The results are summarized in
the formulas

Equation (5.11) implies the additional relations

(5.22)

Tg (K; )= (O,K; ~', T' (x),
~

O, K; )

—(Oi,*T' (x),*i0),
whence

(5.29)

i
Of)= iO) . . (5.23)

The expectation values of stress tensor operators
are most easily calculated in the ultrastatic spaces
and then transformed to the conformal spaces as
required. All expectation values that we shall need
can be written as the coincid'ence limit of the dif-
ferential operator D' acting on the difference of
two Green's functions. In any given ultrastatic
space there are, at most, two Green's functions of
(current) interest, G and G, and hence only one
nonvanishing difference G —G. Thus we begin
our discussion of stress tensors with a calculation
of the quantity

Tg "(K;)=a
( K 2 3K 2 pl~ 2)2

16(K; )

4E E;
(5.30)

for all i E [0,1,2, . ..,7]. All quantities in Eqs.
(5.30) refer to flat space: We have expressed the
constant curvature R of Eq. (5.27) in terms of the
conformal Killing field by using Eq. (4.16). Equa-
tion (5.30) is valid in the region r(K;) of Min-
kowski space.

We can make contact with renormalized stress
tensors by substituting in Eq. (2.42),

R~b = , R (g~b +K~Kb ) ~— (5.31)

X[G (x,x') —G(x,x')], (5.24) the expression for the Ricci tensor in the ultrastat-
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Again using Eqs. (5.19)—(5.23) we find

Tz (vr)=a( —,R) (g +4K'K ) (5.33)

T~ (b, )= ( K; )—Tg (K;)

( K; —3K; lnK; )

&&[( —K )g'"+4K K ] . (5.34)

Moreover, for conformally flat ultrastatic spaces,
G(x,x') =G, (x,x') [see Eq. (2.34)] and so
Tg (b, )=0.

These results are in agreement with previous ex-

pressions for renormalized stress tensors' for these

spaces. It is important to remember that "the" re-

normalized stress tensor for the Einstein static
universe is T~ (~), whereas "the" renormalized

stress tensor for the open Einstein universe is

TR (6).
If, in Eq. (5.29), we choose (', ) to be normal or-

dering with respect to the Minkowski vacuum (:)
we have

T~ (K; ) = (O,K; i:T':
i

O,K; ), (5.35)

and the interpretation that the tensor T~ (K; ) de-

scribes the energy and momentum density of the
state

i
O, K; ) with respect to the Minkowski vacu-

um. The energy density p; is defined to be

ic spaces to obtain

Ts (u)=Q Tz (u)+a( , R—) (g +4K'K ) .

(5.32)

to
i

O,K; ) we can derive the equation

(O,K, i:,T'"(x):,
i

O, K, }

=Tg (K;)—Tg (KJ), (5.38)

where x Er(K; ) fl r(KJ ). We shall reserve discus-

sion of the physical relevance of these results until

Sec. VI.
We conclude this section with a brief discussion

of the state
i

O, K7) and its conformal Killing vec-
tor K7'. By Eqs. (5.37) and (4.41) we see that
p7&0 everywhere M. oreover Tz (K7) has no
singularities in Minkowski space and tends to zero
at infinity. There is nothing particularly odd in

this;
i

O, K7 } is a regular vacuum state for Min-
kowski space with energy less than the Minkowski
vacuum

i
0), but it is not a translation-invariant

state.
Although, as mentioned earlier, the function G+

has pathologies as a Green's function for the Ein-
stein static universe, the conformal function G& is
well behaved on the whole of Minkowski space. In
spherical polar Minkowski coordinates

G, (t, r;t', r')- iR/6i ' (4'
i
r r'

i

)—
(5.39)

for large spacelike separations.
Finally we note that G7 may be represented as a

mode sum: One performs an analytic continuation
(R~ —R) of the natural modes for the open Ein-
stein universe. This gives a mode sum representa-
tion for G+ which is related by a conformal
transformation to that for G7.

p;= Tg (K;)K;,K—b( —K; )

By Eq. (5.30) we have

(5.36) VI. MEASUREMENTS BY NONINERTIAL
OBSERVERS

3~ ( K; —3K; lnK; )

16 (K 2)2
(5.37)

Thus the states
i

O, K; ) all have energy densities
less than or equal to zero. (p; is zero for
i e I0,3,4, ].)

One can choose other orderings for Eq. (5.29).
If we denote by (:;)normal ordering with respect

We set out a few comments here concerning the
relevance of the tensors Tg (K; ) to the physics of
observers whose world lines in flat space are the
trajectories of the conformal Killing vector fields
K;. These trajectories are defined by Eq. (4.20)
and are drawn in Figs. 1 —7 of Sec. IV. Their
common properties may be established with the aid
of the following equations:

fK .b =K f b Kbf +kfg b, . — .

2f'f;.b=f'(f f f;,f')g.b+2(f f 2—f ,f")K,Kb, — .

2f(f~;, &f,)+(f f f ,f—")K,=0, — .

(6.1)

(6.2)

(6.3)
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where, as before, f=
~

K—,K'
~

', A,:——,K'.„and
K is any curl-free, conformal Killing vector field
in flat space. Equation (6.1) follows from Eqs.
(4.6) and (3.2). Equation (6.2) is Eq. (3.6) written
in terms of K„and Eq. (6.3) is merely a useful

consequence of the previous two. Equation (4.20)
implies that

(6.5)

x'=f AK'+f 'f" (6.4)

and hence

x =f (A, +f ,f")x'. .

The acceleration a =f '(A, —+f f , )'~, is .constant
along the world lines: a =0. Equation (6.5) is in

an integrable form; any individual trajectory is part
of a rectangular hyperbola corresponding to con-

stant acceleration.
Let us now consider a point "observer" 0 who

moves on one of these trajectories through flat

space which we take to be in the Minkowski vacu-

um state. We wish to discuss the relevance to 0 of
the fields K; and their vacuums.

Any open interval of a given trajectory having

nonzero acceleration can be regarded as belonging
to any of the vector fields K;, i 6 I 1,3,4, 5, 6,7I.
Thus, if 0 is strictly confined to his world line he

cannot determine to which field he belongs. Al-

though, of course, he may be able to obtain some
information if he reaches the boundary of his space
in a finite proper time. Ho~ever if 0 wishes to
make quantum-mechanical observations his ap-

paratus must extend into some neighborhood of his

world line. How this extension is made is crucial
to the nature of subsequent observations. Thus, al-

though 0 may have a pointlike existence, his ap-

paratus, in order to be useful, necessarily defines a
vector field. Which vector field is defined in this

way is something that only 0 can decide. We shall

consider only those configurations where the con-

stituent atoms of 0's apparatus or laboratory have

world lines that are described by the trajectories of
one of the vector fields K;.

For example, suppose 0 takes with him a rigid,
nonrotating, Unruh box' with which to measure

the Minkowski vacuum. Let the material of the
box be such that the scalar field vanishes on the
sides. It is the concept of rigidity that describes

how the box behaves in relation to 0 and provides
the extension from 0's world line to a particular
vector field. In this case it is K~, the Rindler Kil-
ling vector field, that is implicitly defined.

The largest possible rigid box that 0 can have
will fill a Rindler space. Moreover it is easily

shown that

Gi(x,x') =0

when x (or x') is on the horizon K& (x)=0. The
Green s function for a box of finite size differs
from G& only in its spatial boundary conditions.
Thus if the box has classical dimensions its physics
is essentially described by 6& and we can say that
the natural ground state for 0's rigid box is the
Rindler vacuum. The stress energy seen by the
box will be the stress energy of the Minkowski vac-
uum counted in terms of Rindler particles, viz. ,

(O,Kp i:iT':i
i

O, Kp) . (6.6)

By Eq. (5.38) this expectation value equals
—Tz (K& ). Hence 0's rigid box will register a

positive-energy thermal state with temperature pro-
portional to (p, )'".

The property that the fields K0 and K& can be

said to describe rigid motions is characterized
geometrically by the property that their expansion
tensor H,b(K) vanishes, '

Ogb (K) = (ggp + Vg +g )(gbd + Vb (6.7)

where

V, =f 'K, .

If 0 elects to take a nonrigid (expanding) box it

will record different information. In general, if the

box is such that its constituent world lines are the

trajectories of K; (for some i), then its natural

ground state will be the
~

O, K;) vacuum. When

immersed in the Minkowski vacuum it will behave

as if in the presence of the stress-energy density
—T~"(K; ). When immersed in the

~
O,Ki )

vacuum it will behave as if in the presence of the

stress-energy density

(O,KJ ~:/T':( ~O,KJ).=Tg (KJ) —Tg (Kg ). (6.8).
In Eq. (6.8) the fields K; and E& can be any pair

of timelike, curl-free, conformal Killing vector

fields. For example, they might both be the same

up to a translation. The point being that only

~
O, Kp) is translation invariant. The derivation of

Eq. (6.8) in Sec. V makes no reference to any par-

ticular coordinate system or origin.
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APPENDIX

In this appendix we use the method of point
separation introduced in Sec. V to calculate the
normalized stress tensor T~"(m ) in the three stand-



1898 M. R. BROWN, A. C. OTTEWILL, AND S. T. C. SIKLOS 26

ard conformally flat ultrastatic spaces. Since
G (x,x') —G(x,x'} is a twice continuously dif-
ferentiable function of its arguments the limit of
(5.24) is well defined: it does not depend on the

direction of separation. We are therefore at liberty
to take the simplest possible separation, viz. , along
the K' direction: (x x—')'=@K'. For all three
spaces we have

(A2)

[(—,7');.]r=p= [( —,7')((. )-,=p=o

[( 2 r'};ab)r=p=[( t )"}//ab]r=p= [( z) );ab'ly=p=gab+KuKb ~

where ~)a denotes differentiation in the hypersurface t =constant. These follow from the fact that y is the
geodesic distance in the three-section and is independent of t.

For small e the required formulas are

G~(x,x') = (R /6)
(A

8tr cos(R/6)'~ (t t'—) co—s(R/6)'r y+ie
(R/6)'"y 1

G X,X
4~ sin(R /6) '~

y ( t —t') —+y +i e

where y is defined by (5.6) and we have written (t t') =——K'o,
We can now calculate the derivatives of G —G we require for (5.24) and (5.25) with (x —x')' =@K' by

expanding (Al) and (A2) about y=0 and using the formulas

[V,Vb(G —G)]r p
———[V', Vb (G„—G)]

rp

=(1440n2) '[(1 lg, b+14K,Kb)(R/6) +O(e )],
[G —G]- p= —(288tr ) '[R+0(e )) .

Moreover our simple choice of separation means
that g,~

——g,~6~ . Inserting these results into
(5.24), together with the formula R,b

=(R/3)(g, b+K,Kb) and letting the separation E

tend to zero we find

Tt't (tr)= (1440tr ) '(R/6) (g +4K'K } .
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