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How much noise does quantum mechanics require a linear amplifier to add to a signal
it processes? An analysis of narrow-band amplifiers (single-mode input and output) yields

a fundamental theorem for phase-insensitive linear amplifiers; it requires such an amplif-

ier, in the limit of high gain, to add noise which, referred to the input, is at least as large
as the half-quantum of zero-point fluctuations. For phase-sensitive linear amplifiers,
which can respond differently to the two quadrature phases ("cosset" and "sin&at"), the
single-mode analysis yields an amplifier uncertainty principle —a lower limit on the pro-
duct of the noises added to the two phases. A multimode treatment of linear amplifiers
generalizes the single-mode analysis to amplifiers with nonzero bandwidth. The results
for phase-insensitive amplifiers remain the same, but for phase-sensitive amplifiers there
emerge bandwidth-dependent corrections to the single-mode results. Specifically, there is

a bandwidth-dependent lower limit on the noise carried by one quadrature phase of a sig-
nal and a corresponding lower limit on the noise a high-gain linear amplifier must add to
one quadrature phase. Particular attention is focused on developing a multimode descrip-
tion of signals with unequal noise in the two quadrature phases.

I. INTRODUCTION AND SUMMARY

The development of masers in the 1950's made
possible amplifiers that were much quieter than
other contemporary amplifiers. In particular, there
emerged the possibility of constructing amplifiers
with a signal-to-noise ratio of unity for a single in-

cident photon. This possibility stirred a flurry of
interest in quantum-mechanical limitations on the

performance of maser amplifiers, ' parametric
amplifiers, ' and, more generally, all "linear am-

plifiers. " ' The resulting limit is often expressed
as a minimum value for the noise temperature T„
of a high-gain "linear amplifier"' ' ':

T„)Ace/k,

where co/2w is the amplifier s input operating fre-
quency. The limit (1.1) means that a "linear am-
plifier" must add noise to any signal it processes;
the added noise must be at least the equivalent of
doubling the zero-point noise associated with the
input signal.

Interest in the limit (1.1) flagged in the 1960's,
mainly because the issue was seen as completely
resolved. (The existence of quantum limits on the

performance of "linear amplifiers" is now dis-

cussed in standard textbooks on noise" and quan-

tum electronics. '
) Contributing to a dwindling of

interest were the difficulty of designing amplifiers
that even approached quantum-limited perfor-
mance and the dearth of applications that demand-

ed such performance. Recently interest has re-
vived' ' because of a fortunate coincidence. The
development of new amplifiers based on the dc
SQUID, which are close to achieving quantum-
limited sensitivity, ' ' has coincided with the
realization that the detection of gravitational radia-
tion using mechanically resonant detectors might
require quantum-limited amplifiers. Indeed,
mechanically resonant detectors might well require
"amplifiers" that somehow circumvent the limit
(1 1) 22

This paper returns to the question of quantum
limits on noise in linear amplifiers. For the pur-
poses of this paper an amplifier is any device that
takes an input signal, carried by a collection of bo-
sonic modes, and processes the input to produce an

output signal, also carried by a (possibly different)
collection of bosonic modes. A linear amplifier is
an amplifier whose output signal is linearly related
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to its input signal ~ This definition of a linear am-

plifier is very broad; it includes, for example, both
frequency-converting amplifiers, whose output is at
a frequency different from the input frequency,
and phase-sensitive amplifiers, whose response
depends in an essential way on the phase of the in-

put. In contrast, previous investigations' ' have
reserved the term "linear amplifier" for what are
here called phase-insensitive linear amplifiers—
linear devices for which a phase shift of the input
produces the same or the opposite phase shift of
the output. The limit (1.1) applies only to phase-
insensitive linear amplifiers.

The reason for introducing this broad definition
of a linear amplifier is the ability to give a unified
account of the quantum limits for all such devices.
An approach introduced by Haus and Mullen al-

lows one to investigate the quantum limits on the
performance of any linear amplifier, no matter
how complex, without specifying any details of its
operation; sufficient are the linearity assumption
and the demand that the amplifier's operation be
consistent with quantum mehcanics. Thus this pa-
per seeks to review previous work, to clarify the
extent of its validity, and to extend it to an
analysis of all linear amplifiers.

The quantum limits obtained here have a very
simple form for a narrow-band linear amplifier fed
with a narrow-band input signal (bandwidth

Af « tol2ir) In this .case the input signal can be

decomposed into its "cos~t" and "singlet" phases-
i.e., the input signal is proportional to
X,coscot+X, singlet =Re[(Xi+iX2)e ' '], where

X] and X2 are the amplitudes of the two quadra-
ture phases (components of the complex ampli-
tude). The signal information is carried by slow

changes of X& and Xz on a timescale r=l/Af.
Phase-insensitive linear amplifiers treat both qua-
drature phases the same; the quantum limit can be
stated in terms of a single added noise number 3,
defined as the noise the amplifier adds to the sig-
nal, the noise being referred to the input and given
in units of number quanta. The precise statement
of Eq. (1.1) is the fundamental theorem for phase
insensitive linear amplifiers:

(1.2)

where 6 is the amplifier s gain in units of number
of quanta. Phase-sensitive linear amplifiers can
respond differently to the two quadrature phases;
one must introduce gains 6] and 6& and added

. noise numbers A& and A2 for both phases. The
quantum limit is expressed as an amplifier uncer

tain, ty principle:

A, A2) —„~ 1 —(G, Gp) (1.3)

Specialized to the case 6~ ——Gz ——6 and

Ai ——-A2 ———,A, Eq. (1.3) reduces to Eq. (1.2). The
content of Eq. (1.3) should be clear: as a general

rule, a reduction of the noise added to one quadra-
ture phase requires an increase of the noise added
to the other phase; for the special case 6]G2 ——1,
however, the amplifier need not add noise to either
phase.

The question this paper addresses can be put in

a more general context. Motivation comes from
consideririg the examples usually given to justify
the position-momentum uncertainty relation for a
particle. These examples fall into two classes: ei-

ther the particle's motion is treated quantum
mechanically (e.g. , a single-slit experiment), in
which case the uncertainty principle follows from
the properties of the wave function, or some
measuring apparatus is treated quantum mechani-

cally (e.g., a Heisenberg microscope), in which case
the uncertainty principle follows from the distur-
bance of the particle's motion by the measuring ap-
paratus. Are both these quantum-mechanical un-

certainties present? When must a measuring ap-
paratus add uncertainty to the quantum-
mechanical uncertainties already present in the sys-

tem being measured? More specifically, when

must a measuring apparatus enforce an uncertainty

principle that is already built into a quantum-
mechanical description of the system being meas-
ul ed?

The analysis given here provides a complete
answer for a measuring apparatus that, incorporates
a linear amplifier as an essential element. The
answer is intimately connected to the amplifier's

gain. Confronted by a signal contaminated only by
quantum noise, one uses an amplifier to increase
the size of the signal without seriously degrading
the signal-to-noise ratio. The noise after amplifica-
tion being much larger than the minimum permit-
ted by quantum mechanics, the signal can then be
examined by crude, "classical" devices without ad-

dition of significant additional noise. Thus
quantum-number gain is a crucial feature of a
measurement. Indeed, the last essential quantum-
mechanical stage of a measuring apparatus is a
high-gain amplifier; it produces an output that we

can lay our grubby, classical hands on.
The quantum mechanics of a narrow-band input

signal implies an uncertainty principle for X~ and

X2 which, if X~ and X2 are given in units of num-
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ber of quanta, takes the form

(~))'(~2)') —„. (1.4)

The quantum mechanics of a narrow-band linear
amplifier implies the amplifier uncertainty princi-
ple (1.3). If there is high gain for both quadrature
phases, Eq. (1.3) guarantees that the noise added by
the amplifier independently enforces the uncertain-

ty principle (1.4). In a real measurement that
yields information about both X~ and X2 (G~,
Gq » 1), the amplifier must add noise, and one
cannot achieve measurement accuracies that have
the minimum uncertainty product allowed by Eq.
(1.4).

The paper is organized as follows. Section II in-
troduces a general abstract formalism for describ-
ing and analyzing linear amplifiers quantum
mechanically. Sections III and IV brutally seize
this formalism and mercilessly beat it to death to
extract from it quantum limits on the performance
of linear amplifiers. Section III focuses on
narrow-band linear amplifiers, analyzed using a
single mode for both the input and the output.
Proven are the fundamental theorem for phase-
insensitive linear amplifiers and the amplifier un-

certainty principle. Section IV gives a multimode
description of linear amplifiers; it generalizes the
single-mode analysis of Sec. III and provides
bandwidth-dependent corrections to the results of
Sec. III. Particular attention is paid to developing
a multimode description of signals that have
unequal fluctuations in the two quadrature phases;
this multimode description yields a bandwidth-
dependent limit on the reduction of noise in either
quadrature phase. Some interesting, but peri-

pheral, results are relegated to appendices. Section
V lays the exhausted formalism to rest with a eulo-

gy to its contributions to the quantum theory of
measurement.

II. QUANTUM-MECHANICAL DESCRIPTION
OF AMPLIFIERS

A. General description

An amplifier is a device that takes an input sig-
nal and produces an output signal by allowing the
input signal to interact with the amplifier's internal
degrees of freedom. I assume that the input and
output signals are carried by sets of bosonic modes
(usually modes of the electromagnetic field); the
remaining degrees of freedom can be either bosonic
or fermionic modes. Thus an amplifier can be
thought of as a collection of interacting modes,

each labeled by a parameter a and characterized by
a frequency to .

I denote the set of (bosonic) input modes by W
and the set of (bosonic) output modes by C&'. There
is no necessary relationship between W and c&:

they can be the same set, they can have some
modes in common, or they can be completely dis-
joint. The set consisting of all modes that are not
input modes is denoted by W. The modes in W
can properly be called internal modes, because their
interaction with the input signal produces the out-
put signal. Notice that W can contain some or all
of the output modes.

Quantum mechanically the population of each
mode is conveniently specified using its creation
and annihilation operators. In the Heisenberg pic-
ture (used throughout the following), the creation
and annihilation operators for mode a evolve from
"in" operators a, a before the interaction to
"out" operators b, b after the interaction. I as-
sume that the "in" and "out" operators have the

+led
trivial e time dependence removed.

The two sets of creation and annihilation opera-
tors obey the standard commutation and anticom-
mutation relations for bosonic and fermionic
modes. Notice that each annihilation operator can
be independently multiplied by a phase factor, i.e.,

(2.1)

without changing the commutation and anticom-
mutation relations. The freedom to make the
phase transformation (2.1) reflects the arbitrariness—IN
in removing the e time dependence.

The operators a a and b b are the number
operators for mode a before and after the interac-
tion. For a bosonic mode, a~ and b~ are "before"
and "after" operators for the mode's complex am-
plitude, measured in units of number quanta. In-
formation about the input signal is contained in
the expectation values and moments of the a, a
for a E,K, and information about the output signal
is contained in the expectation values and moments
of the b, b for a C c&.

In general the out operators can be written as
functions of the in operators:

b =W~~ (ap, ap),
(22)

b =M~ (ap, ap) .

These eUolution equations are not completely arbi-
trary. To be consistent with quantum mechanics,
they must be derivable from a unitary
transformation —i.e., they must preserve the ap-
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propriate commutation and anticommutation rela-
tions.

Completing the description of an amplifier re-

quires specifying an "initial" state for the
system —i.e., a density operator defined with
respect to the in operators. One restriction is
placed on the form of the initial state: the
amplifier's internal modes are assumed to be
prepared in an operating state which is independent
of the input signal. Formally, this means that the
"initial" density operator p for the entire system is
the product of a density operator p~ for the input
modes and a density operator p,~ for the internal
modes (modes in Jr):

p =p,&pop

The input signal determines p&, whereas the
amplifier's actual operating conditions determine
the operating state pop Since I work in the
Heisenberg picture, the system density operator
(2.3) does not change with time.

Worth emphasizing here is the fact the evolution
equations and the operating state are both essential
ingredients for a complete description of an am-

plifier.

B. Linear amplifiers

The preceding description of an amplifier is
exceedingly general and virtually useless. One way
to render it useful is to specialize to the case of
linear amplifiers. This drastic simplification yields
a formalism that is analytically tractable but still
applicable to a wide class of amplifiers.

A linear amplifier is one whose output signal is
linearly related to its input signal, where it is now
understood that the signal information is carried
by the complex amplitudes of the relevant modes,
rather than, for example, by the number of quanta.
Thus the evolution equations for the out operators
of the output modes take the form

b = g (..// pap+W pap)+a, aEC&',
pE Jr'

(2.4)

which is a linearized version of Eqs. (2.2) for
a E c&'. The operators EP~p, W~p, and ~ ~ depend
only on the in operators of the internal modes;
therefore, they commute with the a p, a p for pE Jr.

Equations (2.4) embody a minimal assumption
of linearity; the only relations required to be linear
are the relations between the out output-mode

complex amplitudes and the in input-mode com-
plex amplitudes. Even so, linear amplifiers are
usually not strictly linear. The linearization pro-
cedure that yields Eqs. (2.4) usually requires as-
sumptions about the size of the input signal and
the nature of the operating state.

The operators ~ are clearly responsible for the
amplifier s additive noise —i.e., noise the amplifier
adds to the output signal regardless of the level of
the input signal. It is the fluctuations in the
,~ ~—not the mean values —that are of interest, so
nothing is lost by assuming (a ~),z ——0, where
here and hereafter the subscript "op" designates an
expectation value in the operating state.

Equally clear is a connection between the
amplifier's gain and the operators Mi' ~ and W ~.
These operators' expectation values determine the
gain, and their fluctuations produce fluctuations in
the gain. Gain fluctuations introduce multiplica-
tive noise into the output signal —i.e., noise which
depends on the level of the input signal; such mul-
tiplicative noise inevitably degrades an amplifier's
performance. I am interested in limits on the per-
formance of the best possible amplifiers, so I as-
sume throughout the following that in the operat-
ing state fluctuations in the operators w/P~& and
W p are negligible. These operators can then be
replaced by their expectation values M p= (M~p), z and L p

= (W p),z, and Eqs. (2.4) be-
come the basic linear euolutjon equations

b = g (M pap+L pap)+a, aE6' .
pE Jr

(2.5)

It is now easy to apply the requirement that the
in input-mode operators and the out output-mode
operators obey the bosonic commutation relations
([a,apj =0 and [a,ap] =5 p for a,PEJr; simi-
larly for the out output-mode operators). The re-
sulting unitarity conditions are

(2.6a)

for all a, /3C 6'.
The fundamental equations needed for the

analysis of quantum limits are the linear evolution
equations (2.5) and the unitarity conditions (2.6).
It is worth emphasizing that Eqs. (2.5) are not, in

general, a complete set of evolution equations, be-
cause they give the out operators only for the out-
put modes. Nor, for the same reasons, are Eqs.

0= g (M pLpq LqMpq)+[a, —w p],
p E.E

5~p ——g (M~pMp„L„L p„)+[~,~ pt—j, (2.6b)
@6K
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(2.6) a complete set of unitarity conditions. Equa-
tions (2.5) and (2.6) are, however, necessary condi-
tions for a linear amplifier, and they are sufficient
for the task at hand —an investigation of quantum
limits.

III. QUANTUM LIMITS FOR NARROW-BAND
LINEAR AMPLIFIERS

The restriction to narrow-band amplifiers allows
one to treat the input and output signals as being
carried by single modes; useful, therefore, is a re-
view of some properties of a single bosonic mode.

A. Formal considerations for a single mode

[X(,Xp] =i /2 . (3.6)

The (constant) operators X~ and X2 are the ampli-
tudes of the mode's quadrature phases —i.e., they
give the amplitudes of the mode's "coscot" and
"singlet" oscillations (see Fig. 1). Notice that the
freedom to multiply a by a phase factor,

a =ae (3.7)

[a phase transformation; cf. Eq. (2.1)], is simply
the freedom to make rotations in the complex-
amplitude plane (X~ ——X,cos(p+X2sinq&;

Xz ———X& siny+Xzcosy).
The commutation relation (3.6) implies an uncer-

tainty principle

Consider an arbitrary operator R, which can be
split into Hermitian real and imaginary parts:

R =R)+iR2,
(3.1)

R)—= , (R+R —), R2—= —, i(R —R —).

,
E(t) Xp

XI

Some useful relations are

R =R) Rp +i(R—tRp+R2R)),

, (RR "+R —R)=R ) +R2

[R,R "]= 2i [R(,R—2] .

(3.2a)

(3.2b)

(3.2c)

i,
E(t)

x)

One can define the mean-square fluctuation of R
by

~

bR
~

= , (RR +R R—)—(R)(R )

=(AR() +(bRp) (3.3)

Then the generalized uncertainty principle
b,R

~
b,Rq & —,

~

([R t,Rq] )
~

puts a lower limit on

fbR[:
ibR

i
& —, i([R,R ]) i

(3.4)

a =X) +iX2,

where

(3.5)

The equality sign in Eq. (3.4) holds if and only if
QR& ——AR2 ———,

~

([R,R ]) ', which implies

(R') —(R )'=O.
Consider now a single bosonic mode of frequen-

cy co, with creation and annihilation operators
a,a ([a,a ]=1)and number operator a a. I as-
sume that a and a ~ have the e+' ' time dependence
removed. The annihilation operator is a dimen-

sionless complex-amplitude operator for the mode.

It can be split into its Hermitian real and ima-

ginary parts:

Xi

FIG. I. Graphs of E(t) ~X&coscot+X~sincot versus
time for three states of a single mode with frequency co.
To the right of each graph is a complex-amplitude plane
showing the "error ellipse" of the state. All three states
have (X~ )+0, (X2) =0; ~, corresponds to amplitude
fluctuations and ~& to phase fluctuations. The quanti-
ty E{t)has the harmonic time dependence characteris-
tic of the mode; for a mode of the electromagnetic field,
E(t) could be the electric field. In each graph the dark
line gives (E(t)), and the shaded region represents the
uncertainty in E. (a) A state with phase-insensitive
noise; equal phase and fractional amplitude fluctuations.
(b) A state with reduced amplitude fluctuations and in-
creased phase fluctuations. (c) A state with reduced
phase fluctuations and increased amplitude fluctuations.
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(3.8)

and a minimum for the fluctuation in the complex
amplitude

I
«

I
=(~i) +(~2) & —, (3.9)

The minimum value of
I

«
I

is the half-quantum
of zero-point fluctuations.

A useful characterization of the quadrature-
phase fluctuations is provided by the moment ma-
trix, defined by

with (X2) =0 and (Xi ) »~i,~z. Then the
uncertainty in X& corresponds to amplitude fluc-
tuations of fractional size ~i /(Xi ), and the un-

certainty in X2 corresponds to phase fluctuations
of size ~z/(Xi ) (see Fig. 1). For a state with
phase-insensitive noise, the phase fluctuations and
the fractional amplitude fluctuations are equal and
uncorrelated.

B. Narrow-band linear amplifiers

~„=-,' (x,x, +x,x, ) —(x, )(x,), (3.10) 1. General description

where here and hereafter p, q =1,2. Equations (3.2)

imply

(a') —(a )'=~» —~»+2i~»,

I
«

I
=cr»+o» .

(3.11a)

(3.11b)

A given single-mode state can be represented by an
"error ellipse" in the complex-amplitude plane (see
Fig. 1). The center of the ellipse lies at the expec-
tation value (Xi+ixi ) of the complex amplitude,
the principle axes are along the eigenvectors of 0.

&q,
and the principle radii are the square roots of the
eigenvalues of Opq.

Crucial to the subsequent analysis is the notion
of a single-mode state that has phase-insensitive
noise —i.e., a state whose associated noise is distri-
buted randomly in phase. The mode is in such a
state if 0&q is invariant under arbitrary phase
transformations (3.7) (arbitrary rotations in the
complex-amplitude plane). This means that the
fluctuations in X~ and X2 are equal and uncorre-
lated (circular error ellipse; see Fig. 1):

Focus attention now on a narrow-band linear
amplifier fed with a narrow-band input. The input
and output signals are nearly sinusoidal oscillations
at frequencies ~1 and coo, both with bandwidth
hf =Aco/2' &&coI/2m, coo/2' The s. ignal infor-
mation is encoded in slow changes of the complex
amplitude on a timescale x=1/Af (e.g., amplitude
or phase modulation).

In this situation one can specialize to a single in-
put mode (a=I) and a single output mode (a=a).
These "modes" should be interpreted as having
duration r=l/Af, the maximum sampling time
consistent with the bandwidth. Various quantities
below are characterized as having units of "number
of quanta. " The number of quanta in the input
mode, for example, is related to the input power
per unit bandwidth HI by (aI ciI ) = HID fr/ fxo

=HI /fico. Thus the phrase "measured in units of
number of quanta" should be interpreted as mean-

ing "measured in units of an equivalent fiux of
quanta per unit bandwidth. "

For single-mode input and output, th'e linear
evolution equations (2.5) become

0. = —,
I

«
I 5~q, (3.12) bo =Mar +LQI + (3.14)

or, equivalently, that

(")—(.)'=0. (3.13)

(unnecessary subscripts are omitted), and the uni-

tarity conditions (2.6) collapse to a single equation:

Examples of states with phase-insensitive noise in-
clude the coherent states

I p )—:exp(pa
—)M*a)

I
0) (p is a complex number;

I
0) is the

ground state), for which (a ) =p and
I
«

I

and the thermal-equilibrium states, for which
(a) =0 and

I

«
I

= —,+(e ~ 1)—
= —, coth(irico/2k' ), where T is the temperature.

Probably the best way to think about fluctua-
tions in X& and X2 is in terms of amplitude and
phase fluctuations. Suppose the mode is in a state

(3.15)

The complexities of a particular narrow-band
linear amplifier are now buried in the single opera-
tor a, which is responsible for the added noise.
Fortunately, for an investigation of quantum lim-

its, the complexities buried in ~ need not be ex-

humed; the only important property of M is the
unitarity condition (3.15), which places a lower
limit on its fluctuation

ll~~ I.,'&-, ll —IM I'+IL I'I «Eq (34)l.
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The rest of this section pursues the consequences
of this observation.

It is convenient to introduce complex-amplitude
components for aI and bo.

al ——X) +iX2,

ho =Y&+iY2 .

(3.16a)

(3.16b)

phase preserving: L =0,
phase conjugating: M =0;

and condition (ii) implies that

(3.17a)

(3.17b)

Keep in mind that Eqs. (3.17) are constraints on
both the evolution equations and the operating
state. An amplifier that is phase insensitive when

Associated with X&+ iX2 and Y& +i Y2 are the in-

put and output moment matrices, denoted by opq0and 0pq e

I now want to introduce the fundamental notion
of phase sensitivity, and to do so, I first define
what is meant by a phase-insensitive amplifier.
The fundamental property of a phase-insensitive
linear amplifier is that when the input signal has
phase-insensitive noise, the output, both in terms
of the signal and the noise, shows no phase prefer-
ence; the only effect of a phase shift of the input is
an equivalent phase shift of the output. This idea
is formalized by defining a phase-insensitive linear
amplifier as one that satisfies the following two
conditions.

Condition(i) The .expression for (bo ) is invari-

ant under arbitrary phase transformations

tp=tpt ——Oo (phase preserving -amplifier) or

ip=tpt ———Ho (phase conj uga-ting amplifier)
Condition (ii ) If the i.nput signal has phase-

insensitive noise, then the output signal also has
phase-insensitive noise, i.e.,

(bo ) =(bo)
Condition (i) means that a phase shift of the in-

put signal produces the same (phase-preserving) or
the opposite (phase-conjugating) phase shift of the
output signal [see Eq. (2.1) and recall (a ),~=0],
and condition (ii) means that the noise added by
the amplifier is distributed randomly in phase [see
Eq. (3.13)]. An amplifier that fails to meet condi-
tions (i) and (ii) is called a phase sensitive linear-
amplifier

The consequences of these two conditions are
easy to work out. Condition (i) implies that

prepared in a particular operating state might be
phase sensitive when prepared differently.

The output of a phase-sensitive linear amplifier
depends in an essential way on the phase of the in-

put. In particular, its response picks out a pre-
ferred set of input quadrature phases. A rotation
in the input complex-amplitude plane can choose
the preferred X] and X2, and a rotation in the out-

put complex-amplitude plane can choose Y] +i Y2

so that Y& responds to the preferred X& and Y2 to
the preferred X2. Specifically, appropriate phase
transformations cpi and Oo [Eq. (2.1)] can always

bring Eq. (3.14) into a preferred form where M and

L are real and positive. The evolution equation
(3.14) then splits into the following equations:

Yi ——(M+L)X, +z i,
Y, =(M L)X,+—,~, ,

(3.18a)

where

(3.18b)

One can now define gains for the preferred qua-
drature phases,

G i
= (M +L ), G2 = (M L)—(3.19)

and a mean gain

G= —,(Gi+Gq)= ~M + ~L
~

(3.20)

all gains being measured in units of number of
quanta [(power gain)z ——(coo/col )G&]. The gain of
a phase-insensitive amplifier is independent of
phase (G =Gi ——G2).

2. Characterization of noise

When the equations are written in preferred
form, the uncertainties in the output quadrature
phases have the simple form

(b, Yp) =Gp(~~) +(Aa p),p', (3.21)

the first term on the right being the amplified in-

put noise and the second term the noise added by
the amplifier.

Only one number is needed to characterize the
noise added by a phase-insensitive amplifier, be-

cause Eq. (3.17b) implies (b,a, ),~=(b„~ z)„~. For
an arbitrary input signal, the total mean-square
fluctuation at the output of a phase-insensitive am-

plifier is given by
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I
hbp

I
=G Ideal I

+ Ibm I, (3.22)

The added noise is conveniently characterized by
an added noise number

A —=
I

b,a I,p'/G, (3.23)

which gives the added noise referred to the input
and measured in units of number of quanta.

For a phase-sensitive amplifier one defines added
noise numbers for both preferred phases:

A~ = ( b,a ~ ),p /G~ (3.24)

where y, =0, and y2 ——0 if
I

~
I

&
I

~
I

or @2=~
if

I
M

I
& I

I.
I (o~~ =A& ). When the equations

are written in preferred form, the input and output
moment matrices are related by

0
~pq (GpGq)

—e (~,q+~,q) (3.26)

[Eqs. (3.18)]. A phase-insensitive amplifier can be
compactly defined by the requirements G =G

~

= G2 (phase-insensitive gain) and cd~
———,A 6~~

[random-phase added noise; cf. Eqs. (3.17)].

3. Examples

The term "linear amplifier" is usually reserved
for what are here called phase-preserving linear
amplifiers. Maser amplifiers" and dc SQUID am-

plifiers ' ' are examples of phase-preserving am-

plifiers that can be made to operate near the quan-
tum limit. A phase-preserving amplifier produces
an amplified replica of a narrow-band input signal,
which preserves precisely the input phase informa-
tion.

The types of linear amplifiers distinguished in
this subsection can perhaps best be illustrated by
the simple, but protean, example of a parametric
amplifier. Stripped to its essentials, a paramp con-
sists of two modes, conventionally called the "sig-
nal" (a=s, frequency co, ) and the "idler" (a=i,
frequency co;), which are coupled (by some non-
linearity) via a "pump" at frequency co~ =~, +co;.
The pump is actually a quantum-mechanical mode,
but it is assumed to be excited in a large-amplitude
coherent state, so that it can be regarded as classi-
cal and so that it remains unaffected by its cou-

[Eqs. (3.21)]. More generally, one defines an added
noise moment matrix o&q by

q q"' p &p p q
—(a a +a,x } =(G G )'~'e ' 'o"

pq

(3.25)

pling to the signal and the idler. The pump then
produces a classically modulated interaction at fre-
quency co& between the signal and the idler. The
resulting complete set of evolution equations can
be put in the form

b, =a,coshr+a; sinhr,

b; =a, sinhr+a;coshr,

(3.27a)

(3.27b)

b =a coshr+a~sinhr (3.28)

[cf. Eqs. (3.27)]. Written in terms of the com-
ponents of the complex amplitude, Eq. (3.28) be-

where r is a real constant determined by the
strength and duration of the interaction.

When a paramp is operated in the standard way,
the signal mode carries both the input and output
signals. Then Eq. (3.27a) is the relevant evolution
equation, and the paramp is a phase-preserving
amplifier with G =cosh r and a =a; sinhr. The
paramp could, however, be operated with the sig-
nal mode carrying the input signal and the idler
mode carrying the output signal. Then Eq.
(3.27b) would be the relevant evolution equation,
and the paramp would be a phase-conjugating am-
plifier with 6=sinh r and ~ =a;coshr. In both
cases the idler is the one internal mode, and the
added noise can be traced to the idler's initial
mean-square fluctuations

I

b,a; I,~ .
A parametric amplifier is not usually operated

as a phase conjugator; a formally equivalent device
that is so operated is a degenerate four-wave
mixer. In a four-wave mixer the modes of in-
terest are two counterpropagating electromagnetic
waves, an "incident" wave (input mode) and a "re-
flected" wave (output mode), both with frequency

These two waves are coupled in a nonlinear
medium to two counterpropagating "pump" waves
of frequency ~, assumed to be classical. The evo-
lution equations for the mixer have the same form
as Eqs. (3.27) (Ref. 27); one simply identifies the
signal mode as the incident wave and the idler
mode as the reflected wave. Four-wave mixers
have recently attracted a great deal of attention
precisely because of their ability to produce a
phase-conjugated reflected wave.

An instructive special case of a parametric am-
plifier is a degenerate parametric amplifier, which
results when the signal and idler coincide

1

(co, =co; = —,co& ). The one mode of a degenerate

paramp can be regarded as a simple harmonic os-
cillator, whose frequency is modulated at twice its
fiducial frequency. The one evolution equation is
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comes

Y) ——e "X), Y2 ——e "X2, (3.29)

revealing that a degenerate paramp is a phase-
sensitive amplifier with G&

——G2
' ——e "and ~ =0.

Because ~ =0, an ideal degenerate paramp is
noiseless.

C. Fundamental theorem

1. The theorem

In hand now are the tools necessary to state and
prove the fundamental theorem for phase
insensitive linear amplifiers: The added noise num-
ber A for such an amplifier satisfies the inequality

g & -,
'

(
I+G -' (, (3.30)

where the first and second terms are due to the in-

put and added noises, respectively.

where the upper (lower) sign holds for phase-
preserving (phase-conjugating) amplifiers. The
fundamental theorem is a trivial consequence of
Eqs. (3.23), (3.4), (3.15), (3.20), and (3.17a), the
crucial equation being the unitarity condition
(3.15). Rewritten in terms of the output noise, the
fundamental theorem becomes

I
~bo I'=G(

I
~al

I

'+~»
z G+ i I

G+1I

(3.31)

The fundamental theorem implies that a high-
gain phase-insensitive amplifier must add noise to
any signal it processes, the added noise being at
least the equivalent of an additional half-quantum
of noise at the input. In contrast, a passive
(G =1) phase-preserving device need not add any
noise. For a phase-preserving attenuator (G & 1),
the fundamental theorem guarantees that the added
noise is large enough to ensure

~

b, bo
~

The added noise number is a particularly con-
venient way of characterizing the noise added by a
phase-insensitive amplifier that operates near the
quantum limit. It is independent of how much
noise is carried by the input signal; indeed, it is in-
dependent of whether the input signal has phase-
insensitive noise; it is not, however, conventional.
Instead, one usually characterizes an amplifier's
performance by a noise figure or a noise tempera-
ture. To define these quantities, one assumes
phase-insensitive input noise, and one associates
with the input noise a temperature T defined by

~
Eat

~

= —, coth(fxot /2kT). The noise figure I' is
the ratio of the input (power) signal-to-noise ratio
to the output (power) signal-to-noise ratio

cobol'/G [sat/ =1+(A//&at/ )

(3.32)

and the noise temperature T„ is the increase in in-

put temperature required to account for all the
output noise referred to the input

—, coth[fico lt2(kT+T„)]—:bbp
~

IG =2+ —, coth(iricvt/2kT) . (3.33)

Fp&2+ G ' —+ 2,
%col 3+G

—~

T„p) ln
k 1+G-' k ln3

(3.34a)

(3.34b)

where the figures on the right are the limits as
G~ oo. Notice that if kT && fuut, T„=(Picot Ik)A

Both F and T„depend on the amount of input
noise. To get quantities that characterize the
amplifier's noise only, one can specialize to the
case of minimum input noise (

~
Eat

~

= —,; T=O).
The fundamental theorem (3.30), when written in

terms of the resulting noise figure Fo = 1+23 and

noise temperature T„o =Picot/k ln(1+3 '), be-
comes (for G & 1)

I

satisfies the inequality T„&(fiat/2k)(1+6 ') for
G) 1.

Previous investigations ' ' that give an exact
limit on T„p have gotten the result T„p) Acyl /k ln2
for G » 1, instead of Eq. (3.34b). In Weber's

analysis of masers and in the analysis of
parametric amplifiers by Louisell, Yariv, and Sieg-
mann, this discrepancy is really a matter of con-
vention; it arises from defining T„p by

(e ' "'—1) ' =A + —,, instead of

(e " —1) =3—i.e., the half-quantum of
%col /kT„O

zero-point noise is left out of the left-hand side of
Eq. (3.33). The discrepancy is ultimately due to
the fact that noise temperature is not a very useful
quantity when kT/Acuz & 1. These difficulties can
be avoided by sticking to A as the way of charac-
terizing the performance of amplifiers that operate
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near the quantum limit.
In the case of Heffner's general analysis of

(phase-preserving) linear amplifiers, the discrepan-

cy is more serious. His use of the relation
(&f)r= —, , instead of (bf)r= I, leads to the in-

correct conclusion that, for 6 yy 1, the added
noise must be at least the equivalent of a full quan-
tum at the input, instead of just a half-quantum.
Translated into a noise temperature, this error ac-
counts for the discrepancy between ln3 and 1n2.

2. Review of past work and discussion

Previous analyses of quantum noise in phase-
insensitive linear amplifiers fall into two classes.
In the first class are analyses ' ' that, like the
one here, derive the fundamental theorem from a
set of linear evolution equations and the corre-

sponding unitarity conditions. Indeed, the analysis
here is patterned after the pioneering work of Haus
and Mullen. Takahasi's later analysis' is similar

to, but more restrictive than that of Haus and
Mullen.

The approach taken here owes much to Haus
and Mullen, but there are improvements in del-

ineating the assumptions required to prove the fun-

damental theorem. Haus and Mullen assume a
linear relation between the in and out creation and
annihilation operators for all modes, a condition
more restrictive than that embodied in Eqs. (2.5) or
Eq. (3.14). In addition, Haus and Mullen suggest
that the fundamental theorem relies on an assump-
tion of time independence —i.e., that the Hamil-
tonian for the amplifier must have no explicit time
dependence. This assumption, which is violated by
all phase-insensitive amplifiers except those that
are both phase and frequency preserving, is re-

placed here by the less stringent requirement of
phase insensitivity. Finally, a distinction is drawn
here between phase-preserving and phase-
conjugating amplifiers, with the result that one ob-
tains different limits for the two cases.

The second class consists of analyses ' that at-
tempt to obtain a quantum limit using only the
X~-X2 uncertainty principle (3.8). The most de-

tailed of these analyses, due to Heffner, is widely
referred to as a general proof of the fundamental
theorem. Heffner's argument, rewritten in X&-X2

language, runs as follows: assume the input signal
is noiseless; show that if the amplifier adds no
noise, then an ideal measurement of the output

complex amplitude allows one to infer X~ and Xz
with (equal) accuracies that violate the uncertainty
principle; conclude that a high-gain phase-insen-
sitive linear amplifier must add noise that is at
least equivalent to a half-quantum at the input.
This argument works precisely and only because it
neglects the input noise required by quantum
mechanics, thereby forcing the amplifier to supply
noise that is equivalent to the neglected input
noise. If X& and X2 are allowed to have uncertain-
ties that satisfy the uncertainty principle (3.8), then
this argument yields no information about the am-
plifier noise. Heffner's argument begs the ques-
tion: why must a phase-insensitive linear amplifier
add noise to an input signal, when the noise associ-
ated with the input signal is already sufficient to
satisfy the uncertainty principle?

How does the analysis here succeed where
Heffner's argument fails? Indeed, there is, at first
sight, a paradox. The fundamental theorem is a
consequence of the unitarity condition (3.15),
which follows from the commutation relation

[bo,bo ]= 1. How does this commutation relation,
which by itself implies only

~

b,bo
~

& —,, manage

to imply in the analysis here the much stronger
1

constraint
~

b,bo
~

& 6+ —, for 6 & I? The answer

is hidden in the innocuous, but fundamental, as-
sumption (2.3) that the initial state of the input
mode and the operating state of the internal modes
are independent and uncorrelated. There are states
of the entire system for which

~

b, bo
~

= —,, but
these states are forbidden because they require that
the input noise and the initial internal-mode noise
be correlated.

This observation penetrates to the heart of the
question of quantum noise in linear amplifiers. In
addition to the input mode, a high-gain phase-
insensitive linear amplifier must have one or more
internal modes [Eqs. (3.15) and (3.17a) forbid
,~ =0 when G & 1], whose interaction with the in-

put signal produces the amplified output in the
output mode. The internal modes must have at
least the quantum-mechanical zero-point fluctua-
tions, and these fluctuations are amplified along
with the input signal to produce a noise —,(G+1)
(6 & 1) at the output. Since the amplified
internal-mode fluctuations and the amplified input
fluctuations are uncorrelated, they add in quadra-
ture to produce the total output noise (3.31).

This situation is particularly clear for a para-
metric amplifier [Eqs. (3.27)], whose only internal
mode is the idler. The idler s irreducible zero-
point fluctuations, which appear amplified at the
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output, are responsible for the lower limit on the
added noise.

D. Amplifier uncertainty principle

For phase-sensitive amplifiers the fundamental
theorem (3.30) is replaced by a more general am-

plifier uncertainty principle, which limits the pro-
duct of the added noise numbers for the preferred
quadrature phases:

( )'' —,
~

+( ) 2) (3.35)

where the upper (lower) sign holds if
~

M
~

& L
~

(
~

M
~

&
~

L
~

). The amplifier uncertainty princi-
ple follows trivially from Eqs. (3.24), (3.2c), (3.15),
and (3.19), the crucial relation again being the uni-

tarity condition (3.15). Notice the similarity be-
tween the amplifier uncertainty principle and the
ordinary uncertainty principle (3.8); notice also that
for phase-insensitive amplifiers Eq. (3.35) reduces
to Eq. (3.30).

The amplifier uncertainty principle implies that,
as a general rule, a reduction in the noise added to
one quadrature phase requires an increase in the
noise added to the other phase. That this can be
useful should be fairly clear. Consider, for exam-

ple, an amplifier such that (G~ Gq)'~ && l. One
can tailor the input so that it has reduced noise in

1

one quadrature phase (~~ && —, ) and so that the

signal information is carried by changes in the am-

plitude of that phase (e.g., amplitude or phase
modulation). One can then design the amplifier so
that it amplifies the phase of interest (G»& 1)
and so that it has reduced noise for that phase
(& ~ && —,). Using phase-sensitive detection, one

can then read out the amplified signal in the
chosen phase with accuracy far better than is pos-
sible using phase-insensitive techniques. Quantum
mechanics does not hand out this improvement for
nothing; the price paid is increased noise in the

1 l

other phase (~2 && —, , A2 && —, ).

A version of this idea, referred to as a "back-
action-evading" measurement technique (or a
"quantum nondemolition" technique), has been

suggested to improve the potential sensitivity of
resonant-mass gravitational-wave detectors. ' ' '
Back-action evasion can be described as follows:
the gravitational-wave detector is a mechanical os-
cillator; a transducer is coupled to the oscillator so
that it responds strongly to the oscillator's X& and
weakly to its X2,' the transducer's output is
delivered to an ordinary high-gain phase-preserving

linear amplifier. If the mechanical oscillator is re-

garded as the input mode, this entire system be-
comes a phase-sensitive linear amplifier with

I

G~ && G2 and A
~ && 4. Use of the back-action-

evading technique permits a measurement of X&

with accuracy better than could be obtained were
the transducer a phase-preserving device.

For the special case
~

M
~

—
~

L
~

=1, which
implies G~ G2 ——1, an amplifier need not add noise
to either phase. In this case the price paid is that
only one phase is amplified. An example of such
an amplifier is a degenerate parametric amplifier

[Eqs. (3.28) and (3.29)].
Although the precise statement of the amplifier

uncertainty principle apparently has not been ob-
tained previously, it has been realized for some
time that it is possible to construct phase-sensitive
linear amplifiers that add no noise to one quadra-
ture phase. Haus and Townes and Oliver ' point-
ed out the possibility of building such amplifiers,
and Takahasi' considered the specific example of
a degenerate paramp. In each of these cases, how-

ever, the input signal was considered to have
phase-insensitive noise, so only part of the poten-
tial noise reduction was realized. Yuen has sug-
gested that an ideal two-photon laser would be a
noiseless phase-sensitive amplifier (formally identi-
cal to a degenerate paramp). He seems to con-
clude, however, that one could amplify both qua-
drature phases, without adding noise to either, by
first splitting the input signal into its two quadra-
ture phases and then amplifying the two phases

separately with noiseless amplifiers. This possibili-

ty is ruled out by the amplifier uncertainty princi-

ple; physically, the reason is that splitting the input
signal into its two phases introduces noise into
both, which is then amplified by the two ampli-

fiers.

IV. MULTIMODE DESCRIPTION OF LINEAR
AMPLIFIERS

This section generalizes the preceding analysis

by giving a multimode treatment of linear ampli-
fiers. Allowing the input and output signals to
have many modes opens a Pandora's box —an enor-
mous range of possibilities, even when one consid-
ers only linear relationships between the input and

output signals. To get a handle on this situation, I
restrict attention here to the multimode generaliza-
tions of the amplifiers considered in Sec. III. The
idea is to find the corrections to the single-mode
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analysis which result from the nonzero bandwidth
of real signals and real amplifiers. In this section
the exposition is slashed to the bone, except where
new results emerge from the multimode analysis.

vious analog for this case of continuous modes:

b (co)= f dco'[M(co, co')a (co')

+L(co,co')a (co')]

+M (co), cod@ . (4.5)

A. General description

[a (co),a (co')] =0,
[a(co),a (co' )]=2tr5(co co'), —

(4.1a)

(4.1b)

where m, co'EW; the same commutation relations
are assumed to hold for the out output-mode
operators b (co), b "(co), coE /a. The commutation
relations (4.lb) imply that a (co)a (co)dco/2' is the
number of quanta in the input signal within the
bandwidth dco/2n i.e., a (co)—a(co) is the number
of quanta per hertz.

From the operators a(co), a (co), co EW, one con-
structs a Hermitian input signal operator

P(t) = f dco(fico/ger )'

X [a(co)e ' '+a (co)e' '], (4.2)

the W indicating that the integration runs over the
input-mode frequencies. Similarly, from the opera-
tors b(co), b (co), coE c/', one constructs an output
signal operator

P(t) = f dco(fico/8' )'/

Throughout this section each input mode and.
each output mode is denoted by its frequency.
Thus the input- and output-mode sets W and 6' are
sets of positive frequencies; for simplicity, I as-
sume that for each frequency in W (6') there is

precisely one input (output) mode. The in input-
mode creation and annihilation operators are as-
sumed to obey continuum commutation relations:

The unitarity conditions (2.6) have an equally obvi-

ous analog, not written here because the general
form is not needed in the subsequent analysis.

In a real situation the input signal operator
(similar considerations apply to the output signal
operator) is derived from the operator of some
field (e.g., the electric field operator). The input
signal operator is constructed only from those
modes of the field that actually contribute to the
input signal. The other modes of the field are not
neglected; they are included among the internal
modes, and their effects, if any, appear in the
operators ~ (co). On the other hand, the input sig-
nal operator (4.2) certainly does not have the most
general possible form. One can easily imagine sig-
nal operators with more than one mode for each
input frequency. This generalization, however,
adds nothing to an understanding of quantum lim-
its, so I stick to the simpler form (4.2) here.

B. Multimode description of phase-sensitive amplifiers

1. Signals tmth time-stationary noise

I now review the concept of a signal with time-
stationary noise. The input signal operator is used
as an example; the same considerations apply to
the output signal operator.

It is convenient to introduce the positive- and
negative-frequency parts of the signal operator:

P
+ (t) =— dco(fico/8772)1/2a (co)e io&t—

X[b(co)e ' '+b (co)e' '] . (4.3)
(4.6a)

The signal operators obey the commutation rela-
tions

P( —)(t) f dco(fico/8~2)1/2a P(co)e+!&(

(4.6b)

[P(t),P(t')] = — f dco fico sinco(t t'), (4.4a)—
277 y(+)+y( —) y(+) y( —) (4.7)

(4.4b)

It should be understood that even if an input mode
and an output mode are denoted by the same fre-
quency, they need not be the same mode.

The linear evolution equations (2.5) have an ob-

[()/(t), f(t')] = — f dco fico sinco(t t') . —
2a

which have the commutators

[y(+)(t) y( )(t~+)] [y(
—)(t) y( —)(t~)] ()

[()))'+'(tl,g' '(t')] = f (dco/2') ,fico—
—i co( t —t')

j&e

(4.8a)

(4.8b)
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The factor (iricu/8n. )'~ in Eq. (4.2) is chosen so
that the instantaneous power carried by the signal
is:P:=2/I 'P'+I+/' ' +P'+', where the double
colons signify normal ordering. If W is bounded

away from zero frequency, then the last two terms
in the instantaneous power average to zero over a
sufficiently long time, so that one obtains an

operator for the mean power,

(4.9)

(a(co)a(co') ) —(a(co) ) (a(cu') ) =0,
—,(.{ )"{ }+"{}.{ })

(4.10a)

P(t) =2&I-'(t)PI+'(t) .

The total signal energy is f P(t)dt

f (dco/2m. )ficoa "(cu)a(co).

The signal is in a state with time-stationary noise
if the following conditions are met:

K(u) = f (dcu/2m. )ficuS(cu)coscou, (4.13)

K(0)=(b,g) = f (dco/2vr)AcuS(cu) . (4.14)

Since:P~: is the instantaneous power, Eq. (4.14}
shows that S(cu)dcv/2m is the fluctuation in P
within the bandwidth dao/2~, given as an equiv-
alent flux of quanta. Thus S(cu) characterizes the
fluctuations in P by giving an equivalent flux of
quanta per hertz (units of number of quanta).

For a signal with time-stationary noise, the ex-

pected power is

[K(u) is real and K( —u)=K(u)] and which satis-
fies

—(a (cu) ) (a (co') ) =2mS(cu)5(co —cv'),

(4.10b)

(P)=2~(P"') ~'

+ f (dcu/2')fico[S(cu) —, ] . —(4.15)

for all co, co'EW. These conditions constitute an

obvious generalization of the concept of phase-
insensitive noise for a single mode [cf. Eq. (3.13)];
each mode has random-phase noise, and the noise
in different modes is uncorrelated. The (real)

quantity S(cu), defined by Eq. (4.10b), is a dimen-

sionless spectral density for the noise in P (analog
of

~

b,a
~

for a single mode). One easily shows

that

S(co))—, (4.1 1)

K(u) = —, (cd(t)iti(t +u)+cti(t +u)P(u) )

—(y(t))(y(t+ )) (4.12)

[Eqs. (4.10b), (4.1b), (3.3), and (3.4)], the lower lim-

it being the contribution of zero-point fluctuations
[cf. Eq. (3.9)].

The significance of S(cu) is revealed by its rela-

tion to the symmetrized two-point correlation
function, which is defined by

The zero-point fluctuations, which are a real

source of noise if one is interested in measurements
of P, do not contribute to the expected power.

2. Phase insensitive -linear amplifiers

A phase insensitiue -linear amplifier satisfies the
following two conditions, which are an obvious

generalization of the conditions for the narrow-

band case.
Condition(i) Each out.put mode with frequency

coEC& is coupled to precisely one input mode with

frequency co=f (cu) EJr [f(cu) is a one-to-one map
of ca onto Jr], and the expression for (b(cv) ) is in-

variant under arbitrary phase transformations
cp=cp(cu) =()(co) (phase preseruing ampli-fier) or
cp=cp(cu) = —0(cv) (phase conj ugating -amplifier)

Condition(ii) If the inpu. t signal has time-

stationary noise, then the output signal also has
time-stationary noise.

Condition (i) implies that [recall (M (co}),„=0]
phase preserving: M(cu, co') =

~

f'{cv)
~

'~ M(cu)5{cu' —co) and L(co,cu') =0,

b(cu) =
~

f'( )~ 'co~'M(co)a(cu)+~ (co),

phase conjugating: L(cu, cu') =
~

f'(co)
~

'~ L( o)c( 5o' c—co) and (Mo, c)c=u0,

b(cu) =
~

f'(cu)
~

' L(cu)a (cv)+~ (co),

(4.16a)

(4. 16b)
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where co =f (co) [cf. Eq. (3.17a)]. The gain, in units of number of quanta, at input frequency co=f{co}is

~

M(co) ~, phase preserving,
G(co)=— = '

z

~

{a(co))
~

~dcoy2ir ~

L (co) ~, Phase conjugating .
(4.17)

The unitarity conditions corresponding to the
evolution equations (4.16) are

[a (co),a (co')] =0, (4.18a)

[a (co),a t(co') ]=2ir5(co —co')[1+G(co)], (4.18b)

for all co, co'E r&', where the upper (lower) sign
holds for phase-preserving (phase-conjugating) am-

plifiers [cf. Eqs. (3.15), (3.17a), and (3.20); also cf.
Eqs. (4. 1)].

Condition (ii) places constraints on the moments
of the operators a (co), a (co) in the operating
state:

where the upper (lower) sign holds for phase-

preserving (phase-conjugating) amplifiers [cf. Eq.
(3.30)].

The phase transformation ip(co) =cor and

0(co) =cor [Eqs. (2.1)] corresponds to a time trans-
lation r of the input and output signals. The con-
ditions that the general expressions for (b(co) )
[Eqs. (4.5)] be invariant under this time translation
are M(co, co') =M (co)5(co—co') and L (co,co') =0.
Such amplifiers are called time stationary (phase
and frequency preserving). All other linear ampli-
fiers must have some sort of internal clock, be-
cause the expression for {b (co ) ) is aware of one' s
choice for the zero of time.

{a (co)a (co') ),p ——0,
—, (~( )~'( ')+~'( ')~( )).„

(4.19a)

C. Multimode description of phase-sensitive amplifiers

=2irG(co)S "(co)5(co co'), —(4.19b)

for all co, co'E 6& [cf. Eq. (3.17b)]. Equations (4.19)
guarantee that the noise added by the amplifier is
time stationary [cf. Eqs. (4.10)].

The quantity S"(co), defined by Eq. (4.19b) as a
function of the input frequency co =f (co), is the
added noise spectral density [analog of added noise

number; cf. Eq. (3.23)]; it is the spectral density of
the noise added by the amplifier, referred to the in-

put and given in units of number of quanta. If the
input signal has time-stationary noise, then the
output spectral density is given by

So(co) =G(co)[S (co)+S"(co)], co= f(co)
(4.20)

[cf. Eqs. (3.22) and {3.23)], where the superscripts I
and 0 designate the spectral densities of the input
and output signals.

The multimode description of a phase-insensitive
linear amplifier amounts to saying that each pair-
ing of an output mode with an input mode is
phase insensitive in the narrow-band sense and that
all such pairings are independent. Therefore, it
should not be surprising that the unitarity condi-
tions (4.18) imply the following fundamental
theorem for phase insensitive li-near amplifiers:

S"(co) )—, (4.21)
G (co)

Having warmed up on phase-insensitive ampli-
fiers, one is now ready to tackle the problem of
giving a multimode description for phase-sensitive
amplifiers. The first task is to develop a mul-

timode description of a signal in terms of its quad-
rature phases.

1. Quadrature phase descriptio-n of signals

pI+-'=(h'0/2)' (pi+i/2)e+'"' (4.22)

[cf. Eq. (3.5)], which definition implies the com-
mutation relations

[0i(t»0i(t') j = [02(t) 02(t') j

1 d e—sine(t t '), (4.23a)—
2~ ~ 0

[P&(t),Pz(t')]= J de cose(t t')—(4.23b)

Once again the input signal operator (4.2) is used

as an example. I assume that associated with the
signal is a carrier frequency 0; the quadrature
phases are to be defined relative to this frequency.
Furthermore, I assume that W is symmetric about
0—i.e., 0+@EW if and only if 0—e EW.

Introduce now Hermitian operators Pi(t) and

$2(t) defined by



QUANTUM LIMITS ON NOISE IN LINEAR AMPLIFIERS

[Eqs. (4.8)], where the integrals run over the set
%= [ e& 0

~

II+eEJr ]. Written in terms of p&

and Pz, the signal operator (4.2) is given by

P(t) =(2M)'~ [P,(t)cosQt +Pz(t)sinQt],

(4.24)

and the power operator (4.9) becomes

(4.25)

a&(e)=—1
2

l.
az(e) = — i—

2

1/2

a(Q+e)

1/2

a ( &—e) , (4.2'7a)

' 1/2

a (A+e)

(cf. a a =X& +Xz ——, in the single-mode case).
Notice that de/m. —not de/2~ —is the appropriate
integration interval for bandwidths expressed in

hertz, because, e being always positive, de/~
corresponds to sidebands above and below the car-
rier frequency.

The operators P~ and Pz are the amplitudes of
the "cosset" and "sinAt" quadrature phases —i.e.,
they are the multimode analogs of X] and X2 for a
single mode. The advantage of the multimode
description is its explicit display of the time depen-
dence of the quadrature-phase amplitudes.

The reason for interest in P~ and Pz can be
loosely described as follows. The commutators

[P,(t), P~(t )] and [Pz(t), Pz(t')] are much smaller
than (A'II) '[P(t),P(t')], provided, X covers a range
of frequencies small compared to 0; as a result,
the fluctuations in P~ or Pz can be much smaller
than the minimum fluctuations in P. This way of
looking at P~ and Pz—and their relation to so-

called quantum nondemolition observables —is ex-

plored in Appendix A.
Although P~ or Pz has the potential for reduced

fluctuations, the nonvanishing of [Pt(t), P&(t')] and

[Pz(t), Pz(t')] means that those fluctuations, unlike

the uncertainty in X1 or X2, cannot be reduced to
zero. There are limits to the reduction of noise in

P~ or Pz and to the reduction of the noise that a
linear amplifier adds to P~ or Pz. These limits,
which are bandwidth-dependent corrections to the
single-mode results, emerge naturally from the
multimode analysis.

Each of the quadrature-phase amplitudes can be
decomposed into its Fourier components:

Pp(t) = f (de/2')[a~(e)e '" +ap(e)e'")

(4.26)

(p =1,2). The Fourier components are related to
the creation and annihilation operators by

a (II e)—

(4.27b)

eCA~ [Eqs. (4.22) and (4.6)], from which one, us-

ing Eqs. (4.1), derives the commutation relations

[a&(e),a](e')1= [ai(e),az(e')]

= [az(e), az(e')] =0

[a/(e), a](e')]= [az(e),azt(e')]

=m.(e/Q)5(e —e'),

[a/(E'), az(E')] = —[az(e),a/(E')]

=i ~6(e e'), —

(4.28a)

(4.28b)

(4.28c)

(4.29a)

—, (a~(e)aqt(e')+aq(e')a~(e))

—(aq(e) ) (aq(e') ) =2~Sqq(e')5(e' —e')

(4.29b)

for all e, e'E.~A' (p, q =1,2). Equation (4.29b) de-
fines a dimensionless spectral density matrix S-zq(e)

[analog of single-mode moment matrix (3.10)]; the
diagonal elements of S~~ characterize the fluctua-

for all e, e'E.'A'. The operators a~(e) and az(e) are
linear combinations of the Fourier components of
P at the frequencies II+e, the linear combinations
being precisely those that describe amplitude and

phase modulation at frequency e of a carrier signal
with time dependence cos At.

I now introduce the notion of time-stationary
quadrature-phase noise, by which I mean that the
fluctuations in P~ and Pz separately are time sta-
tionary but that these fluctuations might be corre-
lated. This notion is formalized by defining a state
to have time-stationary quadrature-phase noise if
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tions in P& and Pq, and the off-diagonal elements
characterize their correlation. Using Eq. (4.29b),
one can easily show that Sz~ is Hermitian:

[Kzq(u) is real and Kzq( —u)=K~(u)], which is re-
lated to Szq(e') by

S~q(e) =S~(e) . (4.30) Kpq(u)= f (de/n) ~ [Spq(e)e

The time-domain equivalent of S&& is the two-

point correlation matrix

K„(u)= , (—P,—(t+u)Pq(t)+Pq(t)P, (t + u) )

(4.31)

+ST(e)e""] .

Equation (4.32), evaluated at u =0, implies

(4.32)

(APp) = f (dE/~)S~~(e),

—, &Ni42+4201l —(0&)(p~) = f («/~) —,[S)2(E)+g,(e)] .

These results allow one to obtain easily the variance of P

(&P)'(t) =« f («/~)[S»+S22+(S„—S,2)cos2Qt+(S, 2+S~~)sin2Qt]

[Eqs. (4.24), (4.33), and (4.30); cf. Eq. (4.14)], and the expected power

(P) =«((p, )'+(p2) )+A'Q f (de/tr)(S))+S22 ——, )

(4.33a)

(4.33b)

(4.34)

(4.35)

[Eqs. (4.25) and (4.33); cf. Eq. (4.15)]. The spectral-density matrix gives the fluctuations in P~ and Pq as
equivalent fluxes of quanta (at the carrier frequency) per hertz.

It is often convenient to have the conditions (4.29) for time-stationary quadrature-phase noise written in
terms of the creation and annihilation operators:

(a(Q+e)a(Q+e') ) —(a(Q+e) ) (a(Q+e') ) =0,
—, (a(Q+e)a (Q —e')+a (Q —e')a(Q+e)) —(a(Q+e))(a (Q —e')) =0,
(a(Q+e)a(Q —e') ) —(a(Q+e) ) (a(Q —«') )

(4.36a)

(4.36b)

=2~5(e e')—A
0+a

I /2 ]/2

I S))(e)—Sp2(e)+i[S)p(e)+S2](e)] ],
(4.36c)

'(a(Q+—e)at(Q+e')+a "(Q+ ) e(Qa+&)) —(a(Q+e) ~ ~a (Q+e ) ~

0
2~g(e e') [S»(e)+S22(e)+t[S,2(e) —S2i(e)] [0+a

(4.36d)

[cf. Eqs. (3.11)]. Comparison of Eqs. (4.1()) and (4.36) reveals that a state with time-stationary quadrature-
phase noise has time-stationary noise if and only if

S(Q+e)+ S(Q —e) (4.37a)

[cf. Eq. (3.12)]. The factors (Q+e)/Q are essen-
tially a units conversion: S(Q+e) is in units of
number of quanta at frequency 0+@, whereas

I

Szq(e) is in units of number of quanta at Q.
The crucial properties of S~q follow from the

commutation relations (4.28). Equations (4.28b)
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imply directly that

S,)(e) & —,(e/II), Sp2(e) ) —,(e/II),

(4.38)

which are the previously advertised limits on
reduction of noise in P& or Pz. For a state with
time-stationary noise, the minimum value of Szz(e)
corresponds to a quarter-quantum at the carrier
frequency [Eq. (4.37a)]. In contrast, for a state
with time statio-nary quadrature phase -noise, S&&(e)
can be reduced to correspond to a quarter-quantum
at frequency e'—precisely the reduction in noise (in
terms of noise power per hertz) which could be
achieved if the signal in one quadrature phase were
transformed from frequencies near 0 to frequen-
cies near zero. Indeed, one can regard as the main
result of this subsection the demonstration that a
signal in one quadrature phase of a high carrier fre
quency can have as small an amount of quantum
noise as a comparable signal at frequencies near
zero. From this point of view, an ordinary signal
like Eq. (4.2) should be thought of as being the one
"quadrature phase" of a signal with zero carrier
frequency.

By writing Eqs. (4.29), (4.28a), and (4.28c) in
terms of the Hermitian real and imaginary parts of
a1 and a2 and by using the generalized uncertainty
principle b BE C ) —,

~

( [8,C] ) ~, one can prove an

uncertainty principle for the spectral-density ma-

trix,

1

S) ) (e)S22(e) )—„, (4.39)

which is the multimode generalization of the ordi-
nary uncertainty principle (3.8) for X~ and X2.
Equality in the uncertainty principle (4.39) implies
S~q(e)+S2~(e) =0 (S~2 pure imaginary).

Appendix 8 considers a class of states with
time-stationary quadrature-phase noise, the multi-
mode "squeezed states. "

2. Phase sensit-ive linear amplifiers

The objective now is to give a multimode
description of the sort of phase-sensitive amplifier
considered in Sec. III. I assume that the input and
output signals [Eqs. (4.2) and (4.3)] have carrier
frequencies Q,r and 0,o and that W and c&' are sym-
metric about Qr and Qo, respectively; furthermore,
I assume that W and C& map onto the same low-

frequency set A—:[ e & 0
~

At+ eEW ]
= [ e& 0

~

IIo+e E 6 ]. The operators P' +-', P~, Pq,

a1, and u2 associated with the input signal are de-

fined as before, except that Or replaces fL; the
analogous operators for the output signal are
denoted by p'-+, ll ~, tl2, p„and p2. The input and

output spectral-density matrices are denoted by Szq
and Spq.

Focus attention now on phase-sensitive ampli-
fiers whose evolution equations (4.5) can be put in

the form

' 1/2Ao+e
b ( IIo+)e=

&o

1/2+
~(e)a(n, +e)+

I
1/2~o+ ~ (IIo+e),

0

1/2
r —e

I. (e)a (n, —e)
Qr

(4.40a)

1/2
&o —&

b (no e)=-
~o

1/2
no —&

a(no —e),
~o

1/2 ' 1/2
nr —e nr+e

iV*(e)a(n, e)+ — 1.*(e)a (n, +e!
nr

(4.40b)

ed%~, where, if A~ contains zero frequency, one must require M(0) and I. (0) to be real. A given output fre-
quency near Oo is coupled to the corresponding input frequency near Qr and to the image-sideband fre-
quency. Notice that if the output signal were carried only by frequencies above Oo and the input signal only
the corresponding frequencies above (below) Qt, then Eq. (4.40a) would be the evolution equation for a
phase-preserving (phase-conjugating) amplifier. The input frequencies below (above) Qt would be included
in the internal modes, and they would contribute to the amplifier s added noise.

Equations (4.40) can be translated into the much simpler form
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P~(e)=[G, (e)]'I e ' a&(e)+a &(e),

Pz(e)=[62(E)]' e ' az(E')+M 2(E)

[Eqs. (4.27)], where

(4.41a)

(4.41b)

[G, (e)]'I e ' =M(e)+L(e),

[Gz(e)]'I e ' —=M(e) —L(e)
(4.42)

ir (0) .
(notice that e p is real), and where

1/2
~o+&~,(e) —= — a (no+a)+

0

1/2
no —& a (no —e)o (4.43a)

1.a 2(e):—— i—
2

1/2no+ x(no+&)—
no

1/2o —e
& (no —e)

0
(4.43b)

Equations (4.41} imply that ti ~
is coupled to p~ and gz is coupled to pz [cf. Eqs. (3.18)]. The frequency-

dependent gains for the two quadrature phases, in units of number of quanta, are G&(e) and Gz(e) [cf. Eq
(3.19)].

e unitarity conditions corresponding to Eqs. (4.40) are most easily obtained by apPlying the aPProPriate
commutation relations to Eqs. (4.41):

[a &(e),a &(e')] =[a &(E),a 2(e')] =[~2(e),a 2(e')] =0,
[M, (e),M )(E')]=tr(E/nI)5(e E')[(nI—!no)—G](&)],

[~ 2(~)~~ 2(~ )l ~(~InI)~(~ ~ )[(nII no) Gz(e)] r

[a &(e),a z(e')]=i~5(e e')[1——(G&Gz)' e ' ' ],

(4.44a)

(4.44b)

(4.44c)

(4.44d)

for all e, e E%. These unitarity conditions have the same form as Eqs. (4.28), the main difference being
that [a &(e),& z(e')] is not necessarily pure imaginary.

I place one further requirement on the amplifiers of interest: if the input signal has time-stationary
quadrature-phase noise, then so must the output signal. The consequences of this requirement are most easi-
ly presented in terms of ~ 1 and ~ 2.

(a p(e)W q(e') },p ——0,
—, (M (e)M (e')+a (e')w (e) },=2a5(e e')(G G—)' e p 't S"(e),

(4.45a)

(4.45b)

for all e, e'EA [cf. Eqs. (4.29)]. Equation (4.45b)
defines a Hermitian added noise spectral-density
matrix Sz~(e) [analog of the added noise moment
matrix; cf. Eq. (3.25)]. The input and output
spectral-density matrices are related by

So (G G )1/2 '~&P &qI(SI +SA )W W (4.46)

[cf. Eq. (3.26)].
Writing the conditions (4.45) in terms of mo-

ments of ~ (co) and a (co) yields a set of equations
which can be obtained from Eqs. (4.36) by the re-
placements a~~, nano, and Sp& ~(GpG&)'I

i(r —r )pe ~ ' S . This set of equations, together with
Eqs. (4.40), reveals that a phase-sensitive amplifier Spp ) g (el nr )

l

1 —( nI IGp no )
~

(4.47)

of the type considered here is phase insensitive if
and only if (i) L(e)=0 [G~ ——Gz and e ' ' =1;
phase preserving] or M(e') =0 [G& ——Gz and

e = —1; phase conjugating] and (ii)
~ [rl —r&]

S» ——S» and S»+S» ——0. If the amplifier is

phase insensitive, then Szz(e) is related to S (co)

[Eq. (4.19b)] by equations of the form (4.37), where
0, is replaced by Ql.

The unitarity conditions (4.44) are now used to
derive constraints on the added noise spectral-
density matrix. Equations (4.44b) and (4.44c) im-

ply that
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which limits the reduction in the noise the ampli-
fier adds to either quadrature phase. In the case of
high gain (Gz » Qq/Qo), the limit on the noise
added to a particular phase is the same as the limit
(4.38) on the input noise in that phase. At fre-
quencies where Gz & Qq/Qo, Eq. (4.47), together
with Eqs. (4.46) and (4.38), simply ensures that

S~ ) , —(e/flo).

By writing Eqs. (4.44a), (4.44d) and (4.45) in
terms of the Hermitian real and imaginary parts of
a

&
and a 2 and by using the generalized uncertain-

ty principle, one can obtain the multimode version
of the amplifier uncertainty principle:

1 —]/2 2S))S22 )max [ )g [cos(7') —7'p) —(G)G2) ] (g sin () ) 72) ] (4.48)

Equality implies e S»+e S» ——0,
I'[rl —r2] g

where the upper (lower) sign holds if the first
(second) term in the maximum applies. Notice the
similarity of the amplifier uncertainty principle to
the corresponding multimode uncertainty principle
(4.39) for the input signal. The multimode ampli-
fier uncertainty principle is somewhat more com-
plicated than its single-mode analog (3.35), because
the phase factors y~ and y2 allow a continuous
transition between the two signs in Eq. (3.35). For
a phase-insensitive amplifier, the amplifier uncer-
tainty principle (4.48), evaluated at e =0, reduces to
Eq. (4.21).

An important special case, not covered explicitly
by the preceding analysis, is an amplifier whose
output signal (4.3), assumed to be at frequencies
near zero, is coupled to one quadrature phase of
the input signal. This sort of amplifier is phase
sensitive and has all the previously obtained poten-
tial for reduction in noise; the output signal can be
regarded as the one "quadrature phase" of a signal
with zero carrier frequency [see discussion follow-
ing Eq. (4.38)]. To convert this case into the sort
of situation analyzed above, one can simply ima-
gine multiplying the output signal by cos00t,
thereby converting the output to frequencies near
Qo.

Examples of this sort of amplifier are easy to
come by. Consider an input that consists of a
strong carrier signal (local-oscillator signal) at fre-
quency Qz superposed on an input signal at fre-
quencies near Qz. Imagine running this input
through a square-law device, which responds to the
input power, or a rectifier, which retains only the
positive part of the input. In either case, the out-
put signal at frequencies near zero is coupled to
only one quadrature phase of the input signal —the
phase that produces amplitude modulation of the
carrier. This sort of device can be operated in ei-
ther a homodyne mode (Jr= [ co

~

IIq —b,cu & co

& Qq+ hco ] ) or a heterodyne mode (Jr consisting
of upper and lower of sidebands of Oz, separated

l

from Qq). A homodyne device is always phase
sensitive. If the input signal to a heterodyne dev-
ice consists of both sidebands, then it, too, is phase
sensitive. In its usual mode of operation, however,
the input signal to a heterodyne device consists of
only one of the sidebands. The modes in the
unused sideband are then included in the internal
modes [cf. discussion following Eq. (4.40)].
Operated in this way, a heterodyne device is phase
insensitive, and the unavoidable quantum noise ad-
ded by the device is due to zero-point noise in the
unused sideband.

V. CONCLUSION

Perhaps the greatest impact of the results ob-
tained here lies in illuminating the role of amplifi-
cation in the quantum theory of measurement.
Consider a signal that carries the minimum noise
permitted by quantum mechanics (e.g. , a signal
with S~~S22,g) One cannot examine the signal

directly with standard, "classical" devices, because
they would drastically degrade the signal-to-noise
ratio. Instead, one first amplifies the signal with a
high-gain linear amplifier; then further signal pro-
cessing need not add significant amounts of noise.
If one wants to get the information in both qua-
drature phases of the signal with equal accuracy,
then the best situation is to let the signal have

I

time-stationary noise [S(co)= —,] and to use the
best phase-insensitive linear amplifier, which adds
noise that is equal to the noise carried by the sig-
nal. On the other hand, if one is interested in only
one quadrature phase, then it is possible to gen-
erate the signal with a much reduced amount of
noise in that phase (S~ ~ =e/4Qq ) and to use the
best phase-sensitive amplifier, which adds precisely
this reduced amount of noise to the phase of in-
terest.

What are the lessons to be learned here? First,
quantum mechanics extracts its due twice. If it
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places a limit on how well a signal can be meas-

ured, then it requires a high-gain linear amplifier
that processes the signal to add enough noise to en-

force independently the same limit. Second, in do-

ing a quantum mec-hanical analysis of a measure
ment, one should include in the analysis the first
high gain -amplifier in the chain of measuring deU

ices. A high-gain amplifier is required to get the
measurement information up to the classical level,
and it is the last stage of the measurement chain
which might be required to add a significant

, amount of unavoidable quantum noise.

APPENDIX A

bX(t)&X(t') & —,
~
( [X(t),X(t') ] ) ~;

therefore, it also limits the mean uncertainty
&'(t, t') —= —, [(&X)'(t)+(&X)'(t')]:

~'(t, t') & —, ([X(t),X(t')])
~

.

The best situation occurs when

(Al)

(A2)

For an arbitrary observable X(t), the generalized
uncertainty principle limits the product of the un-

certainties at different times:

[X(t),X(t')]=0 for all times t, t', (A3)
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in which case X(t) could have zero uncertainty at
all times; such an observable is called a (general-
ized) quantum nondemolition (QND) obserU

able. ' '

The signal operator p(t) [Eq. (4.2)] is not, a
QND observable. Nonetheless, considerable insight
can be obtained by writing its commutation rela-
tion (4 4a) in the form

[P(t),P(t')]= —(i/~)AA sinAu I decoseu+cosAu I de(e/Q)sineu

where u = t —t', it is assumed W is symmetric
about the carrier frequency 0, and A is defined
after Eqs. (4.23). Equation (A4) reveals that if W
covers a range of frequencies small compared to
II (e« 0), then the minimum value for 6 (t, t'),
as a function of u, oscillates nearly sinusoidally at
frequency A. The minimum value is largest when

cosAu =0, and it is smallest when sinQu =0.
The quadrature-phase amplitudes P& and Pz [Eq.

(4.22)] are a way of taking advantage of this
sinusoidal oscillation. Their commutators

[P&(t),P, (t')] and [$2(t),$2(t')] [Eq. (4.23a)] ac-
count for the small (second) term in Eq. (A4), and
their cross-commutator [P&(t),Pz(t')] [Eq. (4.23b)]
accounts for the large (first) term. Thus one of the
quadrature-phase amplitudes can have at all times
the reduced fluctuations available in P(t) every
half-period; the large fluctuations in P(t) are
pushed into the other quadrature phase.

The quadrature-phase amplitudes are, loosely
speaking, a step in the direction of QND observ-
ables. Indeed, in the limit of zero bandwidth, they
become the QND observables X~ and Xz for a sin-

gle mode. ' lt is possible to construct nonzero-
bandwidth QND observables from the operators
a( o), c(cao), coEW, but these observables do not

have the simple amplitude- and phase-modulation
interpretation that applies to P& and Pz.

APPENDIX 8 MULTIMODE SQUEEZED STATES

This appendix introduces and summarizes some
properties of multimode squeezed states.
Throughout I use the formal apparatus developed
in Secs. IV 8 1 and IV C 1 to apply to the signal
operator (4.2).

Single-mode squeezed states were introduced in-

dependently by Stoler "' and Lu, ' and they
have been analyzed in detail by Yuen. Hol-
lenhorst has applied them to the problem of
quantum nondemolition measurements of a har-
monic oscillator, and their application to optical
communications has been exhaustively analyzed by
Yuen, Shapiro, ' and Machado Mata. ' It has
recently been proposed that squeezed states can
reduce the photon-counting noise in a laser inter-
ferometer designed to detect gravitational radia-
tion. A compact summary of some properties of
single-mode squeezed states can be found in Sec.
IIA of Ref. 42.

To define multimode squeezed states, one first
introduces the unitary displacement operator, de-



26 QUANTUM LIMITS ON NOISE IN LINEAR AMPLIFIERS

fined by

D [p(co)]=exp f (dco/2ir)[p(co)a (co)

—p*(co)a(co)]

(8l)
where p(co) is a complex function of frequency.
Notice that D "[p(co)]=D '[p(co)] =D [—p(co)].
The most important property of the displacernent
operator is that

D a(co)D =a (co)+p(co),

D a (co)D='a (co)+p "(co),
(82)

cod&. Applied to the vacuum state
~

0), the dis-
placement operator generates a coherent state,

which is an eigenstate of each annihilation opera-
tor:

a(co)
~

p(co')) =p(co)
~

p(co')) .

The coherent state
~

p(co) ) has time-stationary
noise. Among its important properties are

(P(t) ) = f dco(fico/8tr')'

X[p(co)e ' '+p*(co)e' '],
S(co)= —,

('~(t)) =2l &y' +'( t)) ~'

(b,P) =2(P) f (dco/2') , ficg . —

l
p(~» —=D[p(~)l

l
» (83)

The next step toward multimode squeezed states
is introduction of the unitary squeeze operator

S[g(e)]:—exp f (de/2m)[ —g(e)a "(0+e)at(Q —e)+(*(e)a (0+e)a(A —e)] (86)

[cf. Eq. (2.7) of Ref. 42], where it is now assumed
that, K is symmetric about 0, and where

I

squeezing the vacuum and then displacing it:

g(e) = r (e)e '~'"

is a complex function. Notice that
St[((e)]=S '[g(e)]=S[—g(e)]. The crucial

property of the squeeze operator is that

S a(II+e)S=a(Q+e)coshr

—a "(L2+e)e 2™sinhr,

S"a (Il+e )S=a "(II+e)c'oshr

—a(Q+e)e '"sinhr

(87)

(88)

~
p(co);g(e)) =D[p(co)]S[((e)]

~

0) .

t, ctiz(t) ) =—f (d /2e)[tprz( )ee

(810)

If g(e) =0 the squeezed state is a coherent state.
The expected signal for the squeezed state (89) is

given by [(a(co) ) =p(co), (az(e) ) =pz(e)]:

(P(t) ) = f dco(fun/8' )' [p(co)e

+p*(co)e' '],

(eEA~), where r and q& are evaluated at e [cf. Eq.
(2.8) of Ref. 42]. The squeeze operator couples the
annihilation operator at a given frequency to itself
and to the creation operator at the image-sideband

frequency.
A multimode squeezed state is obtained by first

+p~(e)e'"],

where pi(e) and pq(e) are related to p(II+e) and

p*(Q —e) in the obvious way [see Eqs. (4.27)]. A
squeezed state has time-stationary quadrature-
phase noise, and its spectral-density matrix is given
in general by

1 0+a 2 . 2Si, +Sqq+i (Siq —Sii) =— (cosh r+sinh r),
2 0

0+@S„—Ski+i(Stp+Si& ) =—
0

1/2 1/2

sinhr coshre '+
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Notice that in general S»+S22=
&

(cosh r+sinh r). A tedious calculation provides the expectation value

and variance of the power:

(,P) =fiQ((p&) +(p2) )+A'0 f (de/n. )sinh r,
(bp) =trt f (de/tr)[

~

Q+coshr —Q* sinhr
~

+
~ Q coshr —Q+sinhr

~
]

2
+ f (de/vr)AQ sinh r f (de/tr)AQ cosh r + f (de/tr)A(Q e—)'~ e '+sinhr coshr

Q (II+e)1/2( y(+ ) )ei(At y)— (812)

[cf. Eq. (2.11) of Ref. 42].
An important special case occurs when ip(e) =0

for all ed%; then the squeezing occurs with the
same phase at all values of e. In this case the
spectral-density matrix (811) becomes

S&2
———S» i(——e/40)(c osh r+sinh r)

(813c)

[cf. Eq. (2.11) of Ref. 42], and the uncertainty pro-
duct is given by

' 1/2

S]& = 4e + 4 sinh2r 1 — 1 —
z

—2r E
1 e . 2

S&~S22 —— 1+ sinh 2r
16

(814)

' 1/2
I 2r I

S&&
——e "——sinh2r 1 — 1—

4 4 0

(813a)

(813b)

[cf. Eq. (4.39)]. Equations (813a) and (813b)
demonstrate that as e increases, one's ability to
reduce S]& or S» decreases. Indeed, for a given e,
the minimum value of S&i occurs when cosh 2r
=0/e (r y0), the minimum being St& ———,(e/0)
[cf. Eq. (4.38)]. At the minimum the uncertainty
product is Si&S22 ———„[2—(e /0 )].
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