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Effective Weinberg angle for weak-electromagnetic gauge theories
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We define the effective Weinberg parameter x ~ which plays the role of sin 0 ~ when

the standard SU(2))&U(1) weak-electromagnetic theory is embedded in a larger group.
The experimental value of sin 0~ places strict limits on the charges of the fundamental

fermions in these theories, and thus eliminates a large class of models that may seem to
be valid. We also investigate weak-electromagnetic models based on SU(X) where the

Weinberg angle is 0~——30' naturally.

The success of the now standard SU(2)z XU(1)
weak-electromagnetic theory lies in its predictions
for neutral-current interactions. For all the
phenomenological success of the standard model, it
still may be worthwhile to consider the standard
model as the effective "low-energy" (100 GeV) lim-

it of a larger weak-electromagnetic gauge theory.
For example, the multigeneration structure of the
weak interaction might be explained as a result of
triangle-anomaly cancellation in an SU(N) XU(1)
weak-electromagnetic gauge theory.

In the context of grand unified theories, if we

assume that the strong interaction is color SU(3),
and the standard model is the weak-

electromagnetic interaction, then the one-

generation grand unified Georgi-Glashow model is
most likely unique. Assuming that the unbroken
weak theory is larger than SU(2) XU(1) can lead to
multigeneration models, ' and possibly realistic
dynamically broken grand unified theories. In ad-

dition, semisimple grand unified theories, such as
the Pati-Salam model and others based on
SU(N) XSU(N) (Ref. 9) have been postulated with
an unbroken weak gauge group larger than
SU(2) x U(1).

Assuming that the SU(2) XU(1) model is the
correct low-energy theory, we wish to study how it
may be embedded in larger gauge theories. Specifi-
cally we will show how the experimental value of
the Weinberg angle 0~ places strict limits on how
one can embed the standard model in larger
groups. In addition, we also consider one-
coupling-constant weak-electromagnetic theories
based on SU(N) which naturally lead to a Wein-
berg angle 0~ ——30.

For simplicity let us consider embedding the

SU(2)L XU(1) model in an SU(N)L XU(1) theory.
We then place the leptons in an N representation:

(X, )L, =

v, (0)

e( —1)

l)(n))

12(nz)

(g, )t. ——

2
u( —, )

&( ——, )

q)( —, +nt)
2

qq( —, +n2)
(2)

2

qN —2( +nN —2)

Again we have n —2 new quarks with their
charges in parentheses. The n s in Eqs. (1) and (2)
are the same.

Since our model is SU(N) XU(1) we have
(N 1) gauge fields —W~& (j =1,2, . ..,N —1) asso-
ciated with SU(N), and a singlet field B&. We can

N —2( N —2) t.

where the charges of each lepton have been placed
in parentheses. We have N —2 new leptons in the
model, labeled by I;, each with a charge n;. Let us

consider these charges to be arbitrary, each n.; as-
sumed to be an integer. Since our model will

break down to SU(2) XU(1), these new particles
will not appear at low energies, and will not affect
low-energy phenomenology. Quarks may also be
placed in an N representation as follows:
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then write the covariant derivatives for this model
as follows:

C3
—=1,

Cs ———(1+2n i )/V 3,
(9)

+ ig &ab [ 3
—ir(N) ]By, ] ( 6 )I. ~

&„(X.)L = [ 5.br)„ig A—'.b W.i

+ ig'5, b[ o(N—)]B~ I (Xb )I. ,

(3a)

(3b)

C i, [2K——(K —1)]'~ [o(K)—o(K —1)] .

The normalization constant il in Eq. (7) is just seen

to be

where g and g' are the appropriate coupling con-
stants. The Ajb's are the generators for SU(N) and
are normalized so that the Fermi constant is

N
~2~ g(C )2

j=2

GF g
v 2 Sm (W-+)

where

(4a)

N —2
1

N —2

1++(n) ——1 —gn
Nj=1 j=1

We reproduce electromagnetism by setting

(10)

(4b)
sin0g'cos0=g =e.

just as in the standard model. The function o(N)
in Eqs. (3a) and (3b) is defined as

K —2
g'cos0w ——g sinHw ——e . (12)

Let us compare this to the standard model where

nj

E =3,4, . ..,N .

All the right-handed fields are singlets. The co-
variant derivative of a right-handed singlet sa of
charge Q, is then

NpsR (Bp+ig QsBp)sR

(5)

Both g and e are the same in both models. The
electric charge e is the same, and the g is set by the
weak interaction, namely, the Fermi constant in

Eq. (4). Equation (11) is always true, independent
of how the gauge bosons acquire mass. If we as-
sume that our SU(N) )&U(1) model breaks down to
the low-energy SU(2) &(U(1) model, then comparing
Eqs. (11) and (12) tells us that the parameter xii,

The photon A& is found by mixing the singlet
field 8& with a linear combination of the "diagonal
fields" of SU(N) which reflects the charge struc-
ture in Eqs. (1) or (2). Specifically, if we call this
linear combination of diagonal fields F&,

F~= —[Ci Wq+Cs Wq+ C~p i' ],

sin 0
XW=

'9
(13)

plays the role of sin Hw, the Weinberg angle. A
complete description of gauge fields and their mix-

ing is found in Appendix A.
From Eqs. (9) and (10) we see that il, a normal-

ization constant, must be greater than or equal to
one. This means that

then we have

Fp

Bp

0
cosH —sln0 +p
sin0 cos0

1
XW(

7l

From the experimental value of sin Hw ——0.231
+0.010, a "safe" limt on 1/g is

(14)

The angle 8 is the SU(N) X U(1) analog of the
SU(2) XU(1) Weinberg angle Hii . The field X& is a
neutral gauge field much like the Z& of the stand-
ard model. Finally, from Eqs. (1)—(3) and (5), the
coefficients C, , in Eq. (7) are calculated to be

1 1

rl
2 4
)—. (15)

Since g depends on the parameters n; in Eq.
(10), the experimental value of xu sets limits on
the parameters n;, and thus on the charges of the
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fermions in Eqs. (1) and (2).
From the form of g we can make some general

comments on the structure of allowed gauge
theories.

(i) l) is invariant on the substitution of all

nj ~ —(n~+1). Formally this means replacing the
N representations by N* representations. We
would thus have

(X, )L +(Jt-')t, ——[e(—1),v, (0),li( —1 —ni), ..., lN l( —1 —nN 2)] (16a)

or
1 2 1 1(0.)L (4')L=[d( ——, »it(-, »ei( ——, —~i»".,eN —2( nN —2}] (16b)

Since the 2 and 2 representations of SU(2) are
equivalent, this substitution will make no differ-
ence on the low-energy SU(2) XU(1) limit of any
model.

(ii) For all n; =0, or all n; = —1 we find

1 1 1

2 1 —1/N

Thus all models of this type are acceptable.
(iii) For ni = —1, ni —n3 — tlN 2 —0 or

nJ —0 n2 —n3 — —nQ 2 — 1

1 1 1

i)l 4 1 2/N—
These too are safe models.

(iv) For an arbitrary n; = —1 or 0,

1 1

7l
2

if N&9.

All models with an arbitrar~ selection of "normal"
1

quark and lepton charges ( —, , ——, ,0, —1) are al-

lowed only for N (9.
(v) For ni ——1, n2 ——n3 —— nN 2

——0or-—
n& ———2, n2 ——n3 — —nfl p

— 1,

For an SU(4) XU(1) model, an example is a
Pati-Salam-type model with a multiplet' [u ( —, ),

1 1 2
d( ——, ), s( ——, ) c( —,)]. Again we can see by in-

spection it is a "safe " model since 1/l)l = —,. Safe
models up through N =6 are given in Table I.
The value of l) is unchanged by a permutation of
the n s. The SU(2) XU(l) limit is not changed by
rearranging the order of the electric charges on the
last N —2 elements.

This type of analysis can be extended to models
of the forin SU(N)L XSU(M)a XU(1) which break
down to SU(2)L XU(1). The F„ field remains the
same. The singlet field 8„, though, is now a linear
combination of the "diagonal fields" of SU(M)a
and the new singlet field associated with the new
U(1). The result in Eq. (15}is still valid when we
place no restrictions on the three coupling con-
stants (see Appendix 8).

We can also extend our analysis to cover truly
unified, one-coupling-constant models of weak-

electromagnetic interactions based on the group
SU(N). For these cases, the 8& field is absent so
that we must identify the photon A& with the field

Fp ill Eq. (7). Flolll Eq. (8) we see tllat sill 8= 1

so that

1 1
for every N .

~2 4
(20) (21)

These are the only allowed set of values for the
n s which permit "exotic charged" fermions, i.e.,

2 1

fermions with charges other than ( —,, ——,,0, —1).
Thus the experimental values of sin 8~ places
strict limits on the type and number of new "exot-
ic" fermions in models of this form.

For example, consider models based on SU(3)
XU(1). Those which place quarks (and/or leqtons)
in triplets with charges' [u( —, ), d( ——, )b( ——, )]
or [u( —, ), d( ——,)t( —,)] are "safe" since I/rt = —,.
If there is an "exotic" charged quark, " it can only
have a charge of —, or ——, ; then I/l)'= —,.

Thus the effective Weinberg angle is uniquely
determined. To within 2o experimentally xq ——

4 .
Using Eqs. (1), (2), and (10) we can, by just looking
at the charge structure of the fermions, find
models which can reproduce the known
phenomenology.

For examples, consider a model based on SU(3)
where the quarks are placed in triplets [u ( —, ),
d ( ——, ), b ( ——, )] and the leptons in octets. 'l Just

3
from the charge structure we can see that x~ ——

4

and the model is unacceptable. (In addition, the
u-quark and electron neutral currents are incon-
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TABLE I. A list of safe SU(N) XU(1) models for
N &6.

J=2
nJ

——0. (22)

SU(N) x U(1)

N=4

ni

n; =n1

n =n1, n2

0,0
—1,—1

—1,0

0, 1

—2, —1

3

4
3

4
1

4
1

4

2

3
2

3
1

2
1

4

1

4

The condition that x~ ——
4 with n

~

——1 requires

N —2

g (nj) =0.
J =2

(23)

2
u( —, )

d( ——, )

u "(-, )

Thus we can trivially extend Pugh's model to arbi-
trary SU(N) provided that all the new leptons have
zero charge. '

We can also investigate other types of SU(N)
models where x~ ——4. For example, there is a vi-

able extension of the models in Ref. 13. If we look
at SU(9) and place the quarks in 9 representations,

n =nl, n2, n3

0,0,0
—1,—1,—1

—1,0,0
—1,—1,0

0,0, 1

—2, —1,—1

5

8
5

8
5

12
5

12
1

4
1

4

b( ——, )

u'(-, )

d'( ——, )

b'( ——, )

u "(—, )

b "(—
3 )

u'(-, )

d'( ——, )

b'( ——, )

2
u( —, )

N=6 nf =n1 n2 n3 n4

0,0,0,0
—1,—1,—1,—1,
—1,0,0,0,
—1,—1,—1, 0
—1,—1,0,0

0,0,0, 1

—2, —1,—1,—1

3

5
3

5
3

8
3

8
I

3
1

4
1

4

b "(——, )

d( ——, )

b( ——, )

and place the leptons in the adjoint (80-dimen-
sional) representation, then x~ ———,. This model,
when broken down to SU(2) X U(1), can reproduce
a standard phenomenology.

Finally, we can look at a "bizarre" model based
on SU(6) where quarks and antiquarks are both
placed in the same 6 representations:

sistent with experiment. ) By referring to Table I
we see that if n& ——1, xa ———,. This is the SU(3)
model of Pugh. ' Here the leptons are placed in

triplets [v„e( —1),e'(+ 1)]. The quarks are
integer-charge Han-Nambu quarks, "and are
placed in triplets and antitriplets so as to cancel
anomalies. This model has also been shown to
reproduce the standard model phenomenology after
a spontaneous breakdown of symmetry.

We are now in a position to see if this model
can be extended from SU(3) to SU(N). Since all
the leptons would be placed in N representations,
both lepton and antilepton, and the sum of the
charges in any representation must be zero, we see
that, since n~ ——1,

u (+ —, )

d( ——, )

t( —, )
2

u'( ——, )

d'(+ —, )

t( 3)
4 1

Here we have n~ ——0, n2 3f n3 3

n4 ——,, N ——=6, and by (10), xa ———,. The leptons
in such a scheme could be placed in a representa-
tion which has some integer-charge elements, such
as the totally symmetric 21. Since the n; are not
all integers in this model, the 21 representation will
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have fractionally charged members in it, as well as
integer-charge ones. Again, if we break the sym-

metry to SU(2) X U(1), we can reproduce standard
neutral currents.

APPENDIX A

ease of notation. If we define a generalized nor-
malization constant 2)(K),

K
[q'(l~..)]—= g (C.. .)'

J=2
K —2

=2 1+ g (nj)

Let us consider the (N —1) "diagonal" gauge
fields associated with SU(N). These fields are

K —2

1 —gn,
2

(Al)

W', W8, m]5, ...,
WN'-' .

Here the Lorentz indices have been dropped for
we can then write the (N —1) diagonal gauge fields
in the orthonormal basis

F= [W'+C, W'+C» W"+ +C, W" '] —= [ W'+[ri'(N) —1]' 'V'I,3 8 15 N2

ri(N} N2 —1 21(N}

a= [-[,(N)-1] / W+V ]
1

ri{N}

X=, [C, W —CsW'],1

[Cs'+ Cis'1'" (A2)

xJ—= 1

2) (j+2)—1

1/2
(j+2)2 1 J

[ 2( +1) 1]I/2 + K —1

[2}2(J+ 1) 1]1/2W(J'+2) —1
, j =2 3, ...,N —2. (A2)

(A3)

Second, we can reproduce the low-energy SU(2)
XU(1) limit by mixing the X and 0 fields by an

angle e,

(
2 1)1/2

tane =
cos0

where

(A4)

The advantage of this parametrization lies in the
fact that we can first reproduce electromagnetism

by mixing the F field and the singlet B field by

cos0 —sin0 &o
8 sin0 cos0

& = —QxwW

B cos8 —V gxw(2}2 —1)'/2
+(1—xw)'/'

(1 —xw)'/

Z= (1—xw)'/ W

B cos8 —V Qxw(F12 —1)'/2
+&xw 1/2(1 —xw)

BV'xw(2} —1)' + V cos0

(1—xw)'/

(A6)

Let us now compare the fields A and Z in (A6)
with the SU(2) XU(1) /1 and Z:

&o cose —sine Z
H sine cose (A5)

3 =—sin0~8' +cos0~D,

(A7)

Thus using (A2) —(A5), we have Z =cos0~8"—sin0~D,
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where D here is the SU(2) XU(1)-singlet field. As
can be seen, the parameter xs plays the role of
sin 8~, while the linear combination of fields

Bc os9 —V Qxs (i)2 —I)'~2

(1—xs )'~

plays the role of the SU(2) XU(1)-singlet D.
After a spontaneous breakdown to the

SU(2}XU(1) level, all the fields X', X,...,I
acquire very large masses, and are effectively
frozen out of the theory. This can be accom-
plished in an SU(N) XU(1) theory by considering a
set of N Higgs scalars P,' ', 1=1,2, ...,N, each
transferring as an N under SU(N). ' Their covari-
ant derivatives are

D„P,' '= [5,b 8„igA,b
—W'„+, ig'5, bP(l)B„]P'",

APPENDIX B

Consider weak-electromagnetic theories of the
form SU(N)L X SU(M)q X U(1). The quark and
lepton multiplets (it, )L and (X, )L given in Eqs. (1)
and (2) still couple only to SU(N)L XU(1). We
now postulate two new quark and lepton multi-
plets, (P, }a and (X, )a which transform as M rep-
resentations under SU(M). In analogy to Eqs.
(1) and (2), we have

v'(m')

F ( —1+m")
Li(mi)

(X, )a ——

LM —2(mM —i)

where

P(1)= o(N), —.

P(2) = I —o(N),

P(3)= n~ o(—N), —.

p(l) = ni 2 o—(N) . —

(A8}

U( —, +m')

D( ——, +m")

Q((3+m))

Qi( —, +m, )

(81)

(t}),'")O=U, 5,I (no sum) . (A10)

To break SU(N}XU(1) to SU(2)XU(1) requires
that

The vacuum expectation values are then taken to
be

2

QM —2( +mM —2)

The charges are in parentheses. The parameters
m', m", m [,... ,m~ 2 are all arbitrary constants.

In analogy to Eq. (3a), the covariant derivative
for (g~)a is given as

U~ 2 && vb (b =3,4, 5, . . .,N) .

We then find that

m (A) =0,
and neglecting terms of the order

'2
U1, 2

(A 1 1)

(A12)

~X/(l/fg )g ——
t 5,bag igkgb Wp-

+ig'5, b[ —, +m' o(M)]B& )(tpb—}z,
(82)

where g, A~I„and 8'~& are, respectively, the cou-
pling constant, generators, and gauge fields associ-
ated with SU(M). The function o(M) in (82) is
just

2

2
(U& +Uz )=m (W+-)=m (Z)(1 —xs. )

ma

&ZG~x~
(A13)

and all the other diagonal and off-diagonal gauge
bosons acquire masses proportional to (Ub) . The
mass relationship (A13) is exactly the one in the
SU(2) XU(l) theory when only Higgs doublets are
allowed.

(83)

.Piqsl =(d„+ig'Q, Bp)si . (84)

The photon A& is now found by mixing the sing-

The U(1) coupling constant in Eqs. (3) and (82)
is, of course, the same. Thus a left-handed singlet
sL under SU(M) with charge Q, has covariant
derivative
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let field Bp, F& of Eq. (7), ttnd F&. F& is and

F„=—(C3 Wp+Cs W„+... +CM, ,W„), tl =2 (m') +( —1+m")

where

C3 ——1+m' —m"

(B5) M —2

g (mj) —M[o(M)]

C„=(1—m' —m "+2m, )/v 3, (B6)

C, , =[2K(E—I)]'~ [o(E) cr(K——1)],

There are now three mixing angles 0], 02, and 03.
Formally the F&, F&, and B& mixing can be given

by

F~

B~

C]C3 SJC2S3 C/S3 +S]CQC3 S~S2 Xo
~Q—S)C3 —C) CgS3 —S)S3+C]C2C3 C)S2 X~

SpSs —S2Cs C2
A

(Bg)

where S;=sin0;, C; =cos0;. Electromagnetism is
reproduced when

where k is a proportionality constant. Equation
(B9) tells us that

g sin0)sin02 g cos0)sin02

7l

sin 0] ——
k

k +1
and (B10) gives us

(B12)

=g'co»z =
I

e
I

(B9)

sin 0&sin 02
xw= (B10)

in analogy to Eq. (13). If we place no restrictions

one, g, ri, and si, then a "safe" model has I/ri
& 4 as before.

Let us assume that

(Bl 1)

After a spontaneous breakdown of symmetry to
the SU(2)L X U(1) limit, we find

sin 02

k +1
(B13)

An interesting special case is the symmetric
model. By this we mean X =M, g =g, m'=m"
=0, and n; =m;. Equation (Bl 1) gives us k =1
and (B13) tells us

Sin 02
xw=

29'
(B14)

so that safe models in this case have I/ri & —, .
This parametrization is also applicable to an

SU(2)L, XSU(2)tt X U(1)-symmetric model. 's Here
'g—= 1 and Xgr= 2 S1Il 02.
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