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Constraints on supersymmetric-particle masses from (g —2)„
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From the experimental value of (g —2)„we derive absolute lower bounds on the masses of
the supersymmetric fermionic partners of the 8'and Z bosons and the scalar partners of the
muon and the neutrino.

Supersymmetry constitutes an extremely elegant
theory which provides a high degree of symmetry in
the description of nature. ' As a by-product, it might
help to solve one of the outstanding problems of
present grand unified theories. In fact, the so-called
no-renormalization theorems of supersymmetric
theories suggest a possible solution of the hierarchy
problem of symmetry-breaking scales. ' However, an
obvious fact about supersymmetry is that it is not
manifestly realized in the particle spectrum of the
real world. That is, Bose-Fermi symmetry is clearly
broken at low energies. Therefore, the relevant issue
is to what extent is supersymmetry broken. Several
scenarios entailing different symmetry-breaking pat-
terns have been entertained. ' However, the theoreti-
cal possibilities still remain widely open. Also, from
the phenomenological standpoint, few constraints on
the parameters of these theories are known.

In theories with spontaneous supersymmetry
breaking through a new U(1) gauge symmetry, mass
relations of the type m@' —m, '= mf' —m, ' emerge,

gf f
and in the simplest versions of these models, an
upper limit for the mass of the supersymmetric scalar
partners (sf) of the fermions (f) of about Ms /2 is
obtained. 4 A recent survey concerning flavor-
changing neutral-current interactions puts stringent
bounds on the relative mass differences of supersym-
metric leptons and quarks belonging to different fam-
ily generations. ' However, for the absolute value of
the masses themselves, very little is known from ex-
periment, apart from the obvious requirement that
the charged supersymmetric particles should be
heavier than about 20 GeV since none of them have
been seen at PETRA or PEP. Consequently, any ex-
perirnental evidence that narrows down the range of
masses in supersymmetry is welcome. In this respect

it has been noted that the muon anomaly forbids
masses below -100 GeV for the supersymmetric
scalar partner (P, ) of the muon in theories where
there is a diagonal Yukawa coupling of the type p, -p, -

In more constrained models, however, where a
conserved R quantum number exists, the above-
mentioned coupling is absent and the lower bound
that one finds in the literature for the p, mass is -15
GeV, which, of course, if of no practical use. 4

In this Rapid Communication we reexamine more
closely the constraints which follow from the muon
anomalous magnetic moment in the framework of
global supersymmetry for models with a conserved
8 quantum number. The contribution to a„
= (g —2)~/2 due to supersymmetry comes about
from the diagrams shown in Fig. 1.

The supersymmetric particles involved in these am-
plitudes are: the spin- —, partners of the 8'boson, the

Z boson, and the photon (denoted by W, Z, and j,
respectively), along with the scalar partners of the
muon (P, t, P, 2) and the scalar partner of the neutrino
(v). They all carry the quantum numbers of their
conventional partners. We denote the masses of
these supersymmetric particles by their names,
whereas we use m for the muon mass.

We start with the contribution to a„ from diagram
1(a). We find

(w)
~, ~ mx (1 —x)

2 Jp 2 2 -2 2 2 24~»n &a 0 m x +(W —v —m )x+v
where n is the fine-structure constant and 8& the
Weinberg angle. The above expression is positive for
any values of the masses 8'and v. Introducing
A, = v /( W —v —m ) and considering m (( W,= -2 2 -2 2 ~ ~ 2 2

which is obviously true since W & 20 GeV (or
W = 1.8 GeV if it were the r lepton), we get

a„~=,[A(1 —3A. —6A. )/6+33(X+1) ln(1+1/h)] .
4m sin28~

Let us now turn to the G (—= y or Z) exchange contributions of Figs. 1(b) and 1(c). Denoting, in general, the
p, p, &G vertex by

(P (gv gw'Ys)a.;WP—
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the contribution of G exchange to a„ is then

[G (gy' —gg') G, + m (gy'+g„') G,.x (1 —x) ]

; t28m m'x'+ (P, —G —m')x + G

The main difference with Eq. (1) is the presence of
the term proportional to gv —

g& which is linear in m

and can, in principle, be the most important contribu-
tion. This term is automatically absent in the y con-
tribution since in this case G is essentially massless
(j ( 50 eV in theories with 8 symmetry) and only
the quadratic term survives, leading to

I

term again vanishes. The reason is that there is a flip
in the muon helicity in the configuration contributing
to (g —2)„. The only way in which the linear term
can contribute is through a p, r., p, a mixing (this
would imply a nondegeneracy of the p~ 2 masses). If
we denote the mass eigenstates by

CK 2 1 1
m

127K p p
(2)

pt = cos@p, L, + sing p, ~,
p, 2= —sing/, l. +cospps,

In the case of the Z exchange the linear term is
present since G = Z &0. However, if p.l. and p, & are
mass eigenstates we have (gq) = (gq ( and the linear

it can be easily seen that gy' —g&'0: sing cosQ.
Assuming maximal mixing $ = m/4, the contribu-

tion of the linear term is

1-2 'n'8a' '(lin) = — X (—I)'
i 1 2 4~cos 8'

2mZ j
( 4) (3)

In the limit p, ~= p, 2, both contributions cancel, as
expected. Conversely, the maximal contribution is
obtained for p, ~ 2 && p, 2 ~ . In that case the linear
piece, due to Z exchange, is by far the most impor-
tant contribution to (g —2)„.

Since the limits on Aa„allowed by experiment are7

—20 x 10 9 & ha„(+26 x10 ~ (95% C.L.), (4)

we may saturate this inequality with the contribution
of 8'exchange. For the case where p, l' (& p,2',
az(lin) & 0, and we obtain the allowed region in the
( W, v) plane (there are no cancellations, since
a~~' & 0 also), displayed in Fig. 2. In the opposite
case, however, since a~tzl(lin) is negative, one can-
not reach any conclusion at all since both contribu-
tions (Z + N') potentially cancel. We may now satu-
rate inequality (4) with the a„'z'(lin) piece, which

may be positive (pl « p2') or negative (p, q' « p, l ).
In the first case, shown in Fig. 3, the forbidden region
in the (p„Z) plane is absolutely forbidden because
the additional (positive) contribution from a~t

would enlarge it. If any sort of theory or experiment
gives information on one of the two masses we can
immediately obtain from Fig. 3 interesting bounds on
the other mass. In the second case [a~z'(lin) & 0],
no conclusion can be drawn from (g —2)„alone.
However, knowing that 8' & 17 GeV, the maximal
contribution to a„ from 8'exchange is +8 x 10
Therefore the lower bound in Eq. (4) is effectively
extended to —28 x 10, thus giving similar results to
those shown in Fig. 3 (with P,

=—P,2).
As already stated, these results rely heavily on the

assumption of left-right mixing and large mass split-
tings among the spin-zero partners of the muon. In
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FIG. 1. Diagrams corresponding to the contribution to
(g —2) arising from supersymmetric particles.

FIG. 2. Allowed region for the masses of the W and the
v in the case described in the text.
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FIG. 3. Allowed region for the masses of the P, and the Z
in the model described in the text. Here, P, &

=—P, and
p,~~ ao.
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Ref. 8, two classes of models existing in the litera-
ture have been analyzed in this context. They all
render a too small contribution to the linear piece in

(g —2)„, even lower than the quadratic term we have
been neglecting so far. Let us therefore consider the
situation where a~tz'(lin) is absent. In this case, we
have on one hand the contribution from Fig. 1(a)
and, on the other hand, two contributions involving
one common parameter (P,): the y term [Fig. 1(b)]
and the Z term [Fig. 1(c)]. They are both negative,
whereas the 8'-exchange piece is positive. Again
cancellations may occur which prevent us to reach
conclusions. Nevertheless, if we assume, guided by
the recent analysis of Ellis and Nanopoulos' on
flavor-changing neutral interactions, 8' to be 100
GeV or heavier (a very reasonable assumption), then

FIG. 4. A11owed region for the masses of the scalar muon
and the Z in the situation described in the text. Here,

P I=P2=P-.

its contribution to (g —2)„ is negligible (2.3 x 10 '0).
In this circumstance we may evaluate the bounds
derived from Eq. (4) for the Z and P, masses. Figure
4 shows the allowed region in the (P„Z) plane where
the individual Z and y boundaries are separately
shown. Unfortunately, the bounds obtained are of
no practical use since we already know that p, & 17
GeV and, as far as Z is concerned, no bound at all is
obtained.
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