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A dual-topological-unitarization (or dual-fragmentation) approach to the calculation of
hadron masses is presented, in which the effect of planar "sea"-quark loops is taken into
account from the beginning. Using techniques based on analyticity and generalized
ladder-graph dynamics, we first derive the approximate "generic" Regge-trajectory for-

mula a(t) =max(Sl+S2, S3+S4)——, +2a ' [s, + (t —g—m;2)] for any given hadronic

process 1+2-3+4, where S; and m; are the spina and masses of i =1,2, 3,4, and Vs, is

the effective mass of the lowest nonvanishing contribution (a) exchanged in the crossed

channel. By requiring a minimization of secondary (background, etc. ) contributions to a,
and demanding simultaneous consistency for entire sets of such processes, we are then

able to calculate the masses of all the lowest pseudoscalar and vector qq states with

q =u, d, s, and the Regge trajectories on which they lie. By making certain additional as-

sumptions we are also able to do this with q =u, d, c and q =u, d, b. Our only arbitrary

parameters are m~, m&., m~, and mz, one of which merely serves to fix the energy scale.
In contrast to many other approaches, a small m /m~ ratio arises quite naturally in the

present scheme.

I. INTRODUCTION

Calculations of the hadron mass spectrum can
be divided into two basic types:

(A) Semiphenomenological, which depend whol-

ly, or in part, on ad hoc phenomenological poten-
tials or bag-boundary conditions parametrized by a
number of arbitrary parameters which are fitted to
the data. Most practical spectrum calculations
have been of this type and have met with a certain
degree of success, although a number of serious
problems still remain.

(B) More fundamental. Some of these, such as
the ones based on the QCD sum rules of Shifman,
Vainshtein, and Zakharov, ' while successful, are in
principle only capable of giving a limited set of re-
sults. Of the ones which are theoretically capable
of dynamically generating a complete spectrum,
the lattice approach has recently received the most
attention. Here the usual space-time continuum is
replaced by a discrete grid and the light "sea"
quarks are generally neglected as a first approxi-
mation. The latter assumption is sometimes justi-
fied on the basis of an N~,„„/N„&„~0 limit of
quantum chromodynamics (QCD). However,
N~„„/N„&„-1 in the real world and sea quarks
are known to play an important role for small
fractional quark momenta (x) within hadrons in
deep-inelastic lepton-hadron scattering experiments.
Since small x corresponds to the crucial long-range

part of the confinement region, there is every
reason to expect that a realistic spectrum will

emerge only when the sea-quark loops of, e.g., Fig.
1, are properly taken into account. The usual dif-
ficulties in accounting for the smallness of the pion
mass may be a manifestation of this fact.

The dual-topological-unitarization (DTU) pro-
gram is a highly promising fundamental approach
to the confinement region in which sea quarks, and
hence quark loops, are assumed to play an impor-
tant role from the beginning. Instead of going to a
lattice, one uses continuum-space techniques based
on analyticity and unitarity —general properties
which have been extensively tested for hadronic
processes in the past. DTU methods have, of
course, already seen many successful applications,
particularly in jet and cross-section physics.
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FIG. 1. Generation of hadronic qq spectrum taking
into account quark loops.
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In the DTU approach, one begins by simultane-

ously considering all the "ordered" planar fishnet
graphs of Fig. 1(b). ' These have the simplest to-

pologies and can be argued to give a good first ap-
proximation to the hadron spectrum. ' They have
s tc-hannel crossing (where s and t are the usual

Mandelstam variables), satisfy duality and ex-
change degeneracy exactly, and do not have the
usual Regge cuts. This latter feature was not ade-

quately taken into account in our previous approxi-
mate attempts to deal with Fig. 1(b) (Refs. 6—9)
but is explicitly addressed in this paper, which goes
beyond the calculations of Refs. 6—9 in other
respects as well.

Once we have a solution of the above "planar-
bootstrap" problem, physical amplitudes can be ap-
proximated by linear combinations of "ordered"
amplitudes, and nonplanar effects can then be sys-
tematically brought in through a topological ex-
pansion. Earlier versions of DTU, while unambi-

guous and successful for qq mesons, could not
consistently take into account qqq and qqq q states.
Recently, however, Chew and Poenaru, and Stapp'
have found a consistent way of overcoming this
difficulty, without modifiying in any way the pure-

ly qq sector. In their scheme, one or more of the
quark lines of Fig. 1(b) can be replaced by "di-
quarks" of a certain specified topological structure,
and "Landau" lines, which are associated with the
four-momenta of the hadrons in any given dia-

gram, are introduced. It can be argued that the
"interactions" of the latter lines with the diquarks
must be weak. This means that diquark breakup
and formation, and hence qqq q~q transitions, are
forbidden in first approximation, so that qqq q
states should be narrow below the (qqq)-(q q q)
threshold.

At the lowest fully relativistic "zero-entropy"
level of Ref. 5 where spin-momentum coupling is
only dealt with approximately and the ordered am-

plitudes violate parity, it can be shown that the
usual simple quark-model qq and qqq ground-state
families are generated despite the presence of
quark loops, and that an interesting "topological
supersymmetry" property arises, ' with realistic
consequences for hadronic cross sections. In this
paper, however, although we continue to assume
the same quark-model families, we shall work at a
more accurate planar ordered-amplitude level in
which qqq q~q transitions remain suppressed, but
in which parity is satisfied and the spin and
momentum are properly coupled to each other.

In Sec. II we discuss the basic ingredients of our
approach and in Sec. III we give a derivation,

based on a simple dynamical approximation, of an
explicit infinitely rising leading-Regge-trajectory
formula for any given process. (A simplified phys-
ical picture of this is presented in Appendix A.) In
Sec. IV we outline a general procedure for using
this "generic" formula to calculate hadron masses,
in which we require simultaneous consistency for
entire sets of processes. In Sec. V we apply this to
mesons in the exact flavor-SU(n) limit, e.g., to qq
systems containing only u and d quarks; we find
that our results are consistent with a simple
metastable-string picture. In Sec. VI we turn to
heavy mesons containing (u, d, c) and (u, d, b)
quarks, for which certain additional assumptions
have to be made. Finally, in Sec. VII we consider
both light and heavy mesons containing s quarks
by starting with uds degeneracy and then introduc-
ing a small K*-p mass difference.

II. GENERAL DYNAMICAL CONSIDERATIONS

The set of graphs represented by Fig. 1(b) imply
three properties which we will use in making our
hadron-mass calculations.

A. Generalized ladder dynamics

12(a)34~ u (2.1)

+ o ~ +
ctN

~ 0 ~

(b) S ~
(g)

FIG. 2. Dominant contribution to Fig. 1(b) for
moderate t.

For moderate t, Fig. 1(b) is approximately
equivalent to the generalized infinite hadronic
ladder sum of Fig. 2, which generates a leading
"output" qq Regge trajectory, and in which the fol-
lowing hold.

(i) The masses of the vertical-line clusters
(a, . . . ), (b, . . . ), (c,. . . ) must be bounded to avoid
double-counting, say, between Figs. 2(a) and 2(b).

(ii) The ladder exchanges in Fig. 2(b), 2(c),...
themselves have the form of the entire sum of Fig.
2. In previous derivations of formulas for a(t)
these were simply approximated by Regge ex-
changes. %e will not have to make this ap-
proximation in what follows.

Figure 2 will be symbolically represented by
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if 1 and 2 are particles and by

a ~a2(a)34 —+ a (2.2)

S1+S2& S3+S4 . (2.3)

if they are arbitrary members of the Regge-
trajectory families o,'1 and a2, with spins

S~ ——a~(m, ) and S2 ——az(mz ), and masses m~ and

m2. There is no loss of generality in defining our
initial state so that

(S~+S2)~S~+S2 n—, n = integer) 0 . (2.7)

tude, " and must be canceled by an infinite set of
Regge daughters. A simple way of guaranteeing
this is to take v as our basic variable and to use a
Regge term proportional to v; this does not give
any difficulties at t =0 but reduces exactly to a
(cos8, ) behavior when m& ——m2 or m3 —m4.

If we consider lower-helicity amplitudes or
higher-moment sum rules, we must make the re-

placement

B. Duality Otherwise, everything remains the same as before.

Figure 1(b) does not give the usual Regge cuts. "
When combined with analyticity, it therefore im-

plies simple finite-energy sum rule (FESR) duality,
which can be used to relate Figs. 2(a) and 2(d) and

gives (see, e.g., Appendix D)

where the 5-function term is an approximation to
the lowest nonvanishing contribution (of effective
mass ~s, ) to the s-channel absorptive part of Fig.
2(a), the constant s corresponds to a point approxi-
mately halfway between a and the next significant
contribution above it (at least if we expect semi-
local duality), and v is the usual crossing-
symmetric variable —,(s —u), which can also be

written as

4

v=s+ —,
'

t gm;—2 (2.5)

f ds[l (t)5(s —s, ) —b, (t)b (t)v "'8(v)]

Xv ' ' =0, (2.4)

C. Output-a uniqueness

The infinite set of sums of hadronic fishnet

graphs represented by Fig. 1(b) is equivalent to a
multichannel multiparticle generalization of a
Bethe-Salpeter equation, which is itself a relativis-
tic version of a Lippmann-Schwinger or
Schrodinger equation. We would therefore expect
a unique solution for the output a(t) and will as-

sume that this is in fact the case in what follows.

III. EXPLICIT REGGE-TRAJECTORY FORMULA

We will now use the properties of Sec. II to
derive an explicit infinitely rising leading-Regge-
trajectory formula for any given process. Similar
(but not identical) formulas were derived in special
cases in Refs. 6—9. Some of the assumptions we
will use here will be very different, however.

We have taken the usual s-kinematic-singularity-
free highest-helicity amplitude, "multiplied by a
factor of v, with the integer X adjusted so that
the absorptive part of the resulting amplitude T
has the asymptotic Regge behavior b1b2v .

When m1 ——m2 or m3 ——m4, v is proportional to
the cosine of the c.m. scattering angle 8, in the t
channel and is thus the appropriate variable for
Regge exchange. When m&+m2 and m3+m4 we

have, instead,

v+ —,(m~ —m2 )(m3 —m4 )t =2q;qfcos8g2 2 2 2 —1

(2.6)

where q; and qf are initial and final t-channel c.m.
three-momenta. Here a single Regge term propor-
tional to (cos8, )~ or P (cos8, ) will have a singular-

ity at t =0 which is not present in the full ampli-

A. Representation for the Regge-trajectory function

To deal with Fig. 2, we will make an appropriate
projection of the highest-helicity amplitude T in-

troduced in Sec. II 8. Now the projection which is
associated with a partial diagonalization of t-

channel unitary for t & 0, and does not lead to any
t-threshold singularities, is the modified Froissart-
Gribov "partial-wave" projection"

TJ(t) =(2qfq; ) J ' f ds A( t)sQJ(c s8Jo), (3.1)

where A (s, t) is the s-channel absorptive part of T,
normalized so A =ImT for t &0, and QJ is a func-
tion related to a second-type Jacobi function (or a
second-type Legendre function in the case of
spinless-particle scattering). If we now expand
zj+'QJ(z) in powers of z, which decrease quite
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rapidly for
~

z
~

& 1, and then expand in powers of
1/t, we obtain

(m, —m, }(m, —m, )
2 2 2 2

T, (t) = g g ckh(j)
k =Oh =0 2t

X(qfqi } Aj+k+2h(t) ~

2h (3.2)

where Aj is the Mellin transform

AJ(t)= dvA(s, t)v J
0

(3.3)

In most cases we can approximate Tz by the
k =h =0 term in the double sum of Eq. (3.3).
When mi@m2 or m3+m&, however, qjq; is infin-
ite and the higher terms in Eq. (3.2} can have in-

finite coefficients at t =0. This difficulty is relat-
ed to the need for j=a—1, a —2, . . . daughter
poles at t =0 for such processes" and can be cir-
cumvented, at least for the purposes of this paper,
by simply using AJ(t) instead of TJ(t) as our basic
projection formula.

If we formally associate a coupling-strength
parameter P with each of the clusters (a, . . .),
(b, . . .), (c,. . . ), . . ., the projected sum of Fig. 2
takes on the form of an expansion in P

Aj(t) =isa»(t)+p aiJ(t)+p a3j(t)+
(3 4)

where pa iJ is the Mellin transform of Fig. 2(a),
which gives, approximately,

Pa i (s, t) =I (t)5(s —s, )

+b, (t)b2(t)v'"8(s —s )8(sp —s ) ~

The 5-function term is again an approximate to the
lowest nonvanishing contribution in Fig. 2(a) and
the Regge term takes into account all the higher
(s &s) contributions in the average-duality sense of
Eq. (2.4). Since we are insisting on no double-

counting between Figs. 2(a} and 2(b}, we have in-
serted a step function 8(sp —s) to exclude states
above the effective threshold s =sp of Fig. 2(b). If
we take the Mellin transform (3.3) of Eq. (3.5) we
obtain

where v„vp, and 7 are given by Eq. (2.5), with
s =s„s0, and s, respectively.

The 5 functions of Eqs. (2.4) and (3.5) have par-
ticularly simple interpretations if ~s, corresponds
to a single particle. In practice, however, we might
also have contributions from backgrounds, as well
as from other particles, e.g., ones lying on possible
daughter trajectories. Since single-particle states
are generally still expected to provide the most im-

portant contributions, however, we continue to ex-

pect an expression of the form (3.5) to best approx-
imate the absorptive part at low s, even though
~s, may then be effectively shifted away from the
mass of the lowest single-particle contribution.

If we take the [1,N] Pade approximant of Eq.
(3.4) we obtain, for a given t,

where

Pa ii.

1 IC(j) '—

Q2j
2

+ 4 ~ ~

(3.7)

G(v/v, ) =v, P a2(s, t)/I'(t) .

From Eq. (3.7), Aj has a Regge Pole at j=a if

(3.8)

has N terms adjusted so that an expansion of Eq.
(3.7) in powers of P reproduces the first (N+ 1)
terms in Eq. (3.4). Now in the case of the lowest
elastic process for a given set of quantum numbers,

Eq. (3.7) satisfies elastic t-channel unitarity exactly
for any finite value of N (see Appendix E). We
thus expect the series (3.8) to converge fairly rapid-

ly when we take N~ 00. This is in fact trivially
the case for factorizable models with

a„J——uJ.kJ" 'uz, which are usually reasonable ap-
proximations to the graphs of Fig. 2 because of
average duality between vertical-line clusters like
(b . ) and factorizable t-channel Regge
behavior, 6 and which give [1,N] =[1,1] for any N
(see also Appendix A). If we use Eq. (3.3) we find,
order by order, that Eq. (3.8) has the representation

K(j)= I dy G(y)y (3.9)

where yp
——vp/v, (see Appendix F). With N =1

and sp ——s, for example, we would have Eq. (3.9)
with

Paij(t) =I (t)v, E(a)=1 . (3.10)

b, (t)b, (t)
+ ( '— ')

u(t}—j (3.6)
The corresponding residue, normalized as in Eqs.
(2.4) and (3.5), is
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b)b2 ———pa) /K'(o. ) . (3.1 1)

If we combine Eqs. (3.6), (3.10), and (3.11), we ob-
tain I, vo E'(a)

v, +ln
b)b2

'
V &(&)

(3.12)

a+ 1 —S& —S2
1 V vp

+lna+ 1 —SI —S2 Va v

dy G yy 'lny

I, dyG{y}y
(3.13)

which, together with Eq. (3.9) and the FESR (2.4),
gives

e~=c,X,
where

(3.15)

X=(a+ 1 —S)
—S2 )in(V/v, ) (3.16)

and

I I I I I l I j l I ~. --

(h)

FIG. 3. Different intermediate-state contributions to
Fig. 2(b), represented by the sets of lines cut by the
dashed lines I, II, . . . .

The idea of combining ladder dynamics with
FESR duality was first proposed in Ref. 12, and
has seen many other applications since then. '

In(v) /vo)
cI =1+

ln{v/v, )
(3.17)

B. A peak approximation

The dynamics of our problem is now contained
entirely within the function G{y}. In our previous
treatments in Refs. 7 —9 we assumed that the
ladder exchanges of Figs. 2(b), 2(c), . . . could be
replaced by Regge exchanges and that only the
heavy vertical lines need be retained as intermedi-
ate states in using s-channel unitarity to evaluate
the absorptive part; this leads to the usual two-

Reggeon behavior G(y) ccy '"' for large y, modulo
logarithmic factors. In the case of Fig. 2(b), for
example, it corresponds to retaining only the inter-
mediate state cut by line I of Fig. 3(a). On the
other hand, it is known that, by including higher
intermediate states, such as the one cut by line II
in Fig. 3(b), the y

'"' behavior is canceled for large

y, leading to a sharp falloff in y. " We therefore
expect the peaked structure of Fig. 4, where we
have also indicated the threshold effect of the suc-
cessive opening up of the various s-channel
intermediate-state channels associated with Figs.
2(b), 2(c), .... Such a peaking of G (y) permits us,
in turn, to make the approximation

lny=in(v)/v, )

c& ——e, X=1, (3.18)

or, using Eqs. (3.16) and (3.17),

Vi =Vo(V/V )

a(t) =S&+S2—1

(3.19)

s —sa+ ln
va

(3.20)

Since c~ is independent of a, and hence of X, Eq.
(3.15) will, in general, have up to two solutions for
X, and hence for a (case II in Fig. 5). In Sec. II C,
however, we argued that the output a should be
unique. If we impose this requirement, F=c&X
must be tangent to Y=e (case I in Fig. 5}. This
gives

within the integral of Eq. (3.13), with an a-
independent v~. In Appendix C we shall see that
finite-width corrections to Eq. (3.14) should have a
relatively small effect on our final expression for
a(t).

Equations (3.13) and (3.14) reduce to the equa-
tion

FIG. 4. Schematic plot of G(y). The slope discon-
tinuities arise because of the threshold effect of the suc-
cessive opening up of the various s-channel inter-

mediate-state channels associated with Fig. 2(b), 2(c),. . . .
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For processes in which the s- and t-channel Regge
slopes are equal, this is consistent with the usual
semilocal duality statement that s be at a point
halfway between a and its first Regge recurrence,
since a '=a'(t) from Eq. (3.21). This would be
trivially the case for crossing-symmetric processes,
for example, in which a lies on a(t)

Using Eqs. (2.5) and (3.22), Eq. (3.21) can also
be written as

1a(t}=SI+Sq——,

FIG. 5. Possible solutions of Eq. (3.15), arising from
the intersection of Y=e and Y=clX, with I corre-
sponding to c~ ——e and II to cI & e.

4

+2a s + —, t g—m; (3.24)

a(t)=S&+S +2c+2a 'v, , (3.21)

a form which exactly reproduces the t~ 00 Eq.
(3.20) limits of a'(t) and [a(t)—ta'( Do )] if we take

c=——,, 2a ' = 1/(s —s, ) . (3.22)

Since the approximation (3.22) then rapidly gets
better and better as we go further away from the
—(s —s, ) & v, & 0 region of invalidity of Eq. (3.20)
(see Fig. 6), we clearly can use either Eq. (3.20) or
(3.21) for v, & —(s —s, ) and v, )0.

Equation (3.22) gives

S=Sg+ 20 (3.23)

FIG. 6. Plots of Eqs. (3.20) (solid line) and (3.24)
(dashed line) using Eqs. (3.23), (5.12), (5.13), and (5.14)
for the process (5.1) (~m. scattering).

Equation (3.20) has branch points at v, =0 and

v, = —(s —s, ), which can be joined by a cut in the
v, plane. In Appendix 6 we argue that this singu-
larity structure is spurious and that the approxima-
tion (3.14), and hence Eq. (3.20), are invalid in that
region. In its valid nonsingular regions, however,
Eq. (3.20) can be well approximated by

IV. INTERPROCESS CONSISTENCY

The results (3.20) or (4.24) apply to a given
specific process. The same output a can, however,
arise for an infinite set of other processes. For ex-

ample, we should have the same output az(t) both
in pp pp and in p'p' pp, where p" is any Regge
recurrence of p. Now the regions of invalidity
—(s —s, ) & v, &0 are different for these two pro-
cesses, and we can use either Eq. (3.20) or Eq.
(3.24) for v, & —(s —s, ) and v, )0, as we have
seen. On the other hand, we can readily obtain ex-
actly the same a(t) in the overlapping regions of
validity for both processes if we use Eq. (3.24).
Since Eq. (3.24) is linear in t, this also means that
it continues to apply in a region —(s —s, ) & v, &0
for one of these processes, provided this region cor-
responds to a range of t which is in a region of va-
lidity v, & —(s —s, },v, )0 for the other process.
We shall see below that it is always possible to
have such pairs of processes in which the regions
of invalidity do not overlap, making it possible to
apply Eq. (3.24) for any t. The same arguments do
not apply to Eq. (3.20) and so we shall use Eq.
(3.24) in what follows.

In making actual hadronic-mass calculations we
simultaneously apply Eq. (3.24) to entire sets of
processes and require consistency. For the class of
output a(t) of a given quark content
(uu, . . .ss, cu, . . .cc,bu, . . .bb, . . . ) we first order
sets of hadronic processes according to increasing
quark-mass content within the vertical line (a, . . . )

of Fig. 2(a); this corresponds to decreasing dynami-
cal importance of the corresponding external-
horizontal-line channels (12,34) of Fig. 2, since
these are then made up of particles having larger
quark-mass content and lying on lower Regge tra-
jectories. Within each such set we then require the
following.
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MM(M)MM~ aM, (4.1)

which are expected to be dynamically the most im-

portant for ouput uM.

(i) Allowed couplings vanish, exactly or approxi-
mately, only if they are required to by consistency.

(ii) Possible secondary contributions to a in Fig.
2(a) (backgrounds or other states), whose net effect,
as we saw in Sec. III A, would be to shift the effec-
tive value of ~s, away from the mass m, L of the
lowest contributing single-particle state, are as
small as possible. In other words, we assume that
a is dominated by single-particle states unless con-
sistency with other processes requires, say, a partial
suppression of such states and a relative enhance-
ment of the role of backgrounds. Higher states
are, of course, explicitly excluded from a by the
no-double-counting requirement and Eq. (3.23)
when a' is the same in both s and t channels—
unless, again, consistency requires at least a partial
suppression of the lowest state.

The net effect of (i) and (ii) would be to require
a simultaneous minimization of

~
s, —m,L ~

for
all the processes in a given set, with m, L as low as
possible. This would then be repeated for each set
until all the possible parameters of our output-a(t)
class have been extracted. We have no a priori
guarantee, of course, that all of these parameters
can be determined by our procedure, nor that the
resulting solution is unique. In the case of the
light-quark qq systems containing u, d, s quarks,
however, this does turn out in fact to be the case,
given only the p and E* masses, one of which

merely serves to set the energy scale.
In the rest of this paper we shall only be con-

cerned with M =qq mesons. It then turns out to
be sufficient to consider processes of the type

a-a-(a)&&~ a-
p

a-a-(a)&&~ a-
7T p p

am-(a)per~ a-,
u-a-(a)8p~ a- .

7T' p p

(5.2)

(5.4)

In this case we can have s, (m, L if m- & 2m-.
p

The remaining parity-allowed processes, for which

m,L ——min(m-, m-), are

am-(a)&&~ a-,
p

aa-(a)&p~ a-,
u-a-(a)pp —+ a-,
aa-(a)&P~ a-,
u-a-(a)&p~ a-

p p p

a-a-(a)pVr~ a-
7T p p

a-a-(a)pp~ u-
p p p

(5.5)

(5.6)

(5.7)

(5.8)

(5.9)

(5.10)

(5.11)

Here we must have s, & m, L . One can readily
show that, given a' to fix our energy scale, a
simultaneous minimization of the

~
s, —m, L

subject to the above constraints, gives, using Eqs.
(3.24),

4, y. 4 7 t P 0 4 9 4 % 4

(5.12)

for Eqs. (5.1)—(5.11). For example, a decrease of
s, for Eq. (5.10) leads immediately to s, & m ~ for
Eq. (5.5), whereas a decrease of s, for Eq. (5.11)
leads to s, &m for Eq. (5.6). Thus Eq. (5.12)
does correspond to a constrained minimization of
max ~s, —m, L ~

for Eqs. (5.1)—(5.11). It also cor-
responds to a similar minimization for various sub-

sets of Eqs. (5.1)—(5.11).
The solution (5.12) leads to the results

V. APPLICATION TO qq MESONS
IN THE EXACT FLAVOR-SU (5) LIMIT

and

a'-=a-'=(2m- )
p p

(5.13)

Here the ground states are the vector p and the
pseudoscalar &. If n =2, for example, p=(p, co)

and 8= (m., rt„d ), where each pair is mass-
degenerate at our planar level. Now, in order to
carry out the

~

s, —m, t ~

-minimization procedure
of Sec. IV, it is sufficient to consider only p and m.

for the particles 3 and 4 in Fig. 1, since their
Regge recurrences would automatically require
higher s, for the same a(t) in Eq. (3.24).

Parity requires the mass of the lowest allowed
single state to be m, L

——m- for the processes
p

m- =m- —(2a-') '=0
m p p

which gives a-(0) =0.5 and a-(0) =0; if we take

mp
——0.776 GeV, we obtain a-'=0. 833 GeV, in

good agreement with experiment.
If we replace the particles 3 and 4 for any one of

the equations (5.1)—(5.11) by their ¹hand Mth
Regge recurrences, we must make the replacement
s,~s, + , (N+M)a' ' in—Eq. (3.24) (see Fig. 2).
Similar increases in s, also occur if we use higher-
moment versions of the finite-energy sum rule
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1.(t)=t(2mTp) ' for large t (5.15)

(2.4), or lower-helicity amplitudes, in which case
we must make the replacement (2.7). Such in-

creases of s, do not violate any of our constraints
and would arise, for example, if we have a decou-
pling of one or more of the lowest states contribut-
ing to the vertical line of Fig. 2(a); this sort of
decoupling is similar to the introduction of non-
sense wrong-signature zeros in standard Regge
theory" and is known to arise quite naturally in
multichannel dynamics, e.g., in nuclear physics.

our present model is strictly planar, with mass-
degenerate & =(m, g„d) for n =2, so that there is, in
some sense, no distinction between m. and

g„d =(uu+dd )/V 2. This should be contrasted
with the results of Ref. 6, where we imposed 6
parity on our amplitudes, which were, nevertheless,
assumed to be at least approximately planar (exact
planarity is inconsistent with 6 parity for "or-
dered" amplitudes' ). This is a crude way of intro-
ducing higher-order "cylinder" corrections and
leads to a breaking of m-g„d degeneracy. ' The cz,
ap, and a„ trajectories turn out to be the same as
in the exact planar case, however.

It is interesting to note that, as long as the
widths of the particles on the leading Regge trajec-
tory a(t) remain relatively narrow, the above
linear-trajectory light-quark system results are con-
sistent, for moderate and high u, with a
metastable-string picture in which Fig. I corre-
sponds to a rotating string' ' or narrow tube of
hadronic matter; this matter is not stable, but con-
denses into a line of hadrons (through light qq
creation) which stick together for a while and then
break up (see Fig. 7 and Refs. 9 and 16). As long
as its lifetime is long enough, however, we still
have, in the classical limit, the leading-trajectory
a(t) =L (t) —S~ —Sz result:

q„qq l qqqqqq„
FIG. 7. Hadron condensation along a metastable ro-

tating "string" joining a valence q„q„pair.

matter in the hadronic tube between the end parti-
cles 1 and 2 and not on 1 and 2 themselves.

In principle, the results of Sec. V already give a
solution for mesons containing u, d, c,b quarks, in
which we have mass-degenerate (p, cp,D', P,B*,Y)
and (m, ri„d,D.,r)„B,gb ) states, where (D*,D)
=(cu, cd), (g, ri, ) =cc, (B*,B)=(bu, bd), and

(Y,gs)=bb Howe. ver, if we insist on a large a
priori mass difference between, say, p and g, we
find that another solution is in fact possible, at
least if we restrict ourselves to the lowest heavy-
meson states, provided we allow a systematic
decoupling of the lowest light-meson states from
the vertical-line clusters a, . . . in Fig. 2(a). Except
for a minimal number of extra decouplings needed
to achieve this, however, we will continue to iIn-
pose our rules (i) and (ii) of Sec. IV, and, in partic-
ular, a minimization of background contributions
to a.

A. Mesons containing u, d, c quarks

The dominant lowest-s, processes giving output
cc Regge trajectories and corresponding to Eqs.
(5.1)—(5.11) are

aDaD(a~ )DD~ a~,
aDa, (a 2 )DD ~ a&,

a,aD(a3)D*D~ ap
C

aDao, (a&)DD*~ a&,

(6.1)

(6.2)

(6.3)

(6.4)

VI. APPLICATION TO u, d, c AND u, d, b MESONS

tPl ) 7112

TP, fPl ) + foal 2

' 1/2

(v t —m& —m2)
with pig =pl~ and0 p

a,ao, (a5)DD ~a~, (6.5)
for t-(m)+m, ), (5.16)

where m &,m2 are the masses and S&,S2 the spins
of the particles 1,2 at the ends of the string; we
have taken an approximately constant string ten-
sion Tp in order to reproduce the linear form (3.24)
for large t. The classical limit breaks down, of
course, for the ground state but should be reason-
able for all excited states. In this region Tp should
also be universal, since e'-=u-'. This is consistent77 p
with the notion that Tp only depends on the

a,a, (a6)DD*~ a„
C

I

ao,aD, (a, )D*D*~a„,
a ~aD(as)DD ~aq

C

ao~ao, (a 9 )DD*~ a~,

aoa „(a(p)D'D~ap,

a,a, (a ~ ~
)D*D'~ a~,

(6.6)

(6.7)

(6.g)

(6.9)

(6.10)

(6.11)
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with N1 I =ill and S h P7l I
In Sec. V, we had a situation where the s- and

t-channel Regge slopes Q' were equal, so that Eqs.
(3.23) and (3.24) gave the semilocal duality result
that s be halfway between a and the Regge re-
currence immediately above it. This need not the
case for Eqs. (6.1)—(6.11), where we have heavy qq
states in the t channel and light qq states in the s
channel. If, moreover, we apply the metastable
string picture of Fig. 7 to m, D, g„.. ., and p, D*,
P, . . ., we find that, since m~ &)mz, we must have,
for low Q,

where E is given by

(6.24)

and

5=(m „—mp )a-' (6.25)

y=(m~ —m„)a-' (6.26)

If, furthermore, we replace the particles 3 and 4
of Eqs. (2.2) by any of their Regge recurrences, so
that

I I t I I
Q PQ g QD)Qy Q (6.12) 0 0

Q3—+ Q3, Q4~ Q4, (6.27)

&, =XV —35—y —1+~6,

e2 ——2X—25 —y —1+e6,

p3
—1V —5—1+e6,

e4 ——2iV —5—y —1+e6,

e5 ——N —5—y+&6,

e,=5+e6,

e8 ——N —5+@6,

e9——X—y+ e6,

ei0 =2' —5—y+ e6 ~

&ii =&—'7+5+&6 ~

(6.14)

(6.15)

(6.16)

(6.17)

(6.18)

(6.19)

(6.20)

(6.21)

(6.22)

(6.23)

In particular, this follows immediately from Eqs.
(5.15) and (5.16), where To is, as we have seen,
universal. It continues to be true under much
more general conditions, however, as long as we
remember that the material in the hadronic tube
between 1 and 2 is independent of the flavor of the
end particles 1 and 2 themselves.

If we assume that s, and hence Q', continues to
be approximately constant in the region of the
lowest states where Eq. (6.12) applies, we find, on

applying Eqs. (3.24) and (3.22), that consistency
among the processes (6.1)—(6.11) leads to

1

Sg =01' + E']Q~
l 2 p

1 0 0 I —1 i —1——,(ai+a2 —a]—a2)(ay ap, )—
(6.13)

with Q~ ——Q„' and QD, =QD, which must be strict
equalities if we are to maximize the number of
cases where Qs, corresponds to the mass of a

single state. Here Q, is the lowest spin of any par-
ticle on the trajectory a; for the general process
(2.2) and

we must also make the replacement

s~ ~ sa, + 2 (a3+a4 —a3 —a4)a0 0 t —I

(6.28)

QD =Q g =nQ~
D P

(6.29)

This would guarantee, for example, that processes
with no secondary contributions to a when Q; =Q,.
will also essentially never have any secondary con-
tribution when a;+a, . We must also require the
e; to be as low as possible and to correspond to a
maximization of the number of cases where Qs,
corresponds to the mass of a single-particle state.

Although other solutions are possible, the solu-
tion with the minimum nonzero breaking of D*-D
and g-g, mass degeneracy (which we have at the

in Eq. (6.13).
If we did not have the constraint (6.12), we can

readily see that Eqs. (6.13)—(6.23) reduce to Eq.
(5.12), which then corresponds to the solution with
the lowest

i s, —I,L, i, and also gives Regge-slope
universality. With the inequalities of (6.12), how-

ever, we see from Eq. (6.13) that s, decreases with
l

increasing Q& and Q2. This is obviously absurd for
large values of the latter quantities. We must
remember, however, that Eq. (6.12) only applies
for low a, that Eq. (3.24) itself can only be expect-
ed to hold for a limited range of v t, at least on
the charmed-mass scale, and, finally, that the dom-
inant channels for a given t must correspond to
2m |-2m2- v t. We shall therefore restrict our-
selves to small values of Qi and Q2.

If we assume that the inequalities (6.12) are asso-
ciated with a minimal number of extra decouplings
of lowest-state contributions to the a; and if we in-

sist on an overall minimization of secondary con-
tributions to the a; (see Sec. IV), Eqs. (6.13) and
(6.28) would require integer N and n in Eq. (6.24)
and in
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lowest-order "zero-entropy" level of Ref. 5) would
then require, with all of our above constraints,

os«(( In~ «+ In') )=a «((m «+m')~) (6.34)

N=3, n =2, 5=y= —,, e6——0 . (6.30)
with m'«m ~, so that

This corresponds to the smallest value of N, and
hence of the e;, which is consistent with Eq. (6.12).
If we now apply Eqs. (3.24), (6.13), (6.23), (6.24),
(6.29), and (6.30) to, say, Eq. (6.11), we obtain

m +a ~=m a ~ .

Similarly, we must also have

mB+B—mDD

(6.35)

(6.36)

+ 8CXy (6.31)

Taking m~ ——3.10 GeV, this gives mD+
——1.94 GeV,

which should be compared with the observed
D*(2.01) mass. We also obtain, using Eq. (5.13),

m g —mg) ——m —m =—~~ ~m2 2 2 2 i I —]
D ~c 2 P P

(6.32)

which is in good agreement with experiment. Fi-
nally, Eqs. (6.24) and (6.30) give a 2+ cc Regge re-
currence of mass 3.63 GeV, which can be identi-
fied with the familar X(3.55) state.

In the above considerations we did not consider
processes involving channels like ~D*, pD, etc.,
with one charmed and one uncharmed meson,
which give uD+ and a~ as output. However, it

turns out that in this case it is not possible to find
a solution in which any of the s, correspond to
s, =rn, L for these processes, at least with
m «( »mz ) close to the experimental value.

Thus such processes will not help us in determin-

ing any parameters which are not already deter-
mined by the processes which give a~ and a„as

C

output.

N =Zn —1, 6=y= —, ,

I IE6=0, G g =CXgB

(6.37)

If we then combine Eq. (3.24) with our modified
Eqs. (6.13), (6.23), (6.29), (6.30), and (6.12) we ob-
tain

m « = —,mz + —,(m + —,Xa ' )+ —,az

(6.38)

Except for a replacement of D, D*, t)„and 1( by
8, 8*,qs, and Y, we again have Eqs. (6.1)—(6.29).
Now if we are to prevent the possibility of s,
becoming negative when we increase all the o'.;
simultaneously by the same amount, we must have
n &E/2. If, at the same time, we wish to mini-

mize these high-o. ; values of s„we must have
n =N/2 if X is even and n =(%+1)/2 if N is
odd, since n must be an integer, as we have seen.
Now, for a given m~„ the value of n is essentially

determined by Eq. (6.35) and a' « =naz ', which

is the b-quark equivalent of Eq. (6.29). This does
not, by itself, enable us to determine whether we
have the even value 2n or the odd value (2n —1)
for N. If, however, we take the solution with the
minimum nonzero breaking of B -B and f-gb
mass degeneracy and the lowest possible values of
the e; for that n, we must have

B. Mesons containing u, d, b quarks

Our procedure and results here are very similar
to the ones in (A). If we apply the metastable

string picture of Fig. 7 to p,B*,Y, . . . and
m-, B,g&, . . . with m~ &&mP, we obtain, for low o.,
the analog of Eq. (6.12):

I I I I I
o,'-)a +-a~ &a~-az (6.33)

In addition, if q„=u,d in Fig. 8, the low-state

dynamics of any Q„q„system with Q„=c is essen-

tially the same as that of the corresponding system
with Q„=b, since in both cases we have the same
light-quark-"string" rotating around a static
heavy-quark center. We must therefore have

I I I Im~a~-m~a~, m& o.
& -mz a& (6.39)

which would also be obtained if we assumed an ef-
fective 1nr potential between the cc,bb valence

If we now take m~ ——9.46 GeV, we can require
Ã to be such that we have values of e~ ' ——Nn-'

P
and az ' ——na-' ' which satisfy Eq. (6.35) as

P
closely as possible, using Eqs. (6.37) and (6.38), and
the results m ——1.94 GeV and u' ~ '=2+-' ' ob-

tained in the preceding subsection. This gives
n =5, m~, =5.14 GeV, and mz ——5.08 GeV, a

value slightly below the range 5.16 &mz &5.27
GeV obtained experimentally at CESR.

It is interesting to note that our results give
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~ ~o~e ~o~g o

@v9 9 9 9 9v
FIG. 8. Hadron condensation along a metastable ro-

tating "string" joining q„ to a much heavier Q„, which is
then approximately static for lower energies.

quarks, or, alternatively, the corresponding end
mesons in Fig. 7.

VII. APPLICATION TO MESONS
CONTAINING s QUARKS

raise s, above the value given by Eq. (5.12) for
most of the processes involved. These contribu-
tions cannot be calculated a priori unless we have a
more detailed model, However, in the cases where
the output a does not contain s quarks, as in Eqs.
(7.1)—(7.3), the minimum-background lowest

I
sa —maL I

values of Eq. (5.12) can be consistent-

ly attained as before. %e then recover the results
of Sec. V for systems without s quarks and also
obtain

2 2 2 2
m~ —m, =m, —m-

K E p

=mz —m- =mz —mz, (7.5)

A. Mesons containing u, d, s quarks

In the exact-flavor-SU(3) limit we simply have
the results of Sec. V, where the values (5.12) of

I
s, —m, L, I

were as low as possible. If we are to
have m&+ g mp, however, we must take the list

(5.1)—(5.11) for q =u, d and expand it to include
many additional processes involving ss and strange
mesons. For example, in addition to Eq. (5.5), we
must have the associated processes

az, ax+(a) &&.—+ a-,
p

aa-(a)KK +a-, —
P P p

wjth map ——m

(7.1)

(7.2)

As in the case of systems containing u, d, c,b
quarks, it is always possible to have a solution in
which we do not have any mass change when we
replace a u or d quark by an s quark. Unlike the
c- or b-quark cases, however, this mass degeneracy
is not broken very drastically in the real world and
is therefore presumably associated with the pres-
ence of nonresonant backgrounds in the lowest
contributions (a) of Fig. 2(a); it may even be asso-
ciated with nonplanar corrections, as we shall see
in Sec. VIII. In practice, we shall therefore begin
with an exact-flavor-SU(3) solution and then study
the consequences of introducing the minimum
background needed to give a positive E*-p mass
difference.

sa + ——o~=a~ ——aK w ns p' (7.6)

The results (7.5) and (7.6) are in good agreement
with experiment, except for m& . %e must

S

remember, however, that both g„d and g, are ex-
pected to have important higher-order "cylinder"
corrections, which are expected to shift their
masses. '4

B. cs mesons

(7.7)

since the dynamics of a light-quark q„=(u, d)
"string" of mass m/2 rotating about a static
heavy-quark center Q„=c in Fig. 8 is essentially
the same as that of half of the q„=(u,d),
q„=(u,d) string of Fig. 7 with mass m. If we
next repeat this, but now with q„=s instead of
q„=(u,d) everywhere, we obtain

In this case we can obtain all of our results from
fairly general properties of the metastable string
picture of Figs. 7 and 8, using Eq. (3.24) only to
justify linear forms for the cs Regge trajectories.
Now if we compare, say, aD+ with the light-quark

trajectory o.-, we see that, at least for excited states
in their c.m. system, we expect

2a, ((m „+C+m/2) ) =a-(m )+K,

ax~ax, (a)KK~ a-,
p

(7.3)
2aF„((mz„+C+m/2) )=a~(m )+K

with m, L ——mz,
S

az, a-(a)K&~az„etc.,P (7.4)

with m, L
——m-, etc. Here additional background

contributions must be brought in which would

(7.8)

with the same constants E and C. If we then com-
bine Eqs. (7.7) and (7.8) and use the fact that a&(t)
and a~(t) are parallel and linear in t, we obtain

2[an, (t) —a„„(r)]=a-'(m& —m- ) . (7.9)
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where we have also used Eq. (7.5). If we repeat
the same procedure for the corresponding pseudo-
scalar trajectories, we obtain

2 I I I I
mF —mp =(mg —m")a /. ap, ap =ap,

(7.1 1)

which, when combined with Eqs. (7.10), (6.29), and
(5.13), also gives

2 2 2 2m ~ —mF ——mD~ —mD (7.12)

Although the F and E* masses are not as well
know as the D and D* masses experimentally,
these results, when combined with Eqs. (6.29),
(6.30), and (5.13), are in agreement with present
experimental data.

If, finally, we use Eq. (3.24) to justify linear
forms for a, (t) and a, (t), at least in localized

regions just above mD*' and mF*', we obtain

2 2 — 2 2m, —m, =(m, —m- )a-'/ap, a~ =ape,F D & P P

(7.10)

with m' «m ~, so that

mB QH =m cx (7.17)

Since m, —m «m and m, —m, «m „
this also implies, when combined with Eqs. (6.35),
that n', =n' and a', =a', . If, in addition, we

combine Eqs. (6.34) and (7.16), and use Eq. (3.24)
to justify linear forms for ap, (t), a~, (t), az, (t),
and aH, (t), at least in localized regions just above

mD, , mF, , m, , and mH, , respectively, we ob-2 2 2 2

tain

as, (mH, m~—+ )=ap, (m, m—„).

(7.18)

VIII. CONCLUSION

If we repeat this argument for pseudoscalar mesons
and use Eqs. (6.29) and (6.37) to relate ap, ap„
a~, and az„, we obtain Eq. (7.15) and the relations

I I IaH=O'B and aF ——AD.

C. bs Mesons

=(m , —m- )a-/a,2 2
E P p B

I I I I
g =EX g =O,'B =AHH B

If Eq. (7.13) is combined with Eqs. (7.10) and
(7.11) we also have

2 2= 2 2
mH mB

=(m, ' —m, ')a', /a', .

(7.13)

(7.14)

Actually, Eq. (7.15) can also be obtained more
directly, and in a less model-dependent way, by
again noting, as in Sec. VI 8, that if q„=s in Fig.
8, the low-state dynamics of any Q, q system with
Q„=c is essentially the same as that of the corre-
sponding system with Q„=b, since in both cases
we have the same light-quark-"string" rotating
around a static heavy-quark center. We must
therefore have

a„.((m,.+m')') =a .((m, +m')') (7.16)

The above considerations also apply with Q, =b
instead of c in Fig. 8. If H* and H are the vector
and pseudoscalar bs states, we obtain

2 2 2 2
mH —mB ——m, —m,

We have considered a scheme which, unlike
many others, takes light-sea-quark loops into ac-
count, even in lowest order. We are then led, quite
naturally, not only to infinitely rising Regge trajec-
tories, but also to a small value of m /mz, which
has often been difficult to obtain in the past. We
also obtain a constant ap-u Regge-trajectory split-
ting, which, if it were to be described in terms of
an effective qq potential, would require a long-
range spin-spin interaction. Our only free parame-
ters are the p, E, 1(t, and Y masses, one of which
merely serves to fix the energy scale.

Our results were based on fairly general dynami-
cal considerations and do not seem to depend on
the details of any underlying model or theory. In
this respect the situation is similar to the one for
many other many-body problems, where one often
gets almost the same results from widely different
underlying Lagrangians. It may not be the case
for couplings, however, which are discussed in Ap-
pendix B.

In this paper we restricted ourselves to qq
mesons, although successful results have also been
obtained (in collaboration with Nicolescu) for qqq
and qqq q systems, which will be presented in a
separate paper. Our simplest and most natural
solution, which also involves the fewest assump-
tions, is one for which we have exact flavor degen-
eracy; we then obtain a unique set of mass ratios.
Although this mass spectrum is independent of the
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(8.1)

for example, we can also have the even-6 contribu-
tions g„d, p, . . . in

K'K'(a)KE~ap . (8.2)

We would therefore expect a higher effective s,
in the latter, which would lead, in turn, to a break-

ing of (ud)-s flavor mass degeneracy of the correct
order of magnitude.

Our results are restricted to leading Regge tra-
jectories and based on a number of approximations
and assumptions concerning the role of secondary
resonances and backgrounds. It would be straight-

forward, albeit technically difficult, to go beyond
these approximations. For example, if we are to

number of flavors assumed, the results are in fact
in good agreement with experiment for systems
containing only u and d quarks.

Flavor-degeneracy breaking has to be introduced

by hand. Once we have a mass difference such as

m~ —m&, however, we can calculate an entire set
of other mass differences as well. One problem in

the case of the heavy mesons is that we have less
restrictive constraints, presumably a result of the
fact that our dynamics is primarily the self-
consistent dynamics of the flux tube joining the
valence quarks, which is dominated by the light
quarks. This results in a lack of uniqueness and to
the need for extra conditions from a metastable

string picture. It is nevertheless possible to find a
very natural solution with minimum nonzero

breaking of vector-pseudoscalar mass degeneracy
which gives the masses of at least the low states
for the different heavy-meson flavor families.

In the case of systems containing s quarks, we

were able to obtain a unique light-meson mass-

spectrum solution, given an arbitrary small positive
K*-p mass difference. Here the scale of flavor

breaking is such that it is necessarily associated
with small background contributions, rather than

any systematic decoupling of states. The nature of
such backgrounds must await calculations based on

much more detailed models than the one we have

been using here, but may well be associated with

higher orders in the topological expansion, rather
than the strictly planar level we have been assum-

ing here. In particular, we have already seen, in

Sec. V and Ref. 6, that the imposition of G parity
on amplitudes which are assumed to be approxi-
mately planar leads to a breaking of m.-g„d mass

degeneracy. But this means that, whereas we can

only have the odd-6 contributions m, co, . . . to a in

go beyond the peak approximation (3.14), we must
explicitly tackle diagrams such as Fig. 2(b). This
is discussed in more detail in Appendices 8 and C,
and detailed calculations, at least at the simpler
"zero-entropy" level, have been begun in collabora-
tion with Nicolescu and Gauron. Ultimately, low-t

backgrounds could be calculated by evaluating Eq.
(3.7) for integer j. While it is unlikely that
daughter trajectories will emerge from a [1,1] Pade
approximant, they should arise from [1,N ] ap-
proximants with higher N. This would, of course,
necessitate the evaluation of Figs. 2(c),. . . .

In our simple scheme, we have used a version of
duality based on the simple finite-energy sum rule

(2.4). With a systematic program of calculations
of the integer-j resonance and background contri-
butions of the preceding paragraph, we could re-

place the 5-function term in Eq. (2.4) by a much
more accurate expression for the low-s absorptive

part, and, at the same time, progressively increase
the value of s, thereby obtaining an increasingly
better version of this finite-energy sum rule.

Once we have a good representation of the
planar level we could begin to tackle higher-order
(nonplanar) terms in the topological expansion. In
particular, the introduction of the cylinder (which

corresponds to gluonium in QCD) should lead to
large upward shifts of the g and g' masses, as ar-

gued several years ago by Millan. ' It should also
help to clarify the nature of gluonium, which is as-

sociated with a cylinder topology in the DTU
scheme.
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APPENDIX A: A SIMPLIFIED PHYSICAL
PICTURE OF OUR DYNAMICS

Let us consider a simphfied version of our
scheme in which we assume that only the lowest
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nonvanishing contribution (a} dominates in Fig.
1(a), so that so ——s in Eqs. (3.5) and (3.6). Now the
peak approximation (3.14) is equivalent, at least in
the immediate neighborhood of j=a, to taking,
for a given t,

G(y)=H(t)5(y —y, ), y, =v~/v, ,

which then gives

I (t)v,
AJ ——

1 H(t)—y,

(A 1)

(A2)

(i} (fl} (iii) ~ ~

FIG. 9. Figure 1(b)-type quark-duality diagram
displaying its factorizability into the pieces (i), (ii), (iii),
. . . and the contribution of an n-hadronic-particle inter-
rnediate state, represented by the lines cut by the dashed
line.

If we combine this with Eqs. (2.4), (3.10), (3.11),
and the uniqueness of the leading output n for any
given t, we are immediately led to Eq. (3.20). If,
on the other hand, we expand the denominator of
Eq. (A2), we obtain

(A3)

3 (s, t) =I'(t)[5(v —v, )+H (t)5(v v,y ))—
+H (t)5(v v,y, )+. . . —] .

(A4)

If we introduce the variable

Y=lnv, (A5)

which reduces to the usual rapidity variable for
large s, we see that the 5 functions in Eqs. (A4) are
equally spaced in Y, with a spacing

b, Y=ln(v)/v, ) . (A6)

The nth term in the sum of Eq. (A4) or Fig. 2 can
now be interpreted as an average representation of
the contribution of an n-particle intermediate state
to A, so that, in effect, we have an additional parti-
cle in the intermediate state every time we increase
Y by the s-independent amount AY. This corre-
sponds to the quark duality diagram of Fig. 9,
which can be readily factorized into the pieces (i),
(ii), (iii), . . ., at least if we make the usual kinemat-
ic approximations, justifying thereby the factoriz-

+H2 —21 —2+ . ]
which has the structure of a factorizable model.

Strictly speaking, Eq. (A3) need only be valid in

the immediate neighborhood of j=e. If we
nevertheless take the inverse of the Mellin
transform (3.3) (which involves an infinite range of
j), we obtain

I dv[A bib2v ]v ' —'=0,
n —1

(A7)

which is a generalized version of Eq. (2.4). The
natural interval V„~ & v & v„"occupied" by the
(n +1)th 5 function in Eq. (A4) would be one with

&n =+&a3'1 (A8)

where I' is a fixed factor (-2). From Eqs. (A4),
(A7), and (A8) we then have

able structure of both the coefficients and the posi-
tions of the 5 functions of Eq. (A4).

For 1=2, 3=4, and t =0, A is related, via the
optical theorem, to the total cross section for
1+3—+anything. The nth 5 function can then be
related, in an average sense, to the cross section for
1+3~n particles, so that an additional particle is
produced every time Y is increased by the s-
independent amount 6Y. For large s, this gives
rise, in an average way, to a multiplicity which
grows logarithmically with s.

The above picture is, of course, just the familiar
one which arises when we have jet formation in a
high-s small-~t~ collision. As a final-state qq pair
separates, it becomes energetically favorable for the
connecting tube or string to break up and produce
another qq pair. This process is then repeated until
the typical spacing in the string approaches the
typical hadronic size of about 1 fm (-5 GeV ').
We then have a uniform rapidity distribution for
the final-state hadrons, with an average rapidity
spacing which is independent of s.

Although we had to use Eq. (A3) well away
from j=a to derive Eq. (A4), it turns out that the
latter bears an average-duality relationship with t-

channel Regge exchange and should thus be a good
average approximation of A anyway. To see this
we use the finite-energy sum rule

b]b2

cz+ 1 —S) —S2

1

' a+1—S& —S&
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Since the denominator of Eq. (A2) vanishes for j=a, so that 0=y (+, we see that the n-dependent factors
cancel out completely from both sides of Eq. (A7), which then reduces to a consistent n-independent equa-
tion

&ib2r= ' ' (rv. )+'E"" 1—
a+1—S) —S2

1
+1—5) —S~

(Alo)

If we do not make the assumption that so ——s in

Eqs. (3.5) and (3.6), then Eqs. (3.7), (3.9), and (Al)
would give a more complicated version of the ex-

pansion (A3), whose inverse Mellin transform
would correspond to a modification of Eq. (A4) in

which the peaks are partially smeared out in s or v.
Our basic conclusions should remain the same,
however.

APPENDIX B: COUPLINGS

Our Regge-trajectory result (3.24}, which we
used as a generic formula for our mass calcula-
tions, was based on the peak approximation (3.14),
which might be expected to arise in a wide class of
models (see also Appendix C). On the other hand,
a hadronic-coupling calculation necessarily involves
a more detailed model. We shall sketch one such
possible model here.

We shall begin by assuming that Fig. 3(a) does
not begin to be canceled by Figs. 3(b), . . . until we

attain relatively high values of s. This means that
we can approximate Fig. 2(b) by Fig. 3(a) when we
evaluate a2J. We shall furthermore approximate
the ladder exchanges in Fig. 3(a) by Regge ex-

E: V) =4~2j/~jl

with ()} aqj. given by Fig. 10.
In general the upper cutoff so in Eq. (3.5) for

the cluster (a, . . .) of Fig. 2(a) may not be the same
as the corresponding cutoffs so in the clusters
(b, . .) and. (c,. . .) of Fig. 2(b) or Fig. 10. Howev-

er, it is always possible to find other processes for
which the so(t) should be the same as the so(t)
coming into the process being considered; for ex-
ample, so for pp~mm should be the same as the so
for mn. ~n.~ if o.=a& in Fig. 10. We might, of
course, have to consider more than one process at
the same time.

To evaluate Fig. 10 for, say, mm ~arm, we must
first relate the couplings of the different contribu-
tions in (b, . . .) =(c,. . .) to each other. Suppose we
approximate these by narrow peaks at s =mb,
mb((), mb(q), with, say, a spacing of 1/a' be-
tween them. We then have the generalized finite-
energy sum rules of Fig. 11, which, with
b =b(0)=n, gives

(Bl)

t

change and assume that the [1,1] Pade approxi-
mant is already a good representation of Eqs. (3.7),
so that Eq. (3.8) becomes

yerba(t')y~b~(r") =J 'dc@ y (t)g (t r" r)~a(() a(t') a(&")— — (82)

and

yn'b(„)a(r ~r)ymb(n)a(t ~t) =J "+ dco y~~a(t}g (t', r",t)~ g(&p —&)
Nn

(83)

where

co =s+ —,(t 2m —t ' r")—, — (84)

and ('0„ is the value of co evaluated at s =s„, with s„midway between sb(„() and sb(„) for r( & l.
The actual expression for (j} aq is, in general, rather complicated. It simplifies considerably for r =(), how-

ever. If we make the narrow-peak approximation of the preceding paragraph for s =mb, mb~~~, . . . and
2 2s =m, , m, ~&~, . . . we have

P a2(s, O)=QB„„(s,O)8(s —so),
nn'

(85)

where we have added a step function to prevent the double counting of contributions which are already in-
cluded in Pa&(s, O), as given by Eq. (3.5}, and where
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I
'qnn ', Ynb(n)a(t ~ }Yore(n )a'(t ~8„„(s,0)= dz'

16mvs sinatra(t')

1

)&
~

s ——,(t' —mb(„) —m, („) —2m
~

" '0(v s —mb(„) —m, („))

with n, n'=0, 1,2, . . ., b(0)=b, c(0)=c, cop
——0,

4Sqnn ='IS (mb(n) mc(n )} 'Jf& —(mb(n)+mc(n')) ]2 — 2 2 (87)

2t'=4q q„„z' (s —m—b(„) —m, („) —2m ) .

Since b =c =m, Eqs. (82) and (83) relate all of
our couplings to Y (t), which can, in turn, be re-

lated to I (t) through Eq. (2.4) with b)b2 Y-—
The simplest approximation for I (t) would be to
assume that it is dominated by the J =1 p reso-
nance. This would not, however, give rise to a
nonsense wrong-signature zero at a(t) =0 for

Y„b (t'), which is needed to cancel the pole arising
at that point from the sinn. a(t') denominator in

Eq. (86). We must therefore add in just the right
amount of a J =0+ contribution of the same mass
so that I (t) cc a(t) This. would not, of course, en-

able us to cancel the a(t) = —2, —3,. . . poles aris-

ing from the same sinn. a(t') denominator in Eq.
(86), so we must insert a cutoff, say, at a(t')
= —1.5, to exclude them. The region a (t')
g —1.5 should give a negligible contribution to
our integral, however.

One way of avoiding an a(t') = —1.5 cutoff al-

together is to relate I (t') to Y (t') on the as-

sumption that the +~~em amplitude can be
represented by the Lovelace-Veneziano model. Al-

ternatively, we could assume a FESR where, in-

stead of Eq. (2.4}, we take the higher upper limit
1

s =s, + (X+—,)a' ' and include states at s =s„
s, +a' ', . . .s, +No. ' '. This means that we will

have contributions with J =0, 1,. . .,%+1 which

will give a polynomial in I,
' whose coefficients can

be adjusted to give zeros in Y (t') at
a(t')=0, —2, —3, . . ., —(l())'+1); the FESR already

gives a zero at a(t') = —1 automatically. We
would then not have any problem until we get to

I

a(t') = —(%+2), so that we would only require a
cutoff a(t') = —(X+—,).

Once we have an expression for ()) et&, we could
use Eq. (3.10) and the condition

l(."(a)/E(a) = —ln(v)/v, )

= —(e —1)ln(V/v, ), (89)

APPENDIX C: CORRECTION TO
THE PEAK APPROXIMATION

The central dynamical approximation in our

scheme is Eq. (3.14), which leads to Eq. (3.15) and
becomes exact in the limit of an infinitesimally
narrow G(y) distribution in Eq. (3.13). We shall
now see that it continues to be a good approxima-
tion even when we have a fairly broad distribution
for G(y).

We first note that, even if we do not make the
approximation (3.14), Eq. (3.13) can be reduced to
the form (3.15) provided c) is X dependent, with

Z'(a) yp
c) ——c) (X)= — +ln

lny
— K(a } y—

Although the right-hand side of Eq. (3.15) is now
no longer exactly linear in X, we could still impose

which follows from Eqs. (3.9), (3.14), and (3.19), as
constraints to determine both sp=sp(t) and the
overall normalization of our coupling for any given

I
C

~ ~Q ~~4
4

4 4
-- —JV'MA ——

I,
~&A

()t (t')

n

~lJV
7f

FIG. 10. Figure 3{a) for am. —+em in the Regge-

exchange approximation.
FIG. 11. Generalized finite-energy sum-rule duality

of Eqs. {82)and {B3).
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an output a (or X) uniqueness requirement by in-

sisting that Y=ci(X)Xbe tangent to Y =e This
gives, when combined with Eqs. (3.15) and (Cl),
the result

a+1—S, —S,= 1+ (y, lny-)-
1ny ego

(C7)

1
lny =

a+ 1 —S1—S2

ln pin
8 E'(a) yo

Ba Ea y—

Note that the approximation (3.14) within Eq.
(3.13), i.e., within E'(a)/E(a), leads to a vanishing
of the last term in Eq. (C2), which then reduces to
Eq. (3.20). Even if we do not wish to make the
approximation (3.14), we could, of course, still

drop the last term in Eq. (C2) as the first step in
an iterative solution of Eqs. (3.15), (Cl), and (C2).

Suppose we now rewrite Eq. (3.9) for j=a in
the form

To proceed further, we must take a specific
form for G(y). One such form, which takes into
account the (finite-width) features of Fig. 4, would
be

=0, otherwise, (C8)

where f is then a measure of the fractional width
of G(y) relative to the "space" in y available to it.
If we insert Eq. (C8) into Eq. (C5) and again use
the lowest-order Eq. (3.19) in evaluating the first-
order correction term, Eq. (C7) reduces to

y ~G (y) = constant,

—f(yi —yo) &(y —yo}&f(yi —yo)

&(a)=J dyy G(y)yi ' 1+
Po y1

(C3)

a(t)=Si+S2 —1

f2
lny 3e

2—e —1

lny
(C9)

where

g. =I dy y '«y)(y —y i }".
&o

(C5)

The first term in the expansion (C4) is, by itself,
clearly equivalent to the peak approximation (3.14)
within E'(a }/E(a ) and leads to Eq. (3.20). We
can minimize corrections to this by choosing y1 so
that gi ——0, in which case Eqs. (C2) and (C4)
reduce to

Iny= a+ 1 ~i ~2 go»(yo/yy i }

+ 0 ~ 0

Since the last term in Eq. (C6} is only a first-order
correction, we can use the lowest-order result (3.19)
to simplify it. Equation (C6) then gives

where y is a weighting factor, with A, chosen so
as to optimize the peaking of y G(y). If we now
expand the last factor of Eq. (C3) in powers of
(y —yi )/y„we obtain

«a) =yi' 'lgo+(~ —a —1)giyi '

1+ —,(A, —a —1)(A,—a —2)g2y i

(C4)

As in the case of Eq. (3.20), to which it reduces
in the f~0 limit, Eq. (C9) has a spurious cut in
the v, plane in the interval 0 & v, & —(s —s, ), and
reduces to the linear form (3.21) in a region suffi-
ciently far from this region of invalidity, but this
time with

c =--+ (e -1)f'
6

2a '=( —, —c)/{s —s, )

(C10)

instead of Eq. (3.22). From this we see that, even

with f= —,, which corresponds to a fairly large
fractional width for y G(y), c deviates by less

than 10% from its value in Eq. (3.22).

APPENDIX D: FESR for NN —+m.~

We shall now see how the FESR (2.4) arises in
the special case of NN~nm. We first note .that
the f-channe1 NN~mw process can be described in
the usual way by the mN amplitude, "

T =@ei ) l U+ -,')' (ei+e2) 6~ ('f2)

where u, u, and q1,q2 are the wave functions and
four-momenta of the nucleons involved and U and
V are the invariant amplitudes. Instead of U and
V it is often more convenient to deal with V and
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U'= U+2MvV/(I —&/4M ), (D2) (N+1) terms of Eq. (E2). In particular, p~ t—~—.
Now, from Eq. (E2)

where M is the nucleon mass. V and U' are free of
kinematic singularities and satisfy fixed-t disper-
sion relations. Their s-channel absorptive parts B
and A' have the Regge behavior"

T = I+)—+. . . +yN +—1 1 '2

t~ +&o+0&t+ . +P
8 =gv (D3)

(D4)
+ 0 0 ~

(E4)

so that we have the FESR's

J~dv(8' —gv')v '=o,

J~dv(A' —Xv )v =O,

(D5)

(D6)

Clearly the terms ~p, . . .,v.z ~ can only be built out
of t~, . ., t„+. &', the tz+». . . terms can only contri-
bute to terms of order )P in Eqs. (E4). If we re-
peat the same procedure for (P~/Q~) ' we must
then obtain, by construction, the truncated series

where (E5)

B'=vB .

Since S~+S2——1 for NN~vrm, Eq. (D5) c. orre-
sponds to Eq. (2.4), while Eq. (D6) entails making
the replacement S~+S2~S~+S2—1, as in Eq.
(2.7). The amplitudes involved in the two equa-
tions are different, although B' and A' are both
proportional to v for large s.

with exactly the same t&, Tp, ~ ~ ~,&~ ] as in Eq.
(E4).
If we insert the expansion (E4) into Eq. (El) we

obtain, order by order,

(E6)

(E7)

APPENDIX E: UNITARITY OF
[1,N] PADE APPROXIMANTS

v„—&„*=0, n &1 . (E8)

We will now show that, if the amplitude T satis-
fies the unitarity relation

(El)

From Eqs. (E5)—(E7) we then have

(Pi/Qx) ' —(Pi/Q~)* '= 2ip, — (E9)

where p is a phase-space factor, and T has an ex-
pansion

so that the [1,ÃJ Pade approximant (P& /Q~) exact-
ly satisfies the unitarity relation (El).

T=pr +p't + . . +p"+'r
(E2)

APPENDIX F: REPRESENTATION FOR K(j)

then its [1,N| Pade approximant will also satisfy
Eq. (El), where

[1,N] =
QN I+Hi+ ''' +4 A

(E3)

with p~, q&, . . .,q~ adjusted so that an expansion of
Eq. (E3) in powers of P reproduces the first

In Sec. III we saw that the structure (3.9) fol-
lows trivially from Eq. (3.8) when we truncate the
latter at X=1 with sp ——s. We shall now argue
that it also follows for any X and sp &s.

We shall begin by considering the first term in
the series (3.8) which, using Eqs. (3.3) and (3.5),
has the form



SELF-CONSISTENT MESON MASS SPECTRUM

dvai(s, t)(v/v, ) i
21 Vt2

lj 1+ dv b, b v (v/v )
V

oo V
dvai(s, t)

va

I
—j—1

. 1 —f 'dv'b, b,v"
V va

' —j—1 2
Vp I

+ f dv'b i b2v'
V va

with v, 2
——vo. We thus have to deal with products of integrals of the form

' —j—1 —j—1

f dv'A2(v', t)
&a

(Fl)

(F2)

(F3)

If we introduce a new variable y, such that
v'=yv, /v, and interchange the order of integra-
tion, we obtain

Ii2= f dyH(y)y ' ' 1 I

yL, ——(v« /v, ) '(v,„,/v, )
' (F7)

I

with n, & 2 and nk & 1, we find that we again ob-
tain the form (F3), but with the lowest threshold
now at

with

2 (F4)

Since (v«, /v, ) &yo & 1, we conclude that the sum

(3.8) must have the representation (3.9).

and

H(y)= ' 'dv A, (v, t)A2(yv, lv, t) .
V) V

(F5)

The rapid convergence of the expansion of Eq.
(Fl), and hence the validity of Eq. (F3), is always
guaranteed for sufficiently high j. Equation (F3)
can then always be defined by analytic continua-
tion for smaller j.

If we now repeatedly apply Eqs. (F2)—(F4) we
see that all the terms in the series (Fl) can be re-
duced to the form (F3), with thresholds

yt ——v/2/v, , (vlv, )v,2lv„(vlv, ) vip/v„. . . .

APPENDIX G: SINGULARITIES
AT v, =0, —(s —s, )

In Sec. III we saw that Eq. (3.20) had branch
points at v, =0 and v, = —(s —s, ). We shall now

argue that these branch points arise only because
of the approximations we have made and are in
fact spurious.

Suppose, instead of the Pade approximant given

by Eqs. (3.7) and (3.8), we construct a [1,N] Pade
approximant for

A)"'(t) =AI(t) pa, J(t) — —p"—'a„ i )(t),

Since 7/v, & 1 and v, 2 ——vo, Eq. (Fl) therefore has
the representation (3.9) which is therefore valid for
the [1,1] Pade approximant.

We can repeat the above procedure for an1/a 11

for any integer n & 2. The only change is that we
now have v, q~v«& vo in Eq. (Fl), so that we
again obtain the form (F3), but with the lowest
threshold now at yt ——(v,„/v, ) &yo. Finally, if we

apply Eqs. (F2)—(F4) repeatedly to
I I

(a„„/a„)"'(a„„/ai,
)"'

so that

dna
+(n) w nJ

1 —K„(j) '

where

Pan+ i,j', 2 an+2, g~nij)= +p
anj anj

+ ~ 0 ~

and

an+1,1

anj

(G2)

(G3)
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00

aj(t)= dva;(s t)v J, i)n,
ti

(G4)

with v„&v„', if i &i'. The output pole at j=a
can then only arise from

E„(j=a)=1. (G5)

where a given v,H may occur several times within
the product (G5), and where v,» v«. Instead of
Eq. (Fl), for example, we have

00 V
dv a„+i(s,t)

Da J '"+' vtn

Using arguments similar to the ones in Appen-
dix F, K„(j)can be written as a sum of integrals of
the form (F3), with thresholds at

(66)

of the terms in Eq. (63). The rapid convergence
of the expansion (610), and hence the validity of
our integral representation (F3), is always
guaranteed for sufficiently high j; Eq. (F3) can
then always be defined by analytic continuation for
smaller j.

Equation (62) can be used to derive a formula
similar to Eq. (3.12) where, instead of I, we have
an expression involving an integral over a„(s,t).
Such a formula will only involve integrals with
limits of the type given by Eq. (66). To obtain an
analog to Eq. (3.13) which does not depend on the
overall normalization of a„we must introduce an
extra duality constraint; Eq. (2.4) is, of course, one
possibility, but a more appropriate alternative
would be

H„I ds[A (s,t}—bib2v '"]v ' '=0,
n

(611)

where

D„(j)=f dv a„(s,t)(v/v, „)-J-'
tn

=D„(jo)[1+m„(j)),

e (j)=[D (j)—D (jo)]/D (jo»

(67)

(68)

(69)

where the interval L„&s&H„ is one where the re-
lative contribution of a„ to 3 is maximal. We then
obtain an equation which can be solved for a(t),
e.g., by iteration, starting with a linear a(t}. We
then find that the resulting a(t) will only have t
singularities at

and jo is any convenient value of j. We can ex-
pand

vL ——0, vH ——0, &~n =0& &tH =0
~ (G12)

(610)

in Eq. (67) and repeatedly apply Eq. (F2) to obtain
an integral representation given by Eqs. (F3) and
(G6); a similar procedure can be followed for any

where v,H corresponds, of course, to all the possi-
ble values that come into Eq. (66). As we increase
n, Eq. (612) corresponds to lower and lower values
of t relative to v, =0, —(s —s, ). We conclude that
the singularities in Eq. (3.20) at these latter two
points are spurious.
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