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Deep-inelastic Compton scattering is a potentially useful source of information con-

cerning the short-distance structure of hadrons. We present here results for several types

of corrections to the basic Compton subprocess. Contributions from subprocesses involv-

ing photon distribution and fragmentation functions are shown to be small in the high-pT

region in the leading-logarithm approximation. The next-to-leading-order corrections

from the subprocesses yq —+yqg and yg ~yqq are also calculated and found to be small

over a wide rapidity range for large pq values. These small corrections suggest that the

deep-inelastic Compton process will indeed be a useful reaction to measure.

I. INTRODUCTION

The study of hadronic scattering processes with

large transverse momenta is a potentially rich
source of information pertaining to the short-
distance structure of hadrons. However, such reac-
tions receive contributions from many different

types of parton subprocesses and the resulting
complicated superposition makes it difficult to
draw unambiguous conclusions from the data. The
situation is improved somewhat if one allows pho-
tons as well as hadrons to take part in the high-pT
reactions. For both high-pT photoproduction and
the high-pT production of direct photons a reduc-
tion in the number of parton subprocesses occurs
at each order of perturbation theory as compared
to the purely hadronic case. Furthermore, since
the photon couples to the quark charge the relative

weighting of the various subprocesses is different
than in the purely hadronic case. Also, since the
photon can participate directly in the relevant sub-

process, closer contact is made with the underlying

parton kinematics. Following the above line of
reasoning one might conclude that if one photon is

good then two are better. This leads inevitably to
the study of deep-inelastic (DI) Compton scatter-

ing, yp~ y+X.
It was suggested a long time ago that the experi-

mental study of DI Compton scattering would pro-
vide an interesting and important test of the parton
model of deep-inelastic processes. ' In particular,
assuming that the fundamental parton subprocess
is just y-quark elastic scattering, one can measure
the ratio of the average fourth power of the quark
charges to the average second power of the quark

charges. Such a measurement would be an impor-
tant test of the fractionally charged quark model.

Since the original parton-model investigation of
deep-inelastic Compton scattering, it has become
clear that quantum chromodynamics (QCD) is an

excellent candidate theory of strong interactions.
In particular, the asymptotic freedom of QCD al-

lows a systematic perturbative investigation of all

deeply inelastic scattering processes. The great
breadth of application of perturbative QCD follows
from the factorization theorem, which provides a
fundamental justification of the application of
parton-model ideas. In this paper we will apply
these properties of perturbative QCD to investigate
in some depth the relationship between DI Comp-
ton and lepton scattering. In particular we will es-
timate to what extent the ratio (e ) /(e ) is af-
fected by various QCD-induced modifications to
the original parton-model cross section for DI
Compton scattering.

These QCD-induced modifications are of essen-

tially two types. First, we have additional contri-
butions to the basic y+q~ y+q subprocess even

at the leading-logarithm level. These new contri-
butions are consequences of the anomalous, or
pointlike part of the photon structure function.
These contributions have been investigated previ-
ously and are reviewed in Sec. II of this paper.
Second, we have the higher-order strong-
interaction corrections beyond the leading-
logarithm level.

Our calculation is a rather interesting example
of a higher-order QCD calculation for several
reasons. First, it is sufficiently simple that one can
include all the allowed order-a a, subprocesses,
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i.e., y+q~ y+q+g and y+g~ y+q+q. The
corresponding calculation for purely hadronic
high-pT scattering is very complex because of the
much larger number of subprocesses involved.
Second, the interplay between the various types of
corrections may be observed. This provides a po-
tentially useful test of ideas for choosing the op-
timum factorization scale for deep-inelastic pro-
cesses. Third, the calculation is a pedagogically in-

teresting example of the QCD hard-scattering fac-
torization theorem implemented beyond the
leading-logarithm approximation.

The plan of the paper is as follows. In Sec. II
the results of the leading-logarithm calculation are
presented and discussed. In Sec. III the calculation
of the order-a a, corrections is described and the
results are compared to the lowest-order Compton
process. Our conclusions are contained in Sec. IV
and some technical details are presented in two
Appendices.

II. LEADING-LOGARITHM CORRECTIONS

In this section we shall consider a variety of sub-

processes which contribute to the production of
high-p~ photons and, therefore, provide back-
grounds to the Compton process. All of these sub-

processes will eventually yield order-a contribu-
tions at the leading-logarithm level, so a quantita-
tive measurement of (e )/(e ), as explained in

the Introduction, is only possible provided these
backgrounds are small.

The approximation of colinear parton kinematics
will be used. With only one initial-state hadron,
parton-transverse-momentum smearing effects
should not be as important as in purely hadronic
scattering. If only two-body hard-scattering sub-

processes are taken into account, the invariant
cross section for high-pq photon photoproduction
can be written as

E
3 (yp~y+x)= g dx, dxs 2 G,~&(x„g ) Gs~z( xs, g)Dr~, (x„g )—— (ah~cd)5(s+t+u),0'

dp

where s, t, and u denote the parton variables for
the hard-scattering subprocesses. The effects of
higher-order terms are included, to leading-
logarithmic accuracy, by using scale-violating dis-

tribution and fragmentation functions. The factor-
ization scale for these functions, Q, will be dis-

cussed later.
There are four classes of subprocesses which

must be included in Eq. (1):
(I) a =c=y, b =q. This is just the order-a

Compton subprocess. To leading order in a we
can take

Grgr(x) =Der(x) =5(1—x)

(O-35
lg

E 1055-

l0 &7—

-38

I I

yp~y+X
y=O

eV

eV

so that for this class there are no remaining in-

tegrations.
(II) a =y, b and c =q or g. This class included

the order-aa, subprocesses yq~ gq and yg~ qq.
The fragmentation functions Dy/q and D&/g are of
order a/a, so that the net contribution is of order
a .

(III) c =y, a and b =q or g. For this class the
order-aa, subprocesses qg~ yq and qq~ yg are
convoluted with the order-a/a, photon distribu-
tion functions Gq/y and Gg/&.

(IV) a, b, and c =q or g. Here both fragmenta-
tion and distribution functions are convoluted with

[O
59
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FIG. 1. Predictions from the full leading-logarithm
calculation (solid curves) and the leading-logarithm
Compton term alone (dashed curves) versus pT at y =0
for several beam momenta. For clarity the curves have
been multiplied by the factors in parentheses.
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FIG. 3. The ratio R of the full leading-logarithm cal-

culation to the leading-logarithm Compton term.

FIG. 2. Same as Fig. 1 but versus y at fixed pT.

order-a, subprocesses to give an overall a contri-
bution.

The expressions for the relevant subprocesses are
discussed in Appendix A. The photon distribution
and fragmentation functions have been calculated
in the leading-logarithm approximation. Con-
venient parametrizations are also included in Ap-
pendix A. The nucleon distribution functions have
been obtained by fitting deep-inelastic structure
function data and will be discussed further in Sec.
III. For the predictions to be discussed in this sec-
tion we have used the one-loop expression for a, :

a, (Q )=12m/[(33 —2f)ln(Q /A )],
with A=380 MeV/c, f=4, and Q has been taken
as AT

In Fig. 1 the predictions of Eq. (1) for the in-

variant cross section are shown versus pT at y =0
for a variety of beam energies. Here y is the pho-
ton rapidity in the overall center-of-mass system.
The Compton contribution is shown separately by
the dashed curves. It is clear that for large
xT ——2pT/s the Compton subprocess is dominant.

In Fig. 2 the rapidity dependence at fixed pT is
illustrated. The ratio of the total to the Compton
contribution is seen to vary rather slowly with ra-
pidity and, as before, to decrease with increasing

PT.
In order to further illustrate this behavior, in

Fig. 3 several examples of the ratio of the full
leading-logarithm result to the Compton contribu-
tion are shown. Once again it can be seen that the
Compton subprocess dominates in the high-pz re-
gion.

These results suggest that the contributions from
various fragmentation-type subprocesses should not
obscure the Compton subprocess provided that the
transverse momentum is sufficiently large, say
xT &0.4. This same conclusion was reached in

FIG. 4. Feynman graphs for the subprocesses

yq~ yqg and yg —+ yqq. The virtual graphs are shown
as well. Additional graphs are obtained by s~u cross-
ing.
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provide the largest nonleading corrections.
The actual calculation follows closely that of

Ellis et al. , except for our convention concerning
the definition of the parton distributions. We have
chosen to use universal, process independent, par-

e the next-to-
given process in the
ection expressions.

ions have been deter-
ep-inelastic data us-
s calculated beyond
ton distribution and

rocedure is not
known functions to
he next-to-leading-
sses involving the
gmentation functions
ussed above.
outline of the cal-

indication of the
nd in Appendix B.

and a a, to the
ection can be writ-

Ref. 4 which also contains an interesting discussion
of the different kinematics associated with the
various contributions listed above.

III. NONLEADING CORRECTIONS

In this section the results of our calculation of ton distributions and to includ
the order-a u, corrections to the Compton subpro- leading-order corrections for a
cess will be presented. From the discussion in the relevant hard-scattering cross-s
preceding section it is clear that there are in fact The quark and gluon distribut
four classes of higher-order corrections involving mined in this way by fitting de
subprocesses of order a u„ua, , and n, convolut- ing the cross-section expression
ed with the appropriate photon fragmentation the leading order. For the pho
and/or distribution functions. Inclusion of all of fragmentation functions this p
these terms goes well beyond the scope of this pa- necessary since there are no un

per. Here we shall limit our consideration to the be determined. Furthermore, t
contribution of the yg~ yqq and yq —+ yqg sub- order contributions from proce
processes shown in Fig. 4. In the previous section photon distribution and/or fra
it was shown that for large values of xz the vari- have not been included, as disc
ous contributions involving photon distribution or In this section only the basic
fragmentation functions were small. It therefore culation will be discussed. An
seems reasonable to neglect the higher-order calculational details can be fou
corrections to these small terms. That leaves only The contributions of order a
those corrections where the photons take part deep-inelastic Compton cross s
directly in the subprocess. These terms should ten as

d 0 2f d3 d3
E (yp y+X) = J dxb g G~.»(xb) E (yq; yq;)+E (yq; yq;g)

dp dp dp

f zd'0-
+ G,»(xb) g, (yg~yq, q;) . .

dp
(2)

In Eq. (2) the parton distribution functions do not yet contain any Q dependence. Now, in each order of
perturbation theory the leading term will be proportional to (a, lnQ /A ) where Q is the square of some

typical large momentum transfer. These terms can be summed and their effects can be incorporated into
scale-violating distribution and fragmentation functions giving a result of the form of Eq. (1). Now, howev-

er, we have additional nonleading contributions coming from the order-a a, terms in Eq. (2). If we retain
only those terms which receive contributions from the order-a u, subprocesses listed above, then the invari-
ant cross section can be written as

0E, (yp y+X)= dxb g G;I (xb Q ) E, (yq yq')+Ki
dp

9]P d 3

d 0+ f dxb, g Gsr~(x»Q )E (yg q, qj)[D,«(x„Q')+D, (x„Q')]
dp

2f 0g Gq»(xb, Q )E 3 (yq &q;g)Dry (x„—Q )
dp

+ J dx dxb g Gq,.zr(xa Q ) Gg»(xb, Q )E (q;g~yq;)

+ J dxbGs»(xb, Q )Kp .

d3
+ G .g (xb.Q')E, (q'q' yg)

dp
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In Eq. (3) the terms E~ and Eq are the finite, order-o. a, corrections terms that we will calculate. The only
terms that could formally be present in Eq. (3) but which are not included are the class IV leading-logarithm
terms involving purely hadronic subprocesses as well as the order-un, and order-a, corrections. Since we
know that the class II—IV terms are already small in the region of interest (xr & 0.4), this is an acceptable
approximation. The important point to decide is the size of E~ and K2. Next, to order cx„one can write
the required Q -dependent distribution and fragmentation functions as follows:

Gqyq(x, Q )=Gqg~(x)+ t Pqq
—6 g (y)+P —G ~ (y)

2f
Gsq~(x, Q') =Gee(x)+ t I g P« —Gqz~(y), +P« —

Gs~ (y)2~ y . , y y
(4)

Gq gr(x Q ): e ~P»r(x)'t
2

Dr~» (x,Q )= e; Prq(x)t,
2m-

'

where t =lnQ /p and p is the renormalization point. The next step is to substitute Eqs. (4) into Eq. (3),
retaining only order-a and —a a, terms. The result is then set equal to Eq. (2), thereby allowing one to
obtain expressions for the finite corrections terms E~ and E2. The result for E& is

d (T
dxb gG gq(xg)E( —— dxg g G g~(xb)E (yq, yq;g)

dp

&s — dy Xb d 0
, (ya

y
qq

y q) p

d 0ge t I dx»Gq ~q(xs)P»r(x»)E 3 (q, qg~yg)

—pe; t 6» &z(xb)P&q(x, )E (yq;~q~g) (5)

The expression for Ez has a similar form. In both Eqs. (4) and (S) the function PJ are the usual Altarelli-
Parisi functions. Note that Pq~=6Pqg and P~q=3/4Pgq.

The expression for E~ can be further simiplified by noting that there is a 5 function contained in the de-
finition of the two-body invariant cross section. This allows the indicated integrations to be performed leav-

ing a straightforward result for the two correction terms. For this purpose it turns out to be convenient to
switch to a new set of kinematic variables defined by

v =1+tls, w =—ul(s+t) .

In terms of these variables the expression for E~ can be written as follows:

1
usE~ =— (yq; ~ yq;g )

U dU dW

t &s 1 —v do. 1 —v
Pqq s

277 1 —Uw 1 —Uw dv 1 —Uw yq. ~ yq.
pe; —Pqr(w) (sw, —sw(1 —v))2 CX do

l

CX do s(1 —u)+e; Prq(1 —u+uw) s, —
(1—u+uw) dv 1 —u+ w) rq;-q s

(6)

A similar expression can be written for E2.
Now, the cross section for the 2~ 3 subprocess in Eq. (6) contains mass singularities which must be regu-

lated in some fashion. %'e have chosen to use dimensional regularization, working in n =4—2e dimensions.
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In this case the mass singularities appear as terms proportional to 1/e. There are also 1/e terins coming
from the PJ's in Eq. (6). For example,

4~~'
'

r(I —~) x'+(1 —x)'
1(1—2} 2

I

These I/e terms all cancel, leaving a finite result for the nonleading correction terms Ei and Ez.
A comment is in order concerning the one-loop graphs shown in Fig. 4. The interference terms contain-

ing these graphs and the lowest-order Compton graphs also contribute to E& and have been included impli-
citly in the 2~ 3 cross section appearing in Eqs. (2), (5), and (6). These virtual corrections have contribu-
tions proportional to I/e, I/e, and 1. The 1/e parts cancel against similar terms coming from the real-
gluon-emission graphs. The 1/e parts cancel as discussed above. The final results for E j and Eq are there-
fore finite.

We are interested in the corrections to the Compton subprocess coming from K~ and Eq so our final re-
sult takes the form

d cT d'~
, (@ply+&)= Jdxb g Gq, g~(xb, Q') E, (yq;~yq;)+I i + J dxbGs~ (xs,Q')E, .

dp

Two features of Eq. (7) are important. First, the

Q -dependent distribution functions include next-
to-leading order corrections. Second, u, has been
calculated to two-loop accuracy wherever it occurs
in the functions appearing in Eq. (7).

In order to determine the various distribution
functions required for this calculation we have
used measurements of deep-inelastic electron,
muon, and neutrino scatterings. A program which
integrates the Altarelli-Parisi equations was used to
fit data in the range Q & 10 GeV and x & 0.7.
These ranges were chosen to minimize possible ef-
fects of target-mass corrections and higher-twist
terms. Fits were done using the leading-order (LO)
terms and also including the next-to-leading-order
corrections. The values of A obtained were

Aqo ——380 MeV and AMs ——440 MeV, respectively

(MS refers to the modified minimal-subtraction
scheme). The full results of this analysis will be
reported elsewhere.

The convention which we have adopted in this
analysis is to use universal, process-independent
parton distributions and to include the various
next-to-leading-order corrections in the expressions
for the relevant hard-scattering cross sections. The
conventions used for the various coefficient func-
tions are those of Ref. 10. This brings up a techni-
cal point concerning the calculation of the correc-
tions term Ez coming from the subprocess

yg~ yqq. The convention used for the deep-
inelastic gluon coefficient function in Ref. 10 cor-
responds to not performing a spin sum on the ini-
tial gluon. From a practical standpoint, however,
it is more convenient to do this spin sum when cal-
culating the cross section for yg~ yqq. Therefore,
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FIG. 5. The ratio R of the order-a plus order-a a,
calculation, Eq. (7), to the leading-logarithm Compton
term.

I

the gluon convention used in calculating Ez does
not match that used for determining nonleading
corrections in deep-inelastic scattering. From a
practical standpoint this has little impact on our
final results. To change the coefficient function of
the gluon in deep-inelastic scattering is very easy, "
as it amounts to multiplying by (1 e) befor—e re-
moving the 1/e part. The net effect of this change
is to decrease the negative nonleading gluon correc-
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FIG. 6. The net correction C =8 —1 from Fig. 5
versus y for two values of pr. Q'=2pr' has been used.
The full correction (solid lines) receives contributions
from E~ (dotted lines), E2 (dashed-dot lines), and the
distribution functions (dashed lines).

tion to I'2. This, in turn, is compensated by a
small decrease in the size of the sea term which,
through the momentum sum rale, leads to an in-
crease of a few percent in the momentum fraction
carried by the gluon. Of course, there are also
some changes in the two-loop singlet anomalous di-
rnensions' ' but they do not give a large effect.
Thus, if we changed the deep-inelastic convention
to match that used for E2 we would find only a
small change in the gluon distribution. However,
the gluon distribution is still rather poorly known'
and this uncertainty dominates that due to the con-
vention adopted here. At any rate, we shall show
below that E2 is small over a significant fraction
of phase space.

Our results for the overall order-u u, correc-
tions are shown in Figs. 5 —7. Q =2pT has been
used here; the dependence on this choice will be
discussed below. In Fig. 5 the results are shown in
terms of R, defined as the ratio of the terms of or-
der u and u u, to the leading-logarithm Compton
term alone. The leading-logarithm terms involving
photon distribution and fragmentation functions
have not been included. The kinematic regions
chosen match those shown in Figs. 1 —3. It is
clear that in the region near y =0, pT & 2 GeV/c

FIG. 7. The same as Fig. 6 except Q2=s/8 has been
Used.

the corrections are very small. It is also in this re-
gion that the Cornpton process dominates over the
other leading-logarithm backgrounds. Notice how-
ever, that for very forward values of rapidity and
at relatively low pT there is a region where the
corrections become large. In order to understand
this behavior it is useful to break the correction up
into its component parts.

In Fig. 6 two examples are shown of the struc-
ture of the net correction C =R —1 as a,function
of y at fixed p&. E& is negative and small while
E2 is negative and decreases rapidly with increas-
ing pT and increases with increasing y. The third
contribution is due to the nonleading corrections to
the distribution functions. This term changes sign
for the two examples shown. For p~ ——2 GeV/c it
is clear that the large correction at forward y is
due to E2. In this region the range of values of xb
covered in Eq. (7) extends down close to zero:

xsm;„——pre /(s —pze ) .

The gluon distribution is large in this region, there-
by giving rise to a large contribution from Eq.
When a perturbative correction becomes this large
it is dear that the result cannot be trusted. Furth-
ermore, there are certainly other dynamical mech-
anisms which can also make significant contribu-
tions in this kinematic region. For example, it has
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been shown in Ref. 15, using the results of Ref. 16,
that the yg~ yg scattering subprocess makes a
non-neglible contribution for large y and small pT.
Therefore, in the region of large positive y one
must go to the somewhat higher pT values where
the gluon correction becomes smaller (see Fig. 5).

In calculating the above results we have chosen
the argument of a, to be the same as that used for
the distribution functions, i.e., Q =2pT . In prin-
ciple these two quantities can be different. Howev-
er, to the order that we have calculated here, there
are no strong coupling-constant-renormalization
terms. Therefore, there is no rationale for choos-
ing a different scale for a, and the distribution
functions. We also have the freedom to vary our
choice of Q in order to minimize the resulting
corrections. It is difficult to choose an optimum
value for Q, however, since there are three contri-
butions to the overall correction and each one has
a different kinematic structure. The choice used
here gives small corrections everywhere except for
large y and small pT. We show in Fig. 7 the struc-
ture of the correction terms if we use the choice
Q =s/8. It has been noticed previously' that this
choice of factorization scale minimizes the correc-
tions to large-p~ quark-quark scattering calculated
in Refs. 5 and 17. It is clear from Fig. 7, however,
that this choice gives very large correction terms to
photon-quark scattering. We can conclude that
these is no obvious universal choice of factoriza-
tion scale Q which will minimize the higher-order
corrections for all large-pT subprocesses simultane-
ously. It is clear then that there is a need for ex-
plicit calculation of each case.

V. CONCLUSIONS

In the large-transverse-momentum region in-
clusive photon photoproduction is dominated by
the Compton subprocess. We have demonstrated
that in the leading-logarithm approximation the
contributions from subprocesses involving photon
fragmentation and distribution functions decrease
in importance rapidly with increasing pT. We have
also presented results for the order-a a, correc-
tions coming from the yg~ yqq and yq —+ yqg sub-
processes. These corrections were found to be very
small for pT & 2 GeV/c and rapidity values away
from the forward region. For very forward rapidi-

The authors wish to thank I. Hinchliffe for a
useful discussion and correspondence. This work
was supported in part by the U.S. Department of
Energy.

APPENDIX A

In this appendix we summarize some expressions
which are used in the leading-logarithm analysis.
For a two-body reaction the invariant cross section
and do. /dt are related by

E 3
=— 5(sit+ )u.

0 S do
dp3 m dt

(Al)

The Compton-subprocess cross section is given by

do 2~a ei s u
2 4 —+-

dt s2 u s
(A2)

The relevant order-aa, cross sections are
2

do 'tr&&ser u t
yg~ o'It: = +

dt s2 t u

S~aa, e; t s.2 —+-
(3s ) s t

do
y%'~ sg:

dt

The expressions for the corresponding time-
reversed reactions can be obtained by multiplying

8
by color factors of —, and —,, respectively. Expres-
sions for the order-a, subprocesses can be found
in Ref. 18.

In carrying out the calculations in Sec. II it was
useful to have simple parametrizations of the
leading-logarithm photon distribution and frag-
mentation functions. The following expressions
were used:

ty values, the gluon correction E2 becomes large
and somewhat higher pT values must be reached
before the corrections are small again.

The small magnitude of the higher-order correc-
tions means that the simple structure predicted by
the Compton subprocess should appear in the
high-pr region. This reaction provides an example
where the perturbation series appears to be rapidly
converging. As a result, a precise measurement at
high-pT of this cross section should provide a use-
ful test of the QCD-based description of large-
momentum-transfer scattering.
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xGq;qr(x, Q )=F e; (1.81 —1.67x+2. 16x ) +0.0038(1—x)' x
1 —0.41n(1 —x )
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xGsir(x, Q )=0.194F(1—x)' x

e; (2.21 —1.28x+1.29x )x
xD&i~(x, Q, )=F +0.0020(1 —x ) x

l 1 —1.63 ln(1 —x)

xD&~s(x, Q ) =xDs~r(x, Qz),

where F= (u/2m ) ln(Q /A ).

APPENDIX B

All of the calculational techniques used in this paper follow closely the methods of Ref. 5. First we dis-

cuss the calculation of the 2—+ 3 process p&+pz~ k~+kz+k3 (the real bremsstrahlung graphs). The in-

variant, totally massless, , three-particle phase space in n =4—2e dimensions is

d" 'ki d" 'k2 d" 'k3
PS3" ——f ) ) )

(2n )"5 "'(pi+pz k1 —k—z —k3),
(2m )" 2k ~o (2m )" 2kzo (2m)" 2k3o

(4 )&(1—2)
26

1 1f f ududw[u (1—u)w(1 —w)] ' f dH) sin' '8) f dHz sin '8z,

where we have expressed the final answer in the rest frame of k2+k3, i.e.,

kz ——kzo(1, . . ., sinH~ sinHz, sinH~ cosHz, cosH
& ),

k3 —k3o( 1,. . ., —sinHj sinHz, —sinH~ cosHz —
cosHt )

It is useful to define a set of invariants as follows:

$=2JP& P2

spy =2k) kg

tg
—2p &

.k;

u;= —2p2 k;, i,j=1,2,3.
So we have, letting k~ correspond to the observed
particle,

ti ———s(1 —u),

u) = —Svw ~

sz3 —su(1 —w )

Furthermore, we have in the k2+k3 rest frame

SV
710

2$23

s(1—uw)
Pro =

2S23

s(1 —u+uw)
k)o ——

2$23

Also, defining the angles f,f',P" according to

tl = —2plo 10 (1

u
&

———2Pzok, o (1—cos1('),

s =+2piopzo (1—cosg"),

we have the useful relations

. zg (1—u)(1 —w)
sin

2 1 —v+vw

u w(1 —w)
(1—uw)(1 —u+uw)

'sin
2

1—w
sin

2 1 —vw

from which expressions for cos f/2, cosl(t, etc., are
easily obtained.

After squaring the matrix element, we are left
with several hundred terms to integrate with
respect to 0& and 02. Each term consists of at
most four dot products in the numerator and
denominator, e.g.,

St&t3

u3t2u2
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Using

s+Q) +Q2+Q3 —$+t] +t2+t3 —0

and partial fractioning gives for this term

st](s+t]) 1 1+(S+]]]) t21l2 t21]3

st& 1 1+ +S+9) Q2 Q3

d 023 ——
z
—cosf („) 1 —1

4P]OP20k20 2

)&2F& —e, —e, 1 —e;sin 2

are given in Ref. 5. The bulk of the calculation
consists, therefore, of only rather mechanical re-

It is remarkable that in all known cases of totally
massless 2—+ 3 scattering there are never any indi-
vidual dot products of higher than the first power
in the denominators, ' even in n dimensions. The
integrals with only one dot product (involving k2
or k3) in the denominator are straightforward, e.g.,

f d8] sin' '8] f d8zsin '82
Q2

1 m

2p2ok2o &

awhile integrals of the form

petition of these kinds of manipulations, and in
fact we used the program SCHOONSCHIp to han-
dle all of the algebra of this calculation.

Concerning the virtual graphs, the calculation is
by now rather standard. The only potential diffi-
culty is in the evaluation of the box graph, i.e., one
wants

d"k
l4 ——

(2 )II

k (k —k]) (k —p]) (k —p] —p2)

An easy way to proceed is to combine the last two
propagators first,

1 1
2 , =fdx

(k —p] ) (k —p] —p2) ]] (k —p] —xpp)

Then the k integration is easy, and the remaining x
integral is also straightforward, so we find

—il (1+@)B(—e, —e) —2I4-
( —s) +'(4]r) '(1 —U) e

2——+ln(1 —]])+e
2

where s=2p& p2, t= —2p& k&, u=1+t/s. A
somewhat more elegant derivation of I4 is given in
Ref. 21.
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