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We show how the correlations of a quantum system with other quantum systems may
cause one of its observables to behave in a classical manner. In particular, “reduction of
the wave packet,” postulated by von Neumann to explain definiteness of an outcome of
an individual observation, can be explained when a realistic model of an apparatus is
adopted. Instead of an isolated quantum apparatus with a number of states equal to the
number of possible distinct outcomes of the measurement, discussed by von Neumann, we
consider an apparatus interacting with other physical systems, described here summarily
as “environment.” The interaction of the quantum apparatus with the environment results
in correlations. Correlations impose effective superselection rules which prevent ap-
paratus from appearing in a superposition of states corresponding to different eigenvalues
of the privileged pointer observable. 1t is the propagation of the correlations with the
pointer basis states which is ultimately responsible for the choice of the pointer observ-
able. It can be thought of as a process of amplification in which the state of many dis-
tinct physical systems becomes correlated with the pointer basis state. Whether these en-
vironment systems are regarded as a part of the apparatus setup, or as a part of its en-
vironment is irrelevant. What is crucial is the redundancy of the record concerning the
pointer observable which is imprinted into the correlations. Eigenspaces of the pointer
observable provide a natural basis for the pointer of the quantum apparatus and deter-
mine the to-be-measured observable of the quantum system. Decay of those elements of
the apparatus-system density matrix, which are off-diagonal in the pointer observable, is
caused by the natural evolution of the combined system-apparatus-environment object.
For a hypothetical finite environment with N distinct eigenvalues of the apparatus-
environment interaction Hamiltonian, off-diagonal terms will decay to become of the or-
der of N~'/2, and will recur only on a Poincaré time scale. No recurrences will be ob-
served in realistic circumstances. As the correlations spread through the environment on
a time scale typically much shorter than the recurrence time scale calculated for the en-
vironment already correlated with the pointer observable, the measurement becomes effec-
tively irreversible. Relevance of this model of the measurement process for the under-
standing of the second law of thermodynamics and its relation to Bohr’s “irreversible act
of amplification” is briefly discussed. The emergence of the pointer observable can be in-
terpreted as a clue about the resolution of the measurement problem in case of no en-
vironment. It points towards the possibility that properties of quantum systems have no
absolute meaning. Rather, they must be always characterized with respect to other physi-
cal systems.

I. INTRODUCTION the reduction of the state vector.*~°
The aim of this paper is to show that when the

Superselection rules have been often invoked in quantum apparatus is an open system, interacting
attempts to solve the problem of measurement in with other systems, which will be described below
quantum theory.!® Their role was to prevent the as “an environment,” such superselection rules do
apparatus pointer from appearing in the superposi- not need to be postulated: They arise naturally in
tion of states corresponding to the distinct out- the course of any Hamiltonian evolution which
comes of the measurement. This would allow the correlates quantum apparatus with its environment.
apparatus to accomplish what has become known The state vector of the combined system-
as the second stage of the measurement process: apparatus-environment object evolves as follows:
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| D(t=10))=|¥) ® |4y) ® | E(ty))

— |<I>(t=t1))=

Scal|n)®|A4,))

(1.1a)

® | #(ty)) (1.1b)

S|t >1)=Sc, [n)® |4,)® | &,(0) . (1.1c)

Above, the state vector of the system is given at
t=ty by ‘

l‘l’>=20n|">’

while { |4, )} is the basis of the apparatus. | &)
(| &,)) describe the state of the environment be-
fore (after) it has become correlated, as a result of
the apparatus-environment interaction, with the
different outcomes of the measurement. It is
worth stressing that at # =¢; the observable of the
system which will be ultimately recorded by the
apparatus is not yet defined. Only the establish-
ment of the apparatus-environment correlation re-
moves the ambiguity in the definition of the
recorded observable.” Part of the apparatus-system
correlations, which are present at ¢t =¢; in the wave
function |®(t)) are replaced by the apparatus-
environment correlations. While the first set of the
correlations has provided the apparatus with the
information about the quantum system, the second
set of the correlations is indispensable to define the
measured observable. At the same time the ap-
parent reduction of the state vector is accom-
plished; the state of the apparatus-system combina-
tion must be now described by the density matrix:

p=Tr [ | ®(t >t;)){(DP(t >1,)|]
52 Icn [ZIAn><An| ® [”><n |

=Pmix * (1.2)

Above Tr, indicates partial trace over the environ-
ment degrees of freedom. The size of the off-
diagonal terms appearing in p,,;, is determined by
the values of the scalar products, p,,,
~ (& (t>1,)| &t >1ty)) |2 When these are
small, as is usually the case, the density matrix can
be thought of as describing the apparatus in a de-
finite state. The probabilities on the diagonal of
the density matrix are there because of our (i.e.,
outside observer’s) ignorance about the outcome of
the measurement: It is, as yet, unknown to us, but
nevertheless it is already definite.

The manner in which the transition from p,. to
Pmix Proceeds in the above scenario indicates that

[

the traditional concept of properties which belong
to the system is incompatible with quantum
mechanics. This follows from the fact that the
to-be-measured observable is defined only in the
course of the apparatus-environment interaction.
Its characterization proceeds in parallel to the
reduction of the wave packet. In other words, to
maintain that the environment-induced superselec-
tion rules arise because the environment removes
spurious correlations by perturbing the phase rela-
tions between different states of the apparatus (see,
e.g., Refs. 8 —13) reveals only part of what hap-
pens. It is more to the point to note that the
environment-apparatus correlations replace some of
the apparatus-system correlations. This replace-
ment defines the “classical” pointer observable of
the apparatus: Before the off-diagonal terms can
be damped out it must be clear what states remain
on the diagonal.

It is important to recognize similarities and to
stress differences between the meaning attributed
to the term “‘superselection rules” here, and in its
earlier uses. Superselection rules were said to
operate between the subspaces of a Hilbert space of
a given system if the phase factors between the
vectors belonging to the two distinct subspaces
were unobservable.”2 Such superselection rules im-
ply that an operator which has eigenstates com-
posed of superpositions of vectors contained in two
or more subspaces cannot be measured. In the case
of environment-induced superselection rules phase
coherence between two eigenspaces of the pointer
observable is being continuously destroyed by the
interaction of the system to which they apply (e.g.,
apparatus pointer) with the environment: This in-
teraction, equivalent to “monitoring” of the system
by the environment, makes the phase between
pointer basis states impossible to observe. Thus,
the interaction with the environment forces the
system to be in one of the eigenstates of the
pointer observable, rather than in some arbitrary
superposition of such eigenstates. This results in
effective, environment-induced superselection rules.

The subject of the following section is to intro-
duce the idea of the environment-induced super-
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selection rules on a simple, exactly soluble example
of interacting two-state quantum systems. Section
IIT explores in a more general way conditions
under which superselection rules may be induced.
In particular, we show that as the size of the en-
vironment increases, the superselection rule be-
comes more effective. Recurrence of the correla-
tion terms (which are shown in Sec. III to be de-
creased by the factor N 172 where N is the number
of the involved states of the environment) is the
subject of Sec. IV. Discussion of the
environment-induced superselection rules in the
context of interpretation of quantum theory is con-
ducted in Sec. V. In this last section we shall also
consider connection of our considerations with the
problems of irreversibility and amplification.

II. POINTER BASIS IN A
BIT-BY-BIT MEASUREMENT

Consider a pair of two-state systems. We shall
call one of them “spin” while the other one shall
be called “atom.” A possible basis of the spin is
given by | 1), | |)—states parallel or antiparallel to
the z axis. Alternative orthonormal basis states are
then, for example,

|O)=(| )+ [IN/V2,
[Q)Y=(|1)—|¢N/V2

2.1

or
| =)= 1) +i[¢N/V2,
| )=(| 1) =i | N/V2.

(2.2)

The basis of the atom consists of the “ground
state” | =) and of the “excited state” | = ).
Despite this nomenclature we shall assume that the
energy of the atom in each of these states is identi-
cal: Neither the atom nor the spin possess self-
Hamiltonians. Alternative states of the atom can
be, for example,

[ +)=(]| =)+ |=N/V2,
[=)=(|=)—|=N/V2

(2.3)

or
| TY=(|=)—i|=)/V2.

(2.4)

The spin shall now be considered, for the purpose
of our discussion, as the quantum system which is
to be measured, while the atom shall play the role

of the apparatus. It is not difficult to show”'*
that the interaction Hamiltonian

HS=g(| L)+ |—=|=)(~+])
QU Yt — L)) 2.5)

acting over the time interval 7; =7#/4g transforms
the initial, direct product

l@)=(a | 1)+b[IN®|+) (2.6)
into a correlated state vector
I¢)f>=a11>®ft)+b|l>®|:>. (2.7)

This is still, beyond any doubt, a pure state. Al-
though the correlations between the system and the
apparatus have already been established, so far the
measurement could not have yielded a definite out-
come. First of all, the correlated apparatus-system
state vector |¢@y), Eq. (2.7), can be brought back
to the initial |¢; ), if the same interaction, Eq.
(2.5), proceeds for the additional time 7, =37#/4g.
This proves that the apparatus could not have ‘“de-
cided,” at the stage described by Eq. (2.7), whether
the outcome of the measurement was | 1) or | 1).
For, if the initial, direct product |¢;) is to re-
emerge after r=r1; 47, =n#/g, all of the com-
ponents of | ¢, )—all of the possible outcomes of
the measurement—must have been present at
t=T;.

More importantly, at the stage described by
|@r) of Eq. (2.7) it is as yet undetermined what
the possible states are between which this measure-
ment would distinguish. To show this we rewrite

o) =[(@[t)+b[1)® | +)
@ [1)=b |1 [ —)]/V2.
(2.8)

Thus, the atom states | + ) and | — ) are correlat-
ed with the definite states of the spin:

|Si)=a|t)+b|Ll), |Sy)=a|t)—b]|L).

The above states are distinct from the states
[1),]¢) which, we might have thought on the
basis of Eq. (2.7), were recorded by the apparatus.
In particular, when the state of the spin before the
measurement was least certain, i.e., when

a =b =2'2, the final, correlated state vector can
be written, for example,

e )=(|O)® | +)+ | ®)® | -)/V2,

2.9)
as well as in continuously many equivalent ways.
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The state of the atom—one is led to conclude—
does not, at the stage of | @) given by Eqs.
(2.7)—(2.9), contain even the information about
what observable of the spin it was supposed to
record. It would therefore be impossible to claim
that the measurement in the sense in which we
normally use this word has already occurred.
Moreover, even though our arguments following
Egs. (2.7), (2.8), and (2.9) apply directly to the
two-state “bit-by-bit” interactions, it is not difficult
to modify them so that one is forced to conclude
that in a closed apparatus-system object evolving
unitarily “reduction of the wave packet” cannot be
accomplished. What has, nevertheless, undoubted-
ly taken place was the transfer of information be-
tween the spin and the atom. This information
transfer can be quantified.'* Let us now return to
the discussion of the pointer basis of the apparatus,
which removes this ambiguity in the choice of the

J

recorded observable.

Consider the environment & consisting of N
two-level atoms, the kth of which has a Hilbert
space spanned by the basis { | =);, | =);}. (The
environment atoms are denoted by parentheses,
while Dirac’s bra and ket are reserved for the spin
and for the apparatus atom.) We assume that the
self-Hamiltonians of the atoms taken separately, as
well as the interaction Hamiltonian between these
atoms, is zero. The only Hamiltonian in the prob-
lem is then the apparatus-environment interaction
Hamiltonian HAE, which, we assume, separates as
follows:

HAE=S HRF . (2.10)
k

Furthermore, we assume that the individual com-
ponents have a form

HPf =g (| =)W= |- |=X=DO(|=)=|— =)= | ]l ®1; . 2.11

The above interaction Hamiltonian has a very spe-
cial property; its eigenstates are direct-product
states. Components of the direct product belong to
Hilbert spaces of the apparatus and environment
atoms, respectively. Such Hamiltonians have re-
cently been explored in the context of the non-
demolition measurements of quantum observ-
ables.’ 18

When the environment described above interacts
with the apparatus atom, superselection rules are
induced. They make it impossible for the ap-
paratus to be detected in a superposition of the
ground (| = )) and excited ( | = )) states. To
show this, let us assume that the interaction be-

tween the apparatus and the environment starts at
|

i

t =0, and that before this instant no correlations
with the environment have existed. Thus, the
combined system-apparatus-environment state vec-
tor has, to begin with, the form

N
| D0)=|@s) [T ®Low | =k+Be| =kl -
k=1

(2.12)

States | =), | =); | =), | = )i are the eigenstates
of the interaction Hamiltonian, which is the only
Hamiltonian acting in the combined system after

¢t =0. This allows one to write the state | ®) at an
arbitrary time ¢:

N
@) =a|1)® | =) [I ®[axexpligit)| =) +PBiexp(—iget)| =)i]
k=1

N
+b 1)@ | =) [T ®[axexp(—iget)| =) +Bx expliget) | =) ] - (2.13)
k=1

Above, and further on in this paper, we use units in which #i=1. The geometric representation of this evo-
lution can be given (see Fig. 1). The transition between | ®(0)) given by Eq. (2.12) and | ®(#)) of Eq. (2.13)
establishes the correlation between the state of the apparatus and the state of the environment.!>?® It is
analogous to the transition that occurs between | ®(t =¢,)) of Eq. (1.1b) and | ®(¢ >¢,)) of Eq. (1.1c). The
observable A of the apparatus, which is most reliably recorded by the environment, is called the pointer ob-
servable.”'* In our case A has a form

A=ty =)= +A| =)=, (2.14)
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and { | =), | =)} define the pointer basis. Above A, and A, are real and A;%A,.
We are now ready to calculate, following the prescription of Eq. (1.2), the density matrix describing the
spin correlated with the atom apparatus:

PIA=Trg [ QNN D) [ = [a [*[1)(1] @ [=)(=]| + z(t)ab*[1){1| ® | =)} (=]

+ z*@Wa*b [ (1| @ =)= + |62 @ |=)=]. (2.15)
Above z(¢) is the correlation amplitude:
N
z(t)= [T [cos2gxt + i(|ay |*— | By | *)sin2g;t] . (2.16)
k=1

Note that the correlation amplitude z(¢) depends on the initial conditions of the environment only through

the probabilities of finding the system in the eigenstates of the interaction Hamiltonain: p(|=);)=|ay |

p(| =))=|Bx |% This property is quite important, as it indicates that the ability of z(¢) to damp out

correlations will be the same for a mixture for which only p( | =);), p(| =)i) can be given. We shall not

give the proof of this fact here. It involves calculations that are as straightforward as they are cumbersome.
Let us moreover note that the correlation amplitude z(¢) is equal to the scalar product:

z2()=(& ))& | 4)(1)) . (2.17)

States | & | 4)(2)), | & )(2) are defined by

N
| 2y))= I ®[oxexpligit)| =) +Bx exp(—iget) | = )],
k=1

N
181 e)(@))= JT ®[axexp(—igit)| =)+ Bk expligt) | =) ] .
k=1

They represent the two distinct records made by
the environment of the two alternative outcomes of
the measurement.

The time dependence of z(¢) is of crucial impor-
tance for the successful damping of the off-
diagonal correlation terms. It is elementary to see
that

(i) z(6)],—0=1, (2.18)
(i) |z(0]%<1, (2.19)
. —1 T
(i) (z())= lim 7' ['z(dt

=0, (2.20)
(iv) (|z(®)|?)

N
=2"NTT 14+ ap | 2= |Be | D?].  (2.21)
k=1
Equation (2.21) implies that unless the initial state
of the environment coincides with one of the eigen-
states of the interaction Hamiltonian, the expected
absolute value of the correlation amplitude,
[z(2)|?, is much less than its initial value of unity.
Moreover, Fig. 2 suggests that even relatively small
environments are quite effective in providing a pre-
cise definition of the pointer observable. It is,

T

nevertheless, worth stressing that as long as N is
finite the absolute value of z(¢) will return arbi-
trarily closely to |z(#)|*=1. This statement is a
theorem in the theory of almost-periodic func-
tions.?! There one defines “translation numbers”
T, by requesting that the inequality 1— |z()|*<e
be satisfied, for a given ¢, both at t =0 and at

t =T, but not within the interval (0,T,). Transla-
tion numbers T, constitute, for almost-periodic
functions, a “moral equivalent” of the period of
periodic functions: One can prove that almost-
periodic function reaches any value within its
range infinitely many times. There is a close anal-
ogy between the problem of recurring correlations,
exemplified by the existence of T, for any positive
e—and Poincaré recurrences. We shall explore it
further in the following two sections.

The aim of this section was to show, on a specif-
ic example, how the interaction of the apparatus
and the environment can cause an effective reduc-
tion of the state vector. Establishment of the
correlations between the apparatus and the en-
vironment took place at the expense of the previ-
ously attained correlations between the apparatus
and the system: Rewriting of the final density ma-
trix in the form in which the apparatus contains
the information about some arbitrary two states of
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FIG. 1. Pictorial representation of the environment
atoms “monitoring” the state of the apparatus atom, as
given by Egs. (2.10) and (2.11). Resulting apparatus-
environment correlations replace some of the correla-
tions between the eigenstates of the pointer observable
and thus enforce environment-induced superselection
rules. The pure state of each of the three (k =1,2,3)
environment atoms, described by a state vector in a
two-dimensional Hilbert space, is represented above by a
point on the surface of the appropriate sphere. The ini-
tial state of the apparatus atom is represented by a point
on the surface of the large sphere on the left. Atz =0
(first column of the spheres) neither of the environment
atoms is, as yet, correlated with the state of the ap-
paratus atom: each of them can be represented by a sin-
gle point. At t =7> 0, second column, the state of each
atom is rotated by an angle; gy = +gxt, around the axis
defined by the eigenstates; | =), | = )i, which diagonal-
ize the interaction Hamiltonian;

HYE =gl =)= | = =)(=])
RQ(|=)N=|—|=)=]|)k.

Counterclockwise rotations are correlated with the

| 2 ) state of the apparatus and are marked by the
heavy arrow. Clockwise rotations are correlated with
the | =) state and marked by a lighter arrow. At a
still later time, ¢t =27, third column, states of the en-
vironment atoms rotate still further. This evolution
can be thought of as a continuous “measurement,” by
the environment, of the pointer observable
A=A(|=)(=|—|=){=|) of the apparatus.
Therefore, by Bohr’s principle of complementarity,
only observables which commute with A can be suc-
cessfully measured or prepared. Indeterminacy is inti-
mately related to the environment-induced superselec-
tion rules.

the spin is no longer possible when all the off-
diagonal terms in the density matrix p”S, Eq.
(2.15), disappear, even if a =b =2"1/2_ It is im-
portant to stress that through the interaction of the
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FIG. 2. Evolution of the correlation-damping factor
z(t), which multiplies off-diagonal terms of the
apparatus-atom density matrix. Diagonal is defined by
the pointer basis. Damping results from the process de-
picted symbolically in Fig. 1. z(z) was calculated from
Eq. (2.16) as a function of time for three different sizes
of the environment: (a) N =5, (b) N =10, (c) N =15 en-
vironment atoms. For simplicity we have assumed that
|ax | =|Bx |, so that z(¢)=[],_ cos2gxt. Constants
8k, proportional to the eigenvalues of the interaction
Hamiltonians HE, Eq. (2.11), were chosen randomly
from the interval (0,1). Note the fluctuations of z (),
and the decrease of their size and frequency with the in-
crease of the number of the environment atoms, N.

apparatus with the environment we have achieved
simultaneously both the apparent reduction of the
pure state density matrix into a mixture and the
determination of the observable recorded by the ap-
paratus. This dual role of the environment is
equivalent to the imposition of the superselection
rule. We shall explore this mechanism in more de-
tail, for an arbitrary quantum system, in the fol-
lowing section.

III. ENVIRONMENT-INDUCED
SUPERSELECTION RULES

The interaction Hamiltonian coupling the system
& with the environment & may have the property
of commuting with the subspaces %, of the Hil-
bert space % of the considered system. We shall
show that as a result of such interaction the state
vector of the system is able to remain pure only if
it is completely confined to one of the subspaces
% ,. Arbitrary superpositions, with components
belonging to two or more subspaces, shall decay
into mixtures diagonal in the state vectors belong-
ing to the separate subspaces. This decay is caused
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by the establishment of the correlation between the
quantum system . and its environment &. More-
over, as long as the environment-system coupling
remains stronger than the coupling introduced by
the observer attempting to perform the measure-
ment, the set of the observables that can be mea-
sured on % is limited to those that leave subspaces
2, invariant. Systems which exclude the ex-
istence of certain pure states and which restrict the
class of possible observables in a manner described
above are said to obey superselection rules.”2—%
Below we shall show how the interaction with the
environment can induce such rules in .. Once the
superselection rules are imposed on .#, the system
will behave “classically”. Thus, conclusions ar-
rived at here are immediately applicable to the
problem of measurement. Using . rather than
the “correlated pair of system and apparatus” of

the previous section is intended to simplify the no-
tation. Furthermore, it is worth noting that
environment-induced superselection rules can be
employed to justify not only the classical nature of
the apparatus pointer, but apply to a much wider
class of “classical observables” of systems which
are inherently quantum.

Consider the combined Hilbert space of the sys-
tem . and of the environment &:

%{:%y’®%5g. (3.1)

The Hamiltonian generating the evolution of this
combined object is given by some Hermitian opera-
tor defined in 57°,. We shall assume that this
Hamiltonian can be separated into three distinct
components. That is, there are self-Hamiltonians
of the system, of the environment, and there is the
interaction Hamiltonian:

HS= 28, |si)(s,- \ s (3.2a)

HE=2€j|ej>(ej| , (3.2b)
J

HSE:E?’U Isid(si| ® [ej){e; | +2 32 3 3 zaii’jj’|si><si’ | ® [e)(ej | . (3.2¢)
ij iy

We shall consider only the evolution due to the di-
agonal part of the interaction Hamiltonian. Hence,
from here on, H SE will always denote

HSEZE'}/U[S,'>(S,'\ ®|e]>(e]| . (3.2d)
ij

Setting A=0 is an idealization of the situation
when the diagonal H3E is much greater than the
off-diagonal part of the interaction. That is, we go
a step beyond saying that A << 1 when the absolute
values of y;; and ;- are comparable. Let us also
note that we assume that the basis of H5C and of
HS do coincide. This condition is a little less
stringent than it may appear at first sight: Both
HS and HSE are likely to be highly degenerate,
which leaves additional freedom in the choice of
the basis.

The assumption of small A is justified in greater
detail by van Hove?® in his discussion of the ap-
proach to equilibrium of quantum systems. Physi-
cally, A << 1 is equivalent to the assertion that the
interactions occurring in the real-world physical
systems destroy phase coherence between the states
of the system on the time scale which is much
shorter than the time scale of relaxation to thermal
equilibrium. In the original calculations of irrever-

[
sibility the effect of the diagonal part of the in-
teraction Hamiltonian was taken into account only
by adjusting the eigenvalues of the self-
Hamiltonian of the system.?®?” This simplified
treatment, justifiable in the derivation of the mas-
ter equation, would have proven to be a major
oversight in the discussion of the measurement
process.

Evolution of the combined system-environment
state vector, which at t =0 was represented by a
direct product

| D(r=0))=|¢p;) ® |¢g)
= [zai |Si> ] ® ’2/31!91>] s
i j
(3.3)
can be given immediately as
}q)(t))Iz a,-Bj exp[—lt(8,+61+yu)] |S,'> & |e,> .
(3.4)

To show how the superselection rules arise we cal-
culate

PS()=Tr, | D)) (D(1)] . (3.5

The elements of pS(¢) written in the representation
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p =3 2 py()[s:)(s;]
i j o
are

pit)=|a; |23 | B |*=]a;|?, (3.6a)
K

pij(t)= a;af exp(—it (8; —8;))
X3 | B | *exp(—it (v — 7)) -
k
(3.6b)

The diagonal elements are time independent when
the off-diagonal part of the perturbing potential is
absent.

The off-diagonal elements, in the representation
in which H3E is diagonal, evolve in time in two
ways. They “rotate” trivially due to the factor
exp( —it(8,~—8j)). What is, however, much more
important is that they decay as a result of decrease
of the correlation amplitude:

z;;(t)= % | Br |zexp(—it(1/,~k—’}/jk)) . (3.7

The net effect of this second type of time depen-
dence is to bring down the absolute value of the
correlation amplitude from z;; =1 at the initial

t =0 to z;j << 1 for large t. We shall discuss the
time dependence of z;; in more detail in the next
section. Here let us only note that the average of
the correlation amplitude taken over a sufficiently
long time interval approaches zero:

(Zij>TT—'> 0 5 (38)
unless all the differential frequencies
wg:?’ik"?’jk (3.9

are equal to zero. (Demanding that all =0
would be equivalent to the statement that the in-
teraction Hamiltonian H3F has the diagonal part
equal to zero.) It is convenient to rewrite the
correlation amplitude as

z(H)= %pk exp(—ioft) (3.10)

where p, = | B | 2. As in Sec.II, when the environ-
ment is in the mixture prior to the interaction with
the system, p, express probabilities of finding the
environment in the states corresponding to the dis-
tinct eigenvalues of Hgt. Equation (3.10) remains
valid regardless of whether & is initially in a pure
or in a mixed state.

The average absolute value of z;(¢) can be also
calculated:

1 pt+T
<|Z,'j(t)|2)7~=?f' |Z,'j(t)‘dt

— oSl o).  (3.11)
T—»ook,k,

Above 8(w{ —w}) is the Kronecker delta. Assum-
ing for simplicity that all o} are distinct we find
that the standard deviation A of the correlation
amplitude from the average value, (z,~j ) =0, is

N
A:(( ’Zij ‘2>—<Z,'j>2)1/2: 2 ka . (3.12)
k=1

Average fluctuations from zero are then, in the en-
vironment of N active states and under the as-
sumption that all p; are approximately equal,
given by

A~1/VN . (3.13)

Large environments can effectively damp out
correlations between those states of the system
which diagonalize Hy".

This last remark brings us back to the discussion
of the environment-induced superselection rules.
We have proved above that the environment will
destroy correlations between the states which corre-
spond to different eigenvalues of H3F. Let us
stress that there may be many eigenvectors which
correspond to the same eigenvalue y,;. These vec-
tors span a subspace &, of the Hilbert space of
the system. Although the whole Hilbert space of
the system can be reconstructed from such sub-
spaces, it does not, in practice, admit pure states
which belong to more than a single %, at the
same instant. This fact is the ultimate source of
the environment-induced superselection rules. As a
result, 77, is a direct sum of the component sub-
spaces:

=D, (3.14)
n

and all pure states belong to one, and only one of
#,. Moreover, as long as the coupling with some
external apparatus does not by far exceed the
values of y;; in H SE, the system may not be
prepared as or measured in the state which does
not remain invariant under the influence of the in-
teraction with the environment. Thus, only these
observables which leave every &, invariant are ad-
mitted: A is an observable on a system . interact-
ing with the environment & if and only if

| @n ) EXHy = A |, ) EH, . (3.15)
The above two conditions, Eqgs. (3.14) and (3.15),
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are equivalent to a more formal definition of the
superselection rules.?*%

It is tempting to speculate that the well-known
charge, and possibly other known superselection
rules,?>?* are in fact induced by the Hamiltonians
that are so strong, that the time scale of decay of
the pure state not abiding by them into a mixture
is beyond our limits of detection, and the measur-
ing Hamiltonian which could prepare a superposi-
tion of different “forbidden” states is so difficult
to design, that we regard them as rules “in princi-
ple” rather than only “in practice.”?®

The pointer observable A can now be defined as
any observable measurement which allows us to
precisely determine the subspace 5, containing
the state of the system. Therefore, if P, are the
projection operators projecting onto respective sub-
spaces #,, and {A,} are all real and distinct, i.e.,

Ay=Ay=>n=n'",
the pointer observable A is given by

A= AP, . (3.16)

The projection operators can be constructed so that
they are diagonal in the basis { |s;)}, which diago-
nalizes H3F. Therefore, A commutes with H SE,

[A,HE]=0. (3.17)

Yet, the interaction of the environment with the
system establishes a correlation of much the same
kind as the correlation between the system and the
apparatus. One can therefore conclude that the en-
vironment acts as a higher-order apparatus, which
performs nondemolition measurement on the state
of the system, and consequently destroys coherent
superpositions. The eigenbasis of the pointer ob-
servable, determined up to the inherent degeneracy
of IA\, shall be called the pointer basis.1*

The eigenvalues of the self-Hamiltonian HS will
be, usually, highly degenerate. The eigenspaces
s, corresponding to distinct eigenvalues §; can ei-
ther (a) contain, (b) be identical with, or (c) be con-
tained by the eigenspaces of the superselection ob-
servable A:

(a) Hs, D n (3.18a)
(b) X5, =, (3.18b)
(c) X5, CHy . (3.18¢)

The above list is exhaustive as long as [HS,H5F ]
=0, as it follows from the commutation relation,

Eq. (3.17). In case (a) the interaction with the en-
vironment will remove part of the degeneracy in
the spectrum of HS. This situation is familiar
from the splitting of levels in atomic physics. In
case (b) the energy levels of the system will be
shifted. In case (c) the state can rotate under the
influence of the self-Hamiltonian HS within the
subspace &, without the loss of coherence.

There are two immediate generalizations of the
above discussion. First, let us note that when the
environment consists of several independent nonin-
teracting systems, it can be described by the tensor
product of the Hilbert spaces of the individual
components %, = [[_, ® #°%. In that case the
correlation amplitude can be shown to be a product
of the correlation amplitudes due to these com-
ponents:

29 =[] 220 . (3.19)

Above, each of the components is calculated from
the equation analogous to Egs. (3.7)—(3.10). The
previous section has afforded a simple example of
such situations. The second generalization con-
cerns Hamiltonians (either HS or H3") which have
a continuous spectrum: This generalization is
straightforward in principle, but cumbersome in
practice. We shall comment on it briefly in the
next section.”

One may imagine situations in which the as-
sumptions stated at the beginning of this section
are violated. What observable A of .#, if any, can
be then regarded as a pointer observable? There
are several ways in which our initial assumptions
may break down. There are also several, essential-
ly equivalent approaches one might take in an at-
tempt to define A. One may search for an opera-
tor which, evolving under the full Hamiltonian
HS+ H3E, satisfied best the criterion for the non-
demolition observable [A(#),A(t')]=0.!7 Alterna-
tively, one may search for an observable which has
the longest relaxation time in the eventual ap-
proach of the system to equilibrium. Finally, one
may inquire which observable A will best preserve
the information about some other system .%, with
which . was nonseparably correlated in the past.
The above list is almost certainly not exhaustive.
We shall return to these different ways of looking
at the pointer observable in the last section of this
paper.

Bohr’s complementarity and its relation with the
above discussion is the final subject we want to
bring up in this section. The interaction Hamil-
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tonian HSE is clearly capable of inducing correla-
tions between the system ¥ and some other system
&, which we call here environment, and which, we
have argued, acts much as an apparatus. The same
structure of the Hamiltonian would be used in cou-
pling the real apparatus to the measured system in
an effort to measure A, the pointer observable.
Each Hamiltonian of this kind will then induce, as
we have shown above, certain superselection rules,
which may prevent other Hamiltonians, measuring
other observable I, from yielding a definite result.
It is not difficult to show that the measurements of
A and T will interfere with each other if

[A,T]5£0. (3.20)

For, it is clearly impossible to have the same quan-
tum system obey two distinct and mutually ex-
clusive superselection rules. This mutual exclusion
is responsible for complementarity, and related to
the principle of indeterminacy.’**!

IV. DECAY, FLUCTUATIONS, AND
THE RECURRENCE OF CORRELATIONS

The physical content of Eq. (3.10) for the corre-
lation amplitude can be best understood in terms
of the following geometrical analogy: Each of the
individual contributions, p; exp( —iw{t), is a vector
rotated by the phase

P =it
on a two-dimensional complex plane (see Fig. 3).
At an arbitrarily chosen time instant individual
vectors point in random directions. The problem
is then to evaluate their sum. Clearly, this is a

two-dimensional random-walk problem with the re-
striction on the total length of the path:

N
k=1

This random-walk analogy is the intuitive reason
for the standard deviation formula, A~N ~!/2, of
the previous section. We shall return to the discus-
sion of the correlation amplitude later on in this
section. Before, let us explain why zY(z) is so
closely related to the environment-induced super-
selection rules.

The strictness of the environment-induced super-
selection rules can be, at least in principle, verified
in the experiment in which one tries to determine
the degree of superposition between the two states
[i) and |j), which belong to two distinct sub-

—_—

FIG. 3. Various contributions to the correlation-
damping factor

N
z(t)= 3, pyexp(—io,t)
K=1

and the loss of coherence between them which is re-
sponsible for the decay of correlations between the
distinct eigenstates of the pointer observable is shown
at three different time instants. Individual contribu-
tions, prexp( —i@y ), where @ =wyt, correspond to the
individual vectors on the two-dimensional plane
shown above. The maximal length of z is limited by
the normalization condition, Egzlpk =1. The size of
their sum depends on the distribution py, as well as
on whether they add in phase or out of phase. At

t =0 correlation amplitude is, of course, z=1. At an
arbitrarily chosen 7 >>0 the phases between the contri-
butions can be thought of as random, unless {w,} are
related in a particular manner. Individual vectors
point in random directions, and the problem reduces
to a two-dimensional random walk with the probabili-
ty of the size of the individual steps given by the dis-
tribution of probabilities py and with the restriction
that the total path should equal one. Small fluctua-
tions can be therefore treated using the theory of ran-
dom walk. For a large class of {p,} the distribution
of small fluctuations is approximately Gaussian with
the standard deviation A given by A= 33 _ pi?, as
for any random-walk problem. Large fluctuations,
where 1 — |z |>=€ << 1 are less likely than for a
Gaussian distribution because of the restriction on the
total length of the path of the random walk.

spaces %; and #; of 7 ,. For example, one
could prepare two ensembles of system .% in a
pure state:
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[iY+|jN/vV2.

Members of one ensemble shall be kept completely
isolated, to provide a comparison standard. Sys-
tems in the other ensemble shall be allowed to in-
teract, starting at ¢t =0, with the environment &.
For our purpose it suffices to characterize & by
the distribution of p;’s and by the interaction
Hamiltonian H (S,F‘. Let us moreover suppose, for
simplicity, that we are dealing with the case when
both |i) and |j) belong to the same eigenvalue of
the self-Hamiltonian of the system, (i | H5|i)
=(j | HS|j) [the case classified as (3.18a) in the

| +)=( (4.2a)

|

1
2
1
2

Above we have recognized that z;; =zj;.

Deviation from the completely random situation
when there is a 50% probability of the system be-
ing in the state | + ), and a 50% probability of a
system being in the state | — ), is the evidence of
superposition between states |i) and |j). It is of
course directly related to the real part of the corre-
lation amplitude, as Eq. (4.3) indicates:

> pi coswfit .

Let us also remark that the conclusion of the
above discussion does not change significantly
when

8 =i | H|i)+8;=(j | H®|j) .
It is then not difficult to calculate that the impor-
tant quantity is
Re[exp(—it (8; —8;))z;(1)]
= 3 p cos(8; —8; +wi )t

Additional frequency @7=8; —3&; can be incor-
porated into the differential frequency wy, and so
in the further discussion of fluctuations and re-
currences we do not need to go beyond the situa-
tion represented by Eq. (4.4).

=Rez;= (4.4)

(4.4a)

E(b)=(27r2)_1f_+w f_+w ~2cosbz HJo DrZ)—

where J is the Bessel function. This result can be
further simplified in the limit of large N, providing
that py=p,=+-- =py =1/N, and that

[|i><i1+2ij(t)|i><j i + I])(] 1 +Zﬁ(t)|]')(l‘ l]
{[1+Rez,'j(t)] | +2{(+ | +Im21j(t)| +)(— | +[1—‘RCZ,'J'(I)]
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previous section]. Now at the time ¢ we measure,
employing a measurement Hamiltonian much
stronger than the environment-system coupling
Hamiltonian, whether the system is in the state

| +), or in the alternative state

| =)=(|i)=|jN/V2. (4.2b)

The isolated ensemble will yield, at any time, in
100% of the cases result | + ). What shall be the
result for the systems coupled with the environ-
ment? Presence of the system-environment interac-
tion will cause the density matrix of the system to
be, in general, in a mixed state,

| =)= | +Imz() | =)+ |} .
4.3)

|

Two related, but distinct questions can now be
posed. First, one may inquire how often will the
correlation amplitude assume certain value b
(be[—1,1]). Second, one may ask what is the
distribution of values assumed by r;;(2), if 7;(¢) is
sampled at arbitrarily chosen time intervals. We
shall give now the answers to both of the above
questions.

The first question leads us to consider the roots
of the equation

> pi coswxt —b =f(t)—b =0 .

(Above, and in the calculations below we omit
cumbersome and always the same indices i,j.) The
question: “How often, on the average, do fluctua-
tions of size b occur?” is really the question about
the average number E (b) of roots of Eq. (4.4) for
given b. When N;(b) gives the number of such
roots in the interval (0,7, E(b) can be defined as

E(b):TIim Nr(b)/T . (4.6)

(4.5)

Kac* has considered the distribution of roots of
an almost-periodic function f(¢) defined by Eq.
(4.5), under the assumption that all the frequencies
o, are linearly independent. He was able to show
that

HJo[Pk(Z +aor™m)'?] ddndz , 4.7)
k=1

=

Jim NI 2 ont=0?,

N—-> «o

(4.8)

n=1
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N
lim N72 Y w,*=0. 4.9)

N> o n=1

Then Kac shows
E(b)~wm %exp(—b*N /2) . (4.10)

This formula breaks down, of course, before b
achieves values close to 1 because of the normali-
zation condition Eq. (4.1). Moreover, the assump-
tions of equal p;’s as well as additional conditions,
Eqgs. (4.8) and (4.9), make direct application of Eq.
(3.10) to more realistic and physically relevant situ-
ations all but impossible. It is, nevertheless, worth
stressing that the qualitative features encountered
under this very special set of assumptions are like-
ly to reemerge in real-world situations. In particu-
lar, in the limit of large N, fluctuations that depart
significantly from A~ N ~!/2 are going to be
exceedingly rare.

This conclusion is confirmed by the answer to
the second question concerning the distribution of
the values of f= Y picosgy, where g =wit. We
shall show that under many plausible conditions
this distribution is normal:

p(f)=0"'2m) " 2exp(—f2/20%) 4.11)

and that the standard deviation is given by the
equation

N 172
o= lim |3 3 p’
N> x k=1
=A/V2. (4.12)

To argue this we employ the classical limit
theorem of the theory of probability.> Behavior
of random variable X which itself is a sum of ran-
dom variables x;: X=~_, x; is the limit of
large N given by the normal distribution providing
that the so-called Lindeberg condition is fulfilled.
In our case it suffices to demand that the largest
pr will uniformly approach zero as N increases to
infinity:
Nlim max(py)=0. (4.13)
If that is true, then the probability
N
Prob |By~' 3 prcosgy <X
k=1

X
—@m~2 [ e~% 2z . (4.14)

Above By is the standard deviation of the sum and

is defined by

N 1 2
BN2= 2 T?T fO (prcospy )2d¢k
k=1

=3’ (4.15)

Therefore, p (f) can be expected, for large N, to be
reliably approximated by the normal distribution,
Eq. (4.11).
The standard deviation of o of Eq. (4.11) is

given by

ol= Jlim By . (4.16)
When Eq. (4.13) holds one can expect that o* can
be written, for large N, as

N
’=5 3 pl=AN, 4.17)
k = 1
where A2 characterizes distll‘ibution of py’s. Itis
possible to show that A?> 5, where the equality
applies only if all p; are the same. Using Eq.
(4.17) one may now rewrite Eq. (4.11) as

P ()=AQ2mN)2exp(— f2N /2A2) . (4.18)

For large N, one can show p (f) approaches Dirac’s
8 function:

Jim py(N)=8(/) . (4.19)

We conclude that as the size of the environment
correlated with the quantum system in question in-
creases, the superselection rules are less likely to be
violated, and the correlation terms in the density
matrix approach zero with the increase of N. It is
perhaps worth stressing that this decay of correla-
tions does not result in the decay of information;
all the evolutions are generated by Hermitian
Hamiltonians, and are therefore strictly reversible.
The information is never destroyed; it is only dis-
placed.”

Recurrences of correlations and the rate of decay
of z;;() are the next two subjects of this section.
We have already discovered that as the time in-
creases |z;; | decreases to zero on what one may
call a correlation decay time scale. This time of
decay of correlations is followed by a presumably
much longer period during which z;; fluctuates
with the average standard deviation o ~N ~1/2,
How often, if ever, will one encounter a fluctuation
substantially greater than o? Let us answer this
question in stages. First, we note that both z;(z)
and r;;(¢) are almost periodic.?! Therefore, one can
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rigorously show that they return, in the course of
their evolution, arbitrarily close to any value
within their range infinitely many times. In par-
ticular, one can define recurrence time,** or, as
mathematicians call it, translation number T,?!
which for a given almost-periodic correlation am-
plitude z;;(¢) and for a given value of €, 0 <e <<,
shall satisfy the inequality

1— | z;(T.) | * <€ . (4.20)

Existence of recurrence cycles proves that in a fin-
ite system information can never disappear. For
macroscopic environments this time may actually
prove longer than the lifetime of the Universe, i.e.,
than the time between big bang and big crunch.*
More accurate predictions about the recurrences of
the large fluctuations may be obtained from Eq.
(4.7). These recurrences depend, nevertheless, on
the precise distribution of p, and on the values of
w;’s, and we shall not discuss them here.

The case when the spectrum of the interaction
Hamiltonian is continuous rather than discrete can
be readily included in our considerations. In a
way, we have already implicitly approached that
case by taking the N— oo limit in the calculations
above. It is nevertheless important to discuss
briefly decay of correlations induced by the in-
teraction Hamiltonian with the eigenbasis labeled
within the Hilbert space of the environment, 7,
by a continuous parameter. The eigenbasis of both
the self-Hamiltonian and of the interaction Hamil-
tonian within the Hilbert space of the system, 5%,
may be either also continuous or it may remain
discrete as before; the difference between the two
cases is almost entirely notational. For definite-
ness, we shall then consider elements of the density
matrix of the system labeled by continuous indices
u and v:

p(u,v,t) =a(u)a* (v)exp( —it(8, —8,))f (u,v,t) .
(4.21)

The analogy with the discrete case, Eq. (3.6), is
self-evident. As before, the size of the correlation
is determined by the correlation amplitude

fluw,t)= fp(v)exp{—it['y(u,v)——y(v,v)]}dv .
(4.22)

The continuous index v may express, for instance,
the energy of the environment, while y(u,v) is the
eigenvalue of the interaction Hamiltonian:

Viu)® |v)=yu,v)|u)® |v) . (4.23)

The notation can be somewhat simplified if we fix
our attention of a given pair (u,v) and, with the
help of

o”(v)=p(u,v)—y(v,v) , (4.24)
rewrite
f0= [ plov))e My . (4.25)

As for decay of unstable states, f(¢) is a Fourier
transform of a certain probability amplitude.’’
Qualitative behavior observed in the decay of un-
stable states can therefore guide us in the present
discussion. First of all, one may note that when
the spectrum is continuous the correlation ampli-
tude may decay to zero:

lim f(u,v,t)=0 for usv . (4.26)

t— oo

Moreover, the correlation amplitude is no longer
almost periodic; the recurrence time becomes infi-
nitely long, and in this sense the decay of the off-
diagonal elements may be considered irreversible.
These properties of infinite systems—the only
quantum systems endowed with continuous
spectra—have prompted some to claim that a
rigorous collapse of the state vector can be
achieved*! in the limit described by Eq. (4.26).
However, Bell*? has pointed out that this cannot be
a resolution of the measurement problem: In all
physically relevant situations both the time ¢ and
the size of the involved systems are finite, and
therefore exact equality f(#)=0 should not be of
crucial importance. We may add to Bell’s com-
ment that even though f(¢) may approach zero the
information residing in correlations is always con-
served. In course of the Hamiltonian evolution the
information cannot ever be destroyed; it can only
be displaced. In a case of a large environment it
becomes “dissolved” in all the available degrees of
freedom, so that its “density,” represented by f(¢),
decreases. Nevertheless, the total amount of infor-
mation remains always the same.

Qualitative differences between the discrete and
continuous cases can also be discussed in terms of
the geometrical analogy of Fig. 3. Now instead of
a sum of a countable number of discrete steps the
correlation amplitude is represented by a section of
a continuous line parametrized by the continuous
index v. At the initial =0 the local curvature is
equal to zero everywhere, for all v. The line is
perfectly straight. As the evolution progresses, the
line becomes increasingly curved, with the local ra-
dius of curvature proportional to t ~!(dp(w)/



dw)|,. At any finite time this curved line may be
always approximated by a piecewise “‘random-
walk” trajectory. However, because there is no
limit to how small individual steps can become, the
absolute value of their sum may be arbitrarily
small.

Decay of the correlation amplitude is the subject
closing our considerations. As we have noticed be-
fore, there is a formal similarity between the
description of the unstable states and the decay of
the correlation amplitude. In particular, properties
of p(w) play a decisive role in determining the rate
of decay A(t) defined by the equation

df (t)/dt=—A1)f(¢) . (4.27)

The natural question that arises at this point is
whether A =const and the decay is exponential.
Let us first note that in the sufficiently small
neighborhood of ¢ =0 this may never be the case.
For, the decay rate A(¢) is given by

i [ owplav)e Vidy

AMt)= . , (4.28)
fp(co(v))e —ioWitgy,
which, in the limit — 0, is purely imaginary;
M) =i o) . (4.29)

The decay does not start exponentially; it starts
cosinusoidally, as the equation

Sf W/ |,—og=— | [ @Wpledv |£0)
(4.30)

implies. This “slow start” is, in the decay of un-
stable states, responsible for the so-called “Zeno
paradox”*~* also known as “watchdog effect”*¢:
The unstable state, observed sufficiently frequently
by the outside observer, is by each observation
brought back to the f(0)=1 initial condition. In
the vicinity of ¢ =0 the decay is quadratic in time:

1

FO)~1—5(w(v)})?. 4.31)

Therefore, it appears that one can prevent the de-
cay of the unstable state by watching it sufficiently
closely.*3—46

Finally, let us add that the requirement of an ex-
ponential decay would put rather stringent condi-
tions on p(w). It may nevertheless prove that the
-distributions p(w) and functions w(v) conspire as
to make f(z) exponential for a large range of phys-
ically important values of .
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V. DISCUSSION

Minimizing the loss of information is the key
concern in the design of experiments and appara-
tuses. There is, therefore, something deeply para-
doxical in the generally accepted—see, e.g., Refs. 4,
5, 8—11, and 29— 31—opinion according to which
the destruction of information must be invoked in
order to explain the second stage of the measure-
ment process. Yon Neumann, in his classic
analysis of the reduction of the state vector, was
first to formulate this view.* It has since become
customary to identify correlation terms as a source
of all problems of measurement theory, and the
unitary, information-conserving evolutions as the
greatest obstacle on the way to a satisfactory inter-
pretation of the act of observation.

Von Neumann gave his analysis of the quantum
measurement a few years before Einstein, Podol-
sky, and Rosen showed, in a celebrated paper,
consequences of the fact that in quantum mechan-
ics the wave function representing a combination
of two correlated systems can be reexpressed in
many different bases. Therefore, they concluded
that none of the systems can be said to be in a de-
finite state.*’ The observable that one will decide
to measure on one of the two systems will deter-
mine the set of states the second system can as-
sume. The outcome of the first measurement will
unambiguously fix the state of the second, yet-
unmeasured system. This phenomenon,known as
the “nonseparability paradox” is of direct signifi-
cance for the correlated pair of quantum apparatus
and measured system, considered by von Neumann
in his analysis. For, as we have argued in Sec. II
of this paper, quantum correlations allow one to
determine the to-be-measured observable already
after the interaction of the apparatus with the sys-
tem has occurred. In particular, one could use this
phenomenon to measure spin in the direction of
the x axis with the help of the reversible Stern-
Gerlach apparatus with all the field gradients
directed along the z axis.” Moreover, one could
modify Einstein’s version of the double-slit experi-
ment so that the state of the photon approaching
the final photographic plate will depend on wheth-
er it was the momentum or the position of the
double-slitted screen which was registered already
after the photon has passed through it.** Thus, the
EPR “paradox” proves that even after its interac-
tion with the measured system has been completed,
the isolated quantum apparatus cannot “know” be-
tween which states of the system the measurement
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is going to distinguish.

Throughout this paper we have argued that the
two problems of measurement—the apparent decay
of information in the course of the reduction of
the state vector and the choice of the measured
observable—can be solved in a single stroke, by
recognizing that the apparatus is an open system,
interacting with the environment. Formally, the
resolution is accomplished by correlating the state
of the apparatus with the state of the environment,
and then by tracing out the environment. The re-
sulting density matrix describing the correlated
apparatus-system pair will be, to an excellent accu-
racy, diagonal in the pointer observable of the ap-
paratus. In the real-world apparatuses the role of
the environment will be usually assumed by a part
of the apparatus setup itself.’

The fundamental question that can be raised at
this point concerns the “legality” of invoking open
systems as apparatuses. One might have hoped.
that the reduction of the wave packet occurs al-
ready in closed systems. Why should contact with
other physical systems be necessary? Destruction
of the information contained in the off-diagonal
terms of the density matrix, even though important
in the second state of the measurement process,
provides no clue to the answer to the above ques-
tion. The choice of the preferred pointer observ-
able does: One may argue that quantum observable
remains undefined until it is defined operationally,
with respect to other physical systems.* If the ob-
servable is defined with respect to the environment,
the system (or the apparatus endowed with this ob-
servable) must establish a correlation, must in-
teract, with the environment. It is difficult to
overlook the analogy between the operational de-
finition of “observables” in Einstein’s theory of re-
lativity and the approach which must be adopted
in the operational interpretation of quantum-
mechanical observables: There, the Michelson-
Morley experiment forced one to abandon the idea
of the absolute space filled with an ether, in which
light waves were to propagate, and use light signals
as basic entities, propagation of which defines rath-
er than is defined by the spacetime. Now the
Einstein-Podolsky-Rosen experiment challenges us
to abandon the idea that the systems are endowed
with immutable, absolute properties between which
correlations may exist and forces us to consider
correlations as basic entities, existence of which de-
fines rather than is defined by the properties.

Relativity of the properties of quantum systems
is the key new concept arising in the context of

environment-induced superselection rules. Let us
also briefly consider other issues which are impor-
tant for the understanding of the role of the en-
vironment in the process of measurement. The
first of our concerns is the application of
environment-induced superselection rules in prac-
tice. Irreversibility and its place in the measure-
ment scenario based on the environment-induced
superselection rules is the subject of the second
comment. Amplification and the sense in which it
enters into our considerations will be the last, but
possibly most important of our concerns: We shall
argue that the environment provides multiple
records of the outcome of the measurement, and
this process “fixes” the to-be-recorded observable.

A simple model in which decay of the off-
diagonal elements of the density matrix is afforded
by the “dephasing” relaxation phenomena, which
are encountered in nuclear magnetic resonance as
well as in some quantum optics experiments.’®>!
There one can show that the off-diagonal elements
of the density matrix decay on a time scale T,

p,-j(t)=p,~j(0)exp(—t/T2) , (5.1

which can be much shorter than the time scale T
on which diagonal elements approach equilibrium
distribution:

pii(t)=p;i( )

+[pii(0)—p;i(o)]exp(—2/Ty) . (5.2)

When T, << T, projection operators appearing
on the diagonal of density matrix p;; define the
pointer basis: The record contained in this basis
will be preserved for t < T'{. The physical mecha-
nism responsible for this behavior—as shown by
Harris and Stodolsky?® on an example where p de-
scribes a chemical molecule with two possible
chiralities—can be based on the interaction be-
tween the system and the environment. Such in-
teraction results in the environment-induced super-
selection rules, and is reminiscent of the model dis-
cussed in Sec. II of this paper.

The position of the macroscopic pointer can be
also regarded as an approximate pointer observable:
It is clearly capable of leaving imprints on a typi-
cal environment. This can be traced back to the
fact that typical interaction potentials depend on
the distance and hence force the environment to
monitor the position of the pointer. One should
remember, however, that position is never an exact
pointer basis—at least not in terms of our idealized
criterion that the pointer observable should be an
exact nondemolition observable of the system: The
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self-Hamiltonian of any system will always contain
HS%=9%/2m, which does not commute with

H SE =V(T). Moreover, one can imagine situations
(realized, for example, in solid-state physics) where
V(T) is periodic and eigenstates with definite wave
vector, and therefore, completely undetermined po-
sition diagonalize total HS+HSF. Nevertheless,

for a macroscopic (i.e., sufficiently large) quantum
|

system H3E will be usually aperiodic and suffi-
ciently strong to force the position T to be an ef-
fective pointer observable. An interesting way of
looking at this problem was already suggested
some time ago, but published only recently by
Wigner,'? who argues that the density matrix
representing the state of an object should be first
expressed in terms of the moment expansion:

p=pX,Y,Z, L0, 21, L 135+ s L35: L3100+ XY, 2 L, L1, Loy L5 L) (5.3)

Above X,Y,Z are the coordinates of the center of
mass, while £, .£5y,. . . are the usual multipole
expansion moments calculated with respect to the
mass center. Next, Wigner suggests that “It is
reasonable. . .to add to the [usual von Neumann
equation] other terms which decrease the off-
diagonal elements of p and to write”

ifidp /At =[HS,p]1—i# Y €/(L 1y — L1 )P -
ILm

(5.4)
HS is the self-Hamiltonian of the considered sys-
tem, while €; depend on the environment but
“ ... their effectiveness should decrease with in-
creasing [ ... as/ ~2/4" where a is a characteris-
tic length.”

Little is known about the properties of the solu-
tions of Eq. (5.4). Clearly, it would be difficult to
expect it to be universally valid—after all, there is
no universal environment: Moreover, arguments
that lead to Eq. (5.4) seem to imply that the en-
vironment should actually alter the structure of the
energy levels or perturb the system in question in
some sense.'* We have seen that this is not
necessary—the state of the system may decay into
a mixture not because it is perturbed, but because
it is recorded by the environment. The interest in
Eq. (5.4) stems rather from the fact that it has cer-
tain symmetries—it is a so-called “Galilean
invariant”—which lead one to believe that it may
be approximately valid under a great many cir-
cumstances. If this hope could be substantiated by
the experiment, Eq. (5.4) could prove truly useful.

Irreversibility is sometimes invoked as a justifi-
cation for the reduction of the wave packet. While
the connection between the indelibility of the
records resulting from the measurement process
and the second law of thermodynamics is undeni-
able, there is also little doubt that the explanation
of one in terms of the other can be circular,” and
usually avoids the really deep question: How can
one reconcile either of them with the unitarity of

[
quantum-mechanical evolutions? We have invoked
environment, and the transfer of information from
the apparatus-system object to the environment-
apparatus correlations as the ultimate cause of the
apparent wave packet collapse. Can one under-
stand microscopic origins of the second law of
thermodynamics in this manner? In a many-body
system of a finite, if large size relaxation of the
system into equilibrium on the relatively short time
scale can be understood as a consequence of the
correlations that form between its various com-
ponents. From the viewpoint of the observer such
many-body system can be perceived, prepared, or
utilized only a “piece at a time,” one subsystem
after the other. Therefore, the information
relevant for him resides in the separate “bodies” of
the many-body system: He cannot effectively use
the information hidden in the interparticle correla-
tions. This can be thought of as a consequence of
a superselection rule which forces us to regard the
Hilbert space of the many-body system as a direct
sum of the Hilbert spaces of its components:

y?/: I,
n
while the evolution Hamiltonian induces rotations

which occur in the much larger product Hilbert
space

=1 ®, .
n

The total information /—a constant of motion
under the unitary evolution—is given by

I=In(dim(5# ,))+Trplnp . (5.5)

The information residing in the nth subsystem is
given by

I, =In(dim(#,,)) + Trp,Inp, , (5.6)

where p,, is the density matrix of the nth subsys-
tem, and can be obtained from p, the total density
matrix, by a partial trace. The total information
residing in the subsystems is equal to
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s=31I,, (5.7)

where .# can be regarded as negentropy. On time
scales much smaller than the Poincaré time scale,
# will decrease whenever at ¢t =0 the many-body
system was prepared or measured: it has to be
measured subsystem after subsystem, and hence .#°
has increased in the course of the measurement. In
a sense, one can maintain that the many-body
structure of the large system provides a natural
coarse graining, and can be utilized much in the
same fashion as the Gibb’s original concept.
Moreover, its application in quantum mechanics is
more natural than in classical mechanics: First, in
quantum mechanics the many-body structure of
the system provides a natural definition of coarse
graining. Second, the state of the individual
bodies—individual “grains” in the phase space—
becoines indeed indefinite in a quantum system.
Thus, the increase of entropy in quantum systems
can be regarded not only as not in contradiction
with, but almost as a consequence of the conserva-
tion of the total information 7.'*

In quantum mechanics recurrences of the state
of low entropy appear even more inevitable in a
closed finite system than in classical physics.*
Following Zermelo one may inquire why all the
systems which are large but finite appear neverthe-
less to comply with the second law of thermo-
dynamics. Boltzmann’s remark pointing to the
duration of the Poincaré cycle provides certainly a
partial answer to this question. We would like to
argue that it is strengthened by the observation
that the idealization of an isolated system is much
more difficult to realize in the context of quantum
mechanics. For, the entropy of a quantum system
increases whenever a system-environment correla-
tion is established. It is therefore reasonable to
contend that a system is “isolated” only when it is
not able to establish any correlations with the en-
vironment over the Poincaré cycle time scale.
Thus, the upper limit on the strength of the
environment-system decreases very rapidly with the
increase in size or in complexity which in turn
cause the increase of the recurrence time of the
system which is to be isolated.

Bohr has often emphasized that the quantum
phenomenon is “brought to a close” only by an ir-
reversible act of amplification. In what sense, if at
all, does the measurement model based on the
environment-induced superselection rules realize
Bohr’s postulate of amplification? To answer this
question we note that already establishment of the
apparatus-environment correlation, the transition

(3, n)@ 4, &) - ,c,|n)

® |4,)® | #,), Eq. (1.1b) and Eq. (1.1c), can be
interpreted as an elementary act of amplification,
provided that | (&, |&,,)|*~8,,. For now both
the apparatus and the environment are correlated
with a state of the quantum system: The informa-
tion about a pointer observable I1=3m, |n){n |

can be extracted from any of them. In this simple
sense the amplification has already occurred. Two
interrelated aspects of this elementary act of ampli-
fication are worthy of special attention. First, we
can claim that the amplification has occurred only
because we treat apparatus and environment as two
distinct systems, which can be “read off” separate-
ly. This remark ties in with the discussion of ir-
reversibility caused by the fact that we perceive
many-body systems as consisting of many subsys-
tems. Second, there is just one basis set { |n)} for
which records of the apparatus and the environ-
ment will always agree: One can therefore argue
that only this observable of the quantum system
can be regarded as truly measured which is record-
ed redundantly, that is, correlated with the state of
many distinct quantum systems.

This last remark brings us back to the key idea
emerging from the discussion of the environment-
induced superselection rules: Correlations between
the properties of quantum systems are more basic
than the properties themselves. This order of im-
portance, in which a correlation—a record of a
property—comes before the property, reverses the
ordinary hierarchy to which one is accustomed
within the realm of everyday experience. It may,
nevertheless, prove to be essential in the deeper
understanding of the seemingly paradoxical
features of the nonseparably correlated quantum
systems. It may also be the only way to further
reconcile the key lesson of Bohr’s interpretation of
quantum theory—“No phenomenon is a phenom-
enon until it is a recorded phenomenon”**—with
the unitarity of quantum-mechanical evolutions.
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