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It is noted that by merely rewriting the Lagrangian in a different form, Diirr and Sailer
do not realize their aim of inducing an additional hypercharge degree of freedom. It is

pointed out that such an increase in the dynamical degrees of freedom would indeed oc-
cur if the Weinberg-Salam model could be derived starting from a four-fermion interac-
tion. Existing studies on nonlinear spinor theories indicate that it may be possible to in-

duce such additional symmetries, perhaps only in an approximate sense.

The search for a unified theory of fundamental
interactions has been a subject of numerous investi-

gations. One such attempt is the nonlinear spinor
theory of Heisenberg' within which all the physical
fields are considered to be composites of one single
nonlinearly self-coupled spinor field. In a series of
papers, Durr and Sailer have indicated that it is
possible, starting with such a self-coupled spinor
field, to dynamically rearrange the Lagrangian so
that the rearranged Lagrangian appears to have
symmetries that were not originally present. This
is referred to as the inflation of the dynamical de-

grees of freedom. They have recently used this ap-
proach to induce the hypercharge degree of free-
dom of the Weinberg-Salam (WS) model and also

the color and flavor degrees of freedom associated
with the quarks. ' The purpose of this paper is to
examine their inflation scheme more closely and
point out some of the difficulties associated with
this approach.

For the sake of definiteness, we focus our atten-
tion on Ref. 3 wherein it has been claimed that it
is possible to dynamically "deflate" the local SU(2)
X U(1) symmetry of the WS model down to a local
SU(2). This led the authors to suggest that the lo-
cal hypercharge U(1) group may be redundant.
Using the notation of Ref. 3, the Lagrangian for
the WS model, to which (following Diirr and Sail-
er) a noninteracting, left-handed, massless fermion
singlet L' has been added, is written as
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with the fields transforming under U (1)X U (l,loc)
XSU (2, loc) as
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The SU(2) doublet can be conveniently
parametrized as
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SU(2) transformations leave ~. 4
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unaltered. The
doublet L can be rewritten as
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with p; =
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. It is clear that (7) reduces to (6)

for ~P~ «l.
Following Ref. 3, we continue the "deflation"

process. To this end, we define the deflated fields

c(x)=
sin —e'~

2

(4b)

Durr and Sailer require by definition that under
SU(2) transformations the upper component of
c (x) remain real. They further require c(x) to be
inert under hypercharge U(l ) transformations. In
Ref. 3, the SU(2) transformation of c(x) is written
as with

c (x)=co(x)L(x),

P(x) =co*(x)4(x),
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Under SU(2), the deflated fields transform as

c(x)~exp i ———r p(x) c(x),
2 2

(g)

where ~ is determined from the constraint that the
upper component remain real. Durr and Sailer, by
considering an infinitesimal SU(2) transformation,
obtain
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=p3+ (p~cosp+ p&sing)tan
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At this point, we note that because of the con-
straint, c(x) does not transform as an SU(2) doub-
let under SU(2) transformations. Moreover, due to
its nonlinear character, the infinitesimal transfor-
mation cannot be exponentiated to yield the correct
finite transformation. Indeed it can be directly
checked that the finite transformation (5) with
K=K given in (6} does not maintain the reality of
the upper component. We find that for a finite
transformation,

l
co(x)~exp —K io(x),

2

whereas under U(l) transformations

1
co(x)~exp —a(x) co(x),

2

while the fields c (x), r(x), 't"z(x), and P(x) are
inert. In terms of these deflated fields, the Lagran-
gian (1) can be written as
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Since co(x) does not appear in (11), the fields that
do appear are inert under U(1) transformations.

I

This led Durr and Sailer to argue that the local
SU(2) )&U(1) symmetry of the WS model is dynam-
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Here, g is an SU(2) doublet and A& an SU(2)
gauge field. The symmetry group of the Lagrangi-
an (12) is U(l, global) X SU(2, local). The dynami-

ically deflated to local SU(2). They take this as an
indication that the hypercharge degree of freedom
may be redundant.

Their modus operandi is to write the fermion
fields so that they transform nonlinearly under
SU(2) rather than as SU(2) doublets [see Eq. (9)].
The invariance of the Lagrangian under this non-

linear SU(2) transformation of the fermion fields
entails the introduction of four (rather than three)

gauge fields, @z(x) and .+&(x). M&(x) transforms
as a genuine SU(2) gauge field whereas S„(x)
transforms in a rather complicated manner. The
fermion fields and the four gauge fields are then
dynamically rearranged to yield a local SU(2)
XU(1} invariant Lagrangian.

To point out where the additional U(1) enters,
we remark that the invariance of the Lagrangian
under local, nonlinear SU(2) transformations (9)
automatically entails an SU(2) XU(1) invariance.
(A simple example of a Lagrangian where an as-
sumed "lower" symmetry automatically entails a
"higher" symmetry is that of a Lagrangian that is
required to be invariant under rotations about the
x and y axes; it is then invariant under rotations
about the z axis also. ) To see this we note that the
Lagrangian (11) is invariant under the transforma-
tions (9) even when a is arbitrary, i.e., when a does
not satisfy (7). But the transformations (9), for ar-
bitrary lc(x) are just SU(2) XU(1) transformations.
We are thus forced to conclude that rewriting the
Lagrangian (1) in terms of the deflated fields as in
(11) does not deflate the dynamical degrees offree
dom. In fact, the nonlinear transformation of
Durr and Sailer makes manifest the hypercharge
degree of freedom that is latent in Eqs. (9}—(11).
We remark in passing that the deflated fields
transform nonlinearly under SU(2) transformations
and not as ray doublets as SU(2) as suggested in
Ref. 3 [SU(2) has no nontrivial ray representations]
and hence it is not possible to assign values of I
and I& to these fields.

Durr and Sailer proceed to conjecture but do not
explicitly demonstrate that the Lagrangian (11) can
be obtained by a dynamical rearrangement of the
fields in the Lagrangian,

cal rearrangement of (12) into the form (11) would

thus entail a creation of an additional local U(1)
symmetry; it is then that there would be a true in-

flation of the dynamical degrees of freedom since
an additional gauge field would have to be generat-

ed. Once again, we state that this has not been

demonstrated by the authors.
Although it is not clear how an inflated sym-

metry may be obtained merely by rewriting the ori-

ginal Lagrangian in a different form, it may be
worthwhile to point out that several authors have

suggested that a four-fermion theory of the type
considered by Diirr and Sailer may be cast into the
form of a local gauge theory. In a recent paper
we have reexamined some of these arguments and
concluded that the equivalence of asymptotically
free gauge theories and the corresponding four-
fermion theory may be possible under certain con-
ditions. We note, however, that the WS model is
not asymptotically free and our method of proof
does not apply. Furthermore, if the transmutation
mechanism for solvable models is also operative
for the case of relativistic field theories, the above-

mentioned equivalence could at most be in an ap-
proximate sense.

In summary, we state that the mere requirement
that the fermions transform nonlinearly under

SU(2) does not deflate the dynamical degrees of
freedom. Admittedly, it may be possible to extract
some terms from the four-fermion Lagrangian so
that part of the Lagrangian has an inflated sym-

metry, but it is not clear how such an inflation
could be achieved in an (even formally) exact sense.
A genuine deflation could occur if it would be pos-
sible to dynamically rearrange the Lagrangian (12)
to the form of that in (11). Diirr and Sailer have

conjectured but not demonstrated this possibility.
In view of the fact that the methods of Ref. 8 are
not applicable here, we are at present not aware of
how to argue the equivalence of the Lagrangians of
the WS model and the corresponding four-fermion

theory.
Note added. After completion of this work we

learned that a formula for the finite nonlinear

SU(2) transformation [see Eq. (7)] has also been in-
dependently derived by Durr and Sailer (H. P.
Diirr, private communication).
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course of this study. This work was supported in
part by the U. S. Department of Energy Contract
No. DE-AS05-76ER03992.
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