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The cross section for e te ~— W W ~ up to the one-loop level is presented within the

framework of quantum flavor dynamics.

I. INTRODUCTION

Presently theoretical and experimental physicists
are convinced that the four fundamental forces of
nature are adequately described by gauge theories.
The self-interactions of the gauge particles are
found to play an essential role. Furthermore, the
renormalizability of these field theories® allows the
calculation of radiative corrections.

At this moment there is very good agreement be-
tween quantum flavor dynamics (QFD),> a non-
Abelian gauge theory of electromagnetic and weak
interactions based on an SU, X U; Lie group, and
the results of low-energy experiments.

The three-vector-boson vertices of QFD can be
studied in detail in the process ete ™ —>W+tW ™,
With the advent of the very-high-energy e te ™
storage ring LEP at CERN,* this reaction will be-
come experimentally feasible and will undoubtedly
provide an important test for the theory.

Therefore, I calculated the cross section for
ete”™—WTW™ including all one-loop radiative
corrections. Results are given in a center-of-mass
energy range from 165 up to 500 GeV. Attention
is paid to the Higgs-boson-mass dependence of the
results. Hard bremsstrahlung is, however, not in-
cluded because it depends entirely on the accessible
phase space, which is different for each experimen-
tal setup.

Recently a similar calculation has been done by
Lemoine and Veltman,® but I obtain different re-
sults. Although the relative behavior of the radia-
tive corrections is quite similar to theirs, there are
nevertheless some differences in magnitude, prob-
ably due to a different renormalization procedure
and to the use of different quark masses.

The outline of my paper is as follows. In Sec. II
the model is described. In Sec. III the kinematics
is defined. Section IV presents the lowest-order
cross section. The one-loop corrections are dis-
cussed in Sec. V. Section VI explains the renor-
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malization procedure. Bremsstrahlung is treated in
Sec. VII. The results are commented upon in Sec.
VIII and, finally, conclusions are drawn in Sec. IX.

II. MODEL

I will briefly describe QFD.

(i) The theory is based on an SU, X U; symme-
try, which implies the existence of four gauge
fields (AZ, a=1,2,3, and B,). The corresponding
Yang-Mills Lagrangian is given by

1 a pa 1
Lym=—7FpuF v — 737G Gy

TABLE 1. Physical and unphysical fields.

Photon y

Neutral and charged z, W,‘i

weak vector bosons

Higgs particle H
Leptons and quarks vi,l,qlq}

Neutral and charged 0, bt
Higgs-Kibble ghosts

Faddeev-Popov ghosts WAYO Wt
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e*(p,) Wq,)

e=(p_) Wig_)

FIG. 1. The reactionete " —>W* W .

with
Fi,=0,49—0,A% +g€unAPAS
G,,=9d,B,—9d,B, .
The physical fields, denoted by W:f, Z,,and 4,
(photon), are related to A, and B,:

1 1_.42
Wf:—J_E(A”_;_lA") ’

Z =cos9WA,3, —sinfy B, ,

I
A, =sin6WA,3L +cosOw B,

with @y the weak mixing angle.

(ii) In constructing the Lagrangian for the
matter fields (leptons v;,/ and quarks g¢.,q;), the
left-handed fermions are put into SU, doublets (f;),
while the right-handed ones are singlets (f,) under
SU,. The transformation properties with respect

FIG. 3. Self-energy insertions and ¥Z mixing.
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FIG. 2. The reaction ete ~— W *W ~ in lowest or-
der.

to U, are fixed such that the proper couplings to
the photon result.

(iii) The couplings between the vector bosons and
the fermions are completely determined by the fact
that the covariant derivatives D, involving the
gauge fields, acting on f have to transform under
SU, X U, in precisely the same way as f itself.

(iv) A two-component complex scalar field is in-
troduced in order to generate masses for the SU,
vector bosons and the fermions using the Higgs
mechanism.

I performed the calculations in the °t Hooft
gauge (in which the vector-boson propagators are
diagonal). The complete Lagrangian, including the
Faddeev-Popov ghost Lagrangian, is written down
in an appendix. The physical and unphysical fields
involved are pictorially represented in Table I.

In this paper only two generations of leptons
and quarks, each with three color degrees of free-

FIG. 4. Vertex corrections.
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TABLE II. Self-energy diagrams. TABLE III. Vertex-correction diagrams.
Number
of
w Topology diagrams Example
34, "o 20 m
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W ete 4 t 3
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z e
2,“, tl 24 u Y]
Vu
H
77N
'\ ,\ Y w + w- t 1 26
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2 1 20 Y W™
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dg
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3¢ t 3 ( )
v




26 W-PAIR PRODUCTION IN ELECTRON-POSITRON . .. 1591
dom, are taken into account. The width of the in the high-energy limit, the Mandelstam variables
neutral weak vector boson is also neglected. 5’

s=——, s'=—(p,+p_)?,

my

III. KINEMATICS t' , )
t=;-2, t'=—(py—q4)
w
In defining the kinematics for the process (see
Fig. 1) are introduced. They are equal to
E 2
et(py)+e (p_)>WHg ) +W=(g_), §=—
my

where the momenta p, and p_ are taken to be in- L 12
coming and ¢ and g_ to be outgoing, with [the t=1—7s[1+(1-4/5)"cosOcm ]

Pauli metric (+,+,+,+) is used] with E, ,, the center-of-mass energy and 6, ,, the

p.2=p_2=0 angle between P_ and . The polarization vec-
+ - ’ tors of W are denoted by €.
q +2=q_2= —mpy? I only consider unpolarized e *e ~ beams.

IV. LOWEST ORDER

Three Feynman diagrams contribute in lowest order to the process e te ~—WtW ™. A photon and a
neutral weak vector boson are exchanged in the s channel, while an electron neutrino is exchanged in the ¢
channel (see Fig. 2). The expression for the tree amplitude reads

. 1
My=(2m)*g? smzow—;?v(pnnu(p_)V,M(—q+,—q_,q++q_)
|
—costy ————0(p I +ayshulp _Wunl—q4+,—q -9+ +9-)
—S +mZ

1 1 _ ~
+ g TP =g (14yshulp_) | €)e,
with g the weak coupling constant,

. 1
sin?0y — 7 1

cosOy = T acosty
and
Vi (k1,kyk3) =8,k —ka)a+8,a(ky—k3),+ (ks —ky), .
The corresponding differential cross section (in mb if my, is in GeV) is given by

0 2(1__ 172
‘;‘(’) = (0'62202;(”11 2‘:/” g4 do%y +doyz +dod+do’z +doS,+daY,) ,
w

where, for example, do3z arises from the ¥Z interference. The do® are, in terms of the independent
kinematical variables s and 7, equal to

. 4 2 2 2
sin*0y (v*+a*)cos“ Oy
do%y=-2 Fy(s,t), do%y=—2—————F,(s,1),
A4 s2 ! Z (—s+sec20y)?
11 v cosBysin’0y,

dod=— Fy(s,t), do%z=—4 Fi(s,t),

4 42 s(—s+sec?0y)
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o sin’fy (v+a)cosOy

Oqyv= F3(S,t), da%vz

where

st (—s+sec? Oy )t

F3(S,t) 3

Fi(s,t)=(s*—4s +12)t>+(s3— 652+ 205 —24)t —4s>+17s>—4s + 12,

Fyls,t)=t*+(s —2)t3—(4s —5)2+4(s —2)t +4 ,

Fi(s,t)=(s —2)t3+s(s —4)t?—(4s>—55 —6)t —8s —4 .

This formula agrees with the result obtained by Alles et al.b. [The lowest-order cross section (Sec. 3) of Ref.
5 contains a number of misprints and the curves of Figs. 3 and 4 should be multiplied with
(1—4/5)'"2/(1—1/5)"/2. Furthermore, in (3.5) the factor S~ in the equation for F, should be omitted,
while in the equation for F5 the factor 83 must be replaced by 8 ~2.]

The total cross section (in mb if my is in GeV) for unpolarized e te ~ beams in lowest order is given by

SO (0.6240)*(1—4/5)!2

1287my>s
with
o _ sin‘fy Gils) o= (v2+a?)cos’Oy
Gaa=""g TS 0zz= (—s+sec?0y)?
0 v cosOysin’0y, o sin’Oy
Tuz= _—————s(—s—}-seczew) 1(s), o4y=
where

Gy(s)=Fs(s>+ 165> — 685 —48),

0 0 0 0 0 0
g 094 +0%2z+00,+04z +04y+02,)

G(s), 0%,=G,(s),

(v+a)cos@
a'%vz — W G3(S) ,

—s+sec?Oy

14+(1—4/5)172

1 2 2 1
== 0s—48)+4 [1—=
G,(s)=7;(s2+20s —48)+ s T a7
Gi(s)=—5(s>+ 185 —285 —24)+32 1+——21S

Again this formula agrees with results obtained by
various authors.®—%

V. ONE-LOOP CORRECTIONS

Radiative corrections for scattering processes’
consist of two parts: virtual corrections, due to
closed loops in Feynman diagrams, and real correc-
tions caused by the bremsstrahlung of photons.
The differential cross section for ete~—>W+tW =
to order g° can be expressed in the form

do do°

——=——(14+87)

a0 4o T
with 87 the total radiative correction. It is then
composed of two terms

d7=0p+38s,

where 8y is the contribution of the virtual correc-
tions, i.e., the contribution from the interference

(1 —a/s)2’

1 14(1—4/5)172

(1—4/5) 72 " 1_(1—a/s)\ 72

between the three lowest-order diagrams and the
ones in which one closed loop occurs, and 8z is the
bremsstrahlung correction, due to the emission of a
photon which escapes detection. The virtual
correction is equal to

8y =8,48,+8,+5, .

In here 8; denotes the contribution of the self-
energy insertions, while 8, comes from the various
vertex corrections and 6, from the box diagrams.
Finally 8, contains the renormalization counter-
terms.

The complications arising from substitutions of
variables, reduction of strings and evaluation of
traces of Dirac y matrices, etc., are considerable.
To this end extensive use has been made of the
algebraic-manipulation program REDUCE.!°

In computing one-loop Feynman graphs, one has
to evaluate in the dimensional regularization
scheme integrals of the following type:



26 W-PAIR PRODUCTION IN ELECTRON-POSITRON . . . 1593

1
T(m?) = [d"q—— ,

f qq Tm?
1,9,,9,9y

(@ +mD(g+k)P+my]’

So’l"vﬂv(kz’m 129m22)= fd”q

qu;uqququqvqk
g*+m (g +k ) +m3* (g +k +ky)*+m3?]

BO,u,uv,;wA,,uvM(k12’k227k32’(kl +k2)27(k2 +k3 )2’(k1 +k2 +k3)2,m12,m22,m32,m42)

VO,,UrMV,#VA(kXZ’kZ{v(kl +k2)2,m12,m22,m32): fd"q (

b

n 1,94:949v+9,9v91,9u9v909
=fd 973 2 2 2 2 2 2 27
(@ +m (g +k) +my (g +k+k2) +my (g +ky+ky+k3) +my°]

Every such one-loop integral can be decomposed in terms of form factors. Take for example V,,, (depend-
ing on six Lorentz invariants):

Viy=V1%8uy+ Volk yko+ Vi?k ik 2+ Vi2k [ k2

with &k }#kf} =k Lkﬁ-{—kﬁkﬁ. These 64 one-loop form factors are algebraically related to the scalar integrals
T, So, Vo, and By,!! for which 't Hooft and Veltman derived exact analytical expressions (in terms of loga-
rithms and Spence functions).!> The complete set of formulas has been programmed into a long program,
called FOLFFGT, for the evaluation of all dimensionally regularized one-loop form factors.'?

In this section I will discuss the one-loop virtual corrections to e 'e "— W+ W ™ in some more detail.

(i) Self-energy diagrams (see Fig. 3 and Table II). Many graphs, of two different types, namely without
(¢1) and with four-vertices (¢,), contribute to the photon and neutral-weak-vector-boson self-energies 2 ﬁ,,
and 2 f,, and to the photon —neutral-weak-vector-boson mixing Eﬁf. Their contributions to the cross sec-
tion are, respectively, proportional to Af(—s’), AZ(—s')—A#(—mz?), and Af%(—s') with

S k) =Ay (k)8 + Ay (kD K, .
The contribution due to the electron-neutrino self-energy =" is further proportional to A¥(—¢’) with
SYkN) =5 A" KN (1—ys)k .

The wave-function renormalization of the charged weak vector bosons is also determined by their self-energy
2;’:,. Again two types of graphs contribute. The renormalized W* wave functions are equal to

Ay
1+ 52 e

et.
2

kl=—m W
Finally writing the electron (positron) self-energy as

Sk =i[AS(k?)—AS(kD)ys1Kk + Ak m, ,

the renormalized e * wave functions are given by their free spinors multiplied with

0AS 0AS
1,2 2 2 ! 3 _Lo2pe 2
1+ 58 |A{(—m,*)—2m, B2 ki om 2 BKE k2= m? T78°AN—m,?) .
M
Note that the electron is taken to be massive. I Again two different topologies (¢, and ¢,) can be
also checked the Slavnov-Taylor identities for the distinguished. The three-vector-boson vertex
various vector-boson self-energies. corrections are free of anomalies, because quark
(ii) Vertex-correction diagrams (see Fig. 4 and loop are also taken into account.
Table III). A large number of graphs contribute to (iii) Box diagrams (see Fig. 5 and Table IV).
the corrections to the ete ™y, ete~Z, yWtW—, The box graphs can be divided into three different

ZWtW=, etv,W™, and e v, W™ vertices. classes, namely the direct (z;), crossed (¢;) and tri-
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angular (¢,) box graphs. Their contribution 8, to
the cross section is given by their interference with
the three lowest-order diagrams.

VI. RENORMALIZATION

The one-loop virtual corrections are in general
ultraviolet divergent. In order to remove these
divergencies, appearing in the dimensional regulari-
zation scheme as terms containing

I T
 n—4 4

with n the number of space-time dimensions and y
Euler’s constant, counterterms have to be added to
the Lagrangian. In QFD it is enough to renormal-
ize three free parameters, for example, the elec-
tromagnetic coupling constant, the weak mixing
angle, and the mass of the charged weak vector bo-
sons. Therefore, one needs three experimental
data. The electromagnetic fine-structure constant
and the weak mixing angle!* are equal to

82

T ar  137.04°

so that, using a lowest-order relation, the weak
fine-structure constant equals
2 2 1

R
47 47rsin? Ow 31.52 °

sin®0y =0.23 ,

The value of the mass of the charged weak vector
bosons is, however, not yet known. I take

my=80.33 GeV
and
mz=91.54 GeV .

These numbers are very near to the one-loop-

corrected values calculated by Antonelli et al.,'’

but they still satisfy the lowest-order relation

et w*

e~ W~

FIG. 5. Box diagrams.

TABLE IV. Box diagrams.

Number
of
Topology diagrams Example
Direct t 13
Crossed t 13
Triangular 193 5

my
——=cosOy .
mz

The renormalization 8e? of the electric charge
can be determined by computing the one-loop

e+ Y wY/ e+ WY e W7 et WY
Y Y Y Y Y

Y
y W™\ e7 v W\ e7 W\ e7 W-
e+ WY ed W7 et W7
Z Z Y Z ¥
e’ W\ ey W\ ev A

e# *e*
y(b 20

. <
e Wt et W ef W et w*
Y
Ve Ve Ve Ve
"
e W™ e " W™ e W~ es A

FIG. 6. Diagrams forete"—W*Wy.
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FIG. 7. The lowest-order total cross section for
ete — wWtw-.

corrections to Coulomb scattering of muons on
electrons. This has also been done by Antonelli

et al.'® and I use their result. The renormalization
of the weak-vector-boson masses is further fixed by
their self-energies, namely,

%)

b

dmyt=AY(—my?), dmzt=AH—my

so that the renormalization of the weak mixing an-
gle is given by the formula

cos? 0y dmz2 —8my*

2
8sin“Oy = 5
mz

The contribution from the counterterm Lagrangian

8L gpp=-Z qrple +Oe,sinby, +8sinby ,my +8my,)
— ZQFD(e,sinOW,m w)

to the cross section is then equal to

d do®

3 ..
892—‘ SSI 29 — .
32 TS O S in%e,, | da

TABLE V. The lowest-order total cross section for
ete~— W W for different values of the center-of-
mass energy.

E. .. (GeV) 0%(10 pb)
165 1.02
175 1.54
200 1.71
225 1.60
250 1.45
350 1.00
500 0.63
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(16" nb)

da®
dQ
N
g
T
—~
-

2.25+ / —

200 Ecm= 250 Gev ———a/ B

175+ { .

150 Ecm.=200 GeV

1251

100 Ecms= 175 GeV

075

050

025

000F=——=—T—""_ | L 1 1 L
0° 18° 36° 54° 72° 90° 108° 126° 144° 162° 180°
Ocm

FIG. 8. The lowest-order differential cross section for
ete~—WTW ™ for some values of the center-of-mass
energy.

The total virtual correction now turns out to be ul-
traviolet finite, as expected in a renormalizable
theory.

VII. BREMSSTRAHLUNG

Finally there are the infrared divergencies of the
one-loop virtual corrections. These infinities, regu-

*+5 T T T
6(%)

-15

“20pf 250 Gev 7

1 1
0° 45° 90°

-25 1
135°  180°

Bcm.

FIG. 9. The percentage one-loop radiative corrections
to the lowest-order differential cross section for
ete”— W+ W~ for a Higgs-boson mass of 100 GeV
and for some values of the center-of-mass energy.
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TABLE VI. The lowest-order differential cross section for e *e ~—> W * W~ in 10~! ub for different values of the
center-of-mass energy and the scattering angle.

Oc.m. 0° 18° 36° 54° 72° 90° 108° 126° 144° 162° 180°
Ecm.
(GeV)
175 0.106 0.110 0.123 0.147 0.185 0.243 0.331 0.458 0.619 0.770 0.832
200 0.061 0.065 0.078 0.100 0.137 0.198 0.307 0.513 0.889 1.406 1.619
250 0.023 0.026 0.035 0.049 0.071 0.108 0.183 0.355 0.797 1.973 2.467
500 0.001 0.002 0.004 0.008 0.012 0.018 0.033 0.074 0.209 0.942 3.511

larized by introducing a small fictitious photon
mass A, are canceled by the soft-real-photon brems-
strahlung contribution. Therefore, the Feynman
diagrams of Fig. 6 have to be evaluated. Owing to
a Slavnov-Taylor identity for the lowest-order am-
plitude, the bremsstrahlung cross section factorizes
into an infrared factor

sin®0y )
= g
BT 16m
v f dk Py P
|Y|<X(E +A2)1/2 k.p+ k'P_
2
_ q+ q_
kg, k-+q_

with k the photon four-momentum and into the
lowest-order cross section do®/d Q. This infrared
integral has been worked out previously by ’t Hooft
and Veltman.!? Also here the mass of the electron
cannot be neglected. I take the threshold energy
E, at which the charged weak vector bosons can
be detected equal to 0.45 E_ ., , so that the cutoff
is given by °

E‘C.l’l’l.2
X= 2 217271 °
20[0.55E, , +(0.2025E, , 2—my?)'/?]

TABLE VII. The percentage one-loop radiative
corrections to the lowest-order differential cross section
for ete~— W+ W™ at a center-of-mass energy E., of
175 GeV for different values of the Higgs-boson mass
and the scattering angle.

Oc.m. 0 45° 90° 135° 180°
mpy
(GeV)
25 —5.54 —486 —298 —1.09 —038
100 —3.57 —2.85 —095 +095 +1.67
750 +003 +079 +271 +462 +535

VIII. RESULTS

There are very strong cancellations between the
different contributions to the lowest-order total
cross section for e te~— W+ W ~. This is charac-
teristic for gauge theories. The cross section, of
the order of 10 pb, rises sharply and attains not far
above threshold its maximum (17.2 pb at
E_ ., =195 GeV), from where on it decreases slow-
ly. Numerical results are given in Table V and
plotted in Fig. 7.

The lowest-order differential cross section, of the
order of 10~! nb, is very asymmetric: it is strong-
ly peaked near 6., equal to 180°. This effect gets
more pronounced at higher energies (at E_ ,, =500
GeV the cross section almost reaches 1 nb). The
electron-neutrino exchange is responsible for this
peaking. It was, however, pointed out by Gaemers
and Gounaris that it is possible to eliminate the
neutrino-exchange contribution by using polarized
beams.” Numerical results are listed in Table VI
and plotted in Fig. 8.

The percentage one-loop radiative corrections to
the lowest-order angular distribution are found to
be negative, except in the case of low energy, and
they increase considerably in going from 175 to
500 GeV. The percentage corrections decrease
while, because of the peaking of the cross section,
the absolute corrections increase with growing
scattering angles. I calculated the corrections for
different values of the Higgs-boson mass (mg =25,
100, and 750 GeV). The dependence on that mass

TABLE VIII. Same as Table VII with E,,, =200
GeV.

Ocm. O 45° 90° 135° 180°
myg
(GeV)
25 —1427 —12.82 —9.63 —6.44 —4.99
100 —12.62 —11.17 —-798 —479 —3.34
750 —9.63 —8.18 —499 —-1.80 —0.35
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TABLE IX. Same as Table VII with E_,, =250 TABLE X. Same as Table VII with E_;, =500 GeV.
GeV.
¢ O, O 45° 90° 135°  180°

Oem. O 45° 90° 135 180° my

my (GeV)
vV
(GeV) 25 —52.05 —-3799 -—-29.56 —21.18 —7.23
25 —22.54 —18.13 —13.78 —9.46 —-5.15 100 —50.06 —36.16 —27.81 —1947 —5.56
100 —20.83 —16.54 —12.25 —-796 —3.68 750 —46.32 —32.57 —24.31 —16.01 -—-2.14
750 —17.89 —13.73 —9.50 -—-5.24 —-0.98
is about 5%, so that, in order to see the effect of the framework of quantum flavor dynamics. Ex-
the Higgs particle, very accurate measurements of perimental confirmation of the theoretical predic-
the cross section are required. Note finally that tion will be crucial for the validity of the non-
the corrections at E ,, =175 GeV have a different Abelian gauge idea.

sign for small and large Higgs-boson mass. Nu-
merical results for the percentage corrections are
presented in Tables VII—X and plotted in Fig. 9.
The relative behavior of the one-loop corrections
for various energies and Higgs-boson masses is
nearly the same as that of Ref. 5. The shifts in
magnitude are probably a consequence of the adop-
tion of a different, but related, renormalization
procedure and the use of smaller quark masses.
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APPENDIX

The QFD Feynman rules are easily derived from the Lagrangian, neglecting Higgs-boson —fermion cou-
plings and quark mixings,

1 1 11 _ _
Lorp=—74pvApv—7Zpvlyy— P c-szZZuZ# - Wpthu,v—szW: Wy

—%mw2¢°¢°~¢;¢;—mw2¢+¢-

1 1 272 140
_2H,.tuﬂ_2mHH —7 PP c

o_ 1
HERT
—isg(d, WEW A, wrwolra,wirw ) —icgz, witw —zwlrw vz, witw, )
—sQUA AW IW, — AW AW )~ Z,ZWIWT —ZWIZ W)

—scg* (24, Z  WIW, —AZ (WrW, +Wiw, )]
_%gZW:W; wiw, +%g2W;rW; wiw, +3myPmy’g i —20my’g >

mH2

—Zmeg‘lH—%a)[H2+(<I>°)2+2<I>+<I>‘]—i—m gH[H?+ (2% 42010
w
1 mH2

_?Z—mWZ

gAH* + (%) + 2H D +4H >t O™ +-4(D°) 0T O~ 44D D))
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2
—%zlzmngFZ“H~ngW“+W;H+isngAM(WICD_—W;¢+)—i£c—mwgzp(WIq>-‘W;¢+)
11 0 0 : - —p+ -3 T L
+ o 8ZuHE), — O H ) +isgd, (@F @Y — D™D L) +i— —gZ,(PTD, —D" D))

1 —_ —_ —
+3g[W (HO,—®H )+ W, (HOL—®VH )]

—Sig[ W, (DD, — DT, — W, (®°D], —d+d,)]

U A, OO — g7, Z [+ (P 48P PO O] -2 ¢ g, Z, DY 0

P2
1 — — 1. - — LS — —
— W W [H (P 2047 |+ 5isg A, H(W, &7 — W, @) — =g’ Z H(W [ O~ — W, &)

2
+ 55824, QWO+ W, )~ %ﬁc—gzzyd’( Wio—+w, %)
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