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The cross section for e+e ~8'+8' up to the one-loop level is presented within the
framework of quantum flavor dynamics.

I. INTRODUCTION

Presently theoretical and experimental physicists
are convinced that the four fundamental forces of
nature are adequately described by gauge theories. '

The self-interactions of the gauge particles are
found to play an essential role. Furthermore, the
renormalizability of these field theories allows the
calculation of radiative corrections.

At this moment there is very good agreement be-
tween quantum flavor dynamics (QFD), ' a non-

Abelian gauge theory of electromagnetic and weak
interactions based on an SU&&U& Lie group, and
the results of low-energy experiments.

The three-vector-boson vertices of QFD can be
studied in detail in the process e+e ~8'+8'
%ith the advent of the very-high-energy e+e
storage ring LEP at CERN, this reaction will be-

come experimentally feasible and will undoubtedly
provide an important test for the theory.

Therefore, I calculated the cross section for
e+e —+ 8'+ 8' including all one-loop radiative
corrections. Results are given in a center-of-mass

energy range from 165 up to 500 GeV. Attention
is paid to the Higgs-boson-mass dependence of the
results. Hard bremsstrahlung is, however, not in-

cluded because it depends entirely on the accessible
phase space, which is different for each experimen-
tal setup.

Recently a similar calculation has been done by
Lemoine and Veltman, but I obtain different re-
sults. Although the relative behavior of the radia-
tive corrections is quite similar to theirs, there are
nevertheless some differences in magnitude, prob-
ably due to a different renormalization procedure
and to the use of different quark masses.

The outline of my paper is as follows. In Sec. II
the model is described. In Sec. III the kinematics
is defined. Section IV presents the lowest-order
cross section. The one-loop corrections are dis-
cussed in Sec. V. Section VI explains the renor-

II. MODEL

I will briefly describe QFD.
(i) The theory is based on an SUq)& U, symme-

try, which implies the existence of four gauge
fields (A„', a =1,2, 3, and B„). The corresponding
Yang-Mills Lagrangian is given by

1 g g 1

WvM 4FI Qq 4 GqyGp

TABLE I. Physical and unphysical fields.

Photon y

Neutral and charged
weak vector bosons

Higgs particle

Leptons and quarks &I~I qcqc

Neutral and charged
Higgs-Kibble ghosts

Faddeev-Popov ghosts ggA gy0 gg+

malization procedure. Bremsstrahlung is treated in
Sec. VII. The results are commented upon in Sec.
VIII and, finally, conclusions are drawn in Sec. IX.
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e+ W+

iVe

e++W

FIG. 1. The reaction e+e —+ %+8

FIG. 2. The reaction e+e ~8'+8' in lowest or-
der.

with

+„'„=B„A'„—B„Aq+ge,b,A„A'„,

Gpv= dpBv dPp .—

The physical fields, denoted by 8'&, Z&, and A&
(photon), are related to A& and B&.

(A„'+iAq),+ 1
P 2 P

Z„=cos8g A„' —sin0g B„,
A& ——sinH ~A &+cosg~B„

with 0~ the weak mixing angle.
(ii) In constructing the Lagrangian for the

matter fields (leptons vl, 1 and quarks q,',q,'), the
left-handed fermions are put into SU2 doublets (f~),
while the right-handed ones are singlets (f„) under

SU2. The transformation properties with respect'

to U& are fixed such that the proper couplings to
the photon result.

(iii) The couplings between the vector bosons and
the fermions are completely determined by the fact
that the covariant derivatives D„, involving the
gauge fields, acting on f have to transform under

SUqX U~ in precisely the same way as f itself.
(iv) A two-component complex scalar field is in-

troduced in order to generate masses for the SU2
vector bosons and the fermions using the Higgs
mechanism.

I performed the calculations in the 't Hooft
gauge (in which the vector-boson propagators are

diagonal). The complete Lagrangian, including the
Faddeev-Popov ghost Lagrangian, is written down
in an appendix. The physical and unphysical fields
involved are pictorially represented in Table I.

In this paper only two generations of leptons
and quarks, each with three color degrees of free-

Z ~ Z

+w.
~~Ve

e++~~W' e+++ ~W'

+e- +W
FIG. 3. Self-energy insertions and yZ mixing.

e. W e W

FIG. 4. Vertex corrections.
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TABLE II. Self-energy diagrams. TABLE III. Vertex-correction diagrams.

20
Topology

Number
of

diagrams Example

e+e y

t2

el
z

Vp,

t2
gw-

t2 10

20

t2 31

Ug

10

/w'

t2

e+v, 8'+

Ye

Ye
I
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dom, are taken into account. The width of the
neutral weak vector boson is also neglected.

in the high-energy limit, the Mandelstam variables

s= 2q s = —(p~+p )
2

III. KINEMATICS

In defining the kinematics for the process (see
Fig. 1)

e+(p+)+e (p )~$'+(q+)+8' (q ),
where the momenta p+ and p are taken to be in-

coming and q+ and q to be outgoing, with [the
Pauli metric ( +,+,+, + ) is used]

2 2
p+ =p- =0

~

2= 2— 2

(p+ q+ )
Nl gr

are introduced. They are equal to
2E,S=

mar
2

t =1——,s[1+(1—4/s)'~ cosH, ]

with E, the center-of-mass energy and 8, ~ the
angle between p and q+. The polarization vec-
tors of W+-are denoted by e

I only consider unpolarized e+e beams.

IV. LOWEST ORDER

Three Feynman diagrams contribute in lowest order to the process e+e —+8'+8' . A photon and a
neutral weak vector boson are exchanged in the s channel, while an electron neutrino is exchanged in the t
channel (see Fig. 2). The expression for the tree amplitude reads

Mo=(2ir) g sin Hit, u(p+)yt„u(p )V„„i(—q+, —q,q++q )—s

1—cosHs, , v(p+ )yi(u+tty5)u(p ) &„„3,( —q+, —q, q++q )
S +WZ

, v(p+)y„(p' —q' )y, (1+y, )tt(p ) e„e„1 1 +

with g the weak coupling constant,

and

2 1

sin ger —
4

cos8p

1a=—
4 cosl9p

~pv3(kl~k2~k3) '5@v(kl k24, +tivi(k2 k3)p+'5ijp(k3 kl)v .

The corresponding differential cross section (in mb if ms is in GeV) is given by

do o (0.6240) (1—4/s)'i 4 o o o o o o
3 g («~a+dtrzz+dtr~+dtr~z+dtr~~+«z~)

32&mgr s

where, for example, dozz arises from the yZ interference. The do. are, in terms of the independent
kinematical variables s and t, equal to

sin Hii o (u +a )cos Hii
der„„=—2 3 Fi(s t), do'zz= —2

2 2 Fi(s t),
S3 ( —s+sec Hs )

p 1 1 p U cos8 ~sin 8~
do =———&F2(s, t), do'gz ———4 Fi (s, t ),

4 t s( —s+sec Hp)
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sin 8s p (u+a )cos8|4
der/ = F3(s,t), dlJz„=

p
F3(s,t ),

st ( —s+sec 8s )t

where

Fi(s, t)=(s 4s+—12)t +(s —6s +20s 24—)t —4s +17s2—4s+12,

F,(s, t) =t'+(s 2)t'—(4s —5)t'—+4(s 2—)t+4,
F3(s,t) =(s 2—)t +s(s 4)—t (4—s 5s——6)t —8s —4 .

This formula agrees with the result obtained by Alles et al. . [The lowest-order cross section (Sec. 3) of Ref.
5 contains a number of misprints and the curves of Figs. 3 and 4 should be multiplied with
(1—4/s)'~ /(1 —1/s)'~ . Furthermore, in (3.5) the factor P in the equation for F~ should be omitted,
while in the equation for F3 the factor P must be replaced by P .]

The total cross section (in mb if m~ is in GeV) for unpolarized e e beams in lowest order is given by

p (0.6240) (1—4/s) 4 p p p p p p
g (o~~+ozz+o +o~z+o~.+oz.)

128lTmgr s

with

sin 8~ p (u +a )cos 8~
Gi(s» ozz=

S ( —s+sec 8s )

0 U cosOgrs1n Ogr
0&z =2

2 Gi(s), o'z„——
s( —s+sec 8+ )

where

sin ep
G3(s), oz, ——

(u+a )cos8~
z G3(s),—S+SeC2e~

Gi(s) = —,s(s +16s —68s —48),

G2(s)= »(s +20s —48)+4 1 ——,ln
1 2 1 1+(1—4/s)'i

(1—4/s )' 1 —(1—4/s )'i

G3(s)= ——,(s +18s —28s —24)+32 1+—,ln3 2 1 1 1+(1—4/s)'i
(1—4/s)' 1 —(1—4/s)'

Again this formula agrees with results obtained by
various authors.

V. ONE-LOOP CORRECTIONS

Radiative corrections for scattering processes
consist of two parts: virtual corrections, due to
closed loops in Feynman diagrams, and real correc-
tions caused by the bremsstrahlung of photons.
The differential cross section for e+e ~8'+8'
to order g can be expressed in the form

dQ dQ
80 6f0'

with 5T the total radiative correction. It is then
composed of two terms

5g ——5@+5g,
where 5& is the contribution of the virtual correc-
tions, i.e., the contribution from the interference

between the three lowest-order diagrams and the
ones in which one closed loop occurs, and 5~ is the
bremsstrahlung correction, due to the eIDission of a
photon which escapes detection. The virtual
correction is equal to

5y ——5, +5„+5b+5„.
In here 5, denotes the contribution of the self-
energy insertions, while 5„comes from the various
vertex corrections and 5b from the box diagrams.
Finally 5, contains the renormalization counter-
terms.

The complications arising from substitutions of
variables, reduction of strings and evaluation of
traces of Dirac y matrices, etc., are considerable.
To this end extensive use has been made of the
algebraic-manipulation program REDUCE.

In computing one-loop Feynman graphs, one has
to evaluate in the dimensional regularization
scheme integrals of the following type:
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T(m') =fd "q
29+m

1,

(q'+m, '}[(q+k)'+m, '] '

2 2 2 2 2 2 j.

V01«@vs«v2(kl «k2 «(k 1 +k2 } «m 1 «m 2 «m3
~qp~qpqv~qpqvqz

(q +m1 )[(q+k, ) +m2 ][(q+k1+k2) +m3 ]

BOY,14vpv2, pvt«a(kl «k2 «k3 «(kl+k2) «(k2+k3} «(kl+k2+k3} «ml «m2 «m3 «m4

~9'p ~q'p, qv~9pqvqx~9 pqvqxq'o1
d

(q +m1 )[(q+k1) +m2 ][(q+k1+k2) +m3 ][(q+k1+k2+k3) +m4 ]

Every such one-loop integral can be decomposed in terms of form factors. Take for example V„„(depend-
ing on six Lorentz invariants):

with k I&k~I
——k&k„+k„'kz. These 64 one-loop form factors are algebraically related to the scalar integrals

T, So, Vo, and Bo," for which 't Hooft and Veltman derived exact analytical expressions (in terms of loga-
rithms and Spence functions). ' The complete set of formulas has been programmed into a long program,
called FQLFFGT, for the evaluation of all dimensionally regularized one-loop form factors. '

In this section I will discuss the one-loop virtual corrections to e+e ~8'+8' in some more detail.
(i) Self energy dia-grams (see Fig. 3 and Table II). Many graphs, of two different types, namely without

(t1) and with four-vertices (t2), contribute to the photon and neutral-weak-vector-boson self-energies Xz,
and X& and to the photon —neutral-weak-vector-boson mixing X@ . Their contributions to the cross sec-
tion are, respectively, proportional to b, 1( —s'), b1( —s') —b1( —mz ), and b. 1 ( —s') with

Xq„(k )=t««. 1(k )5qv+b, 2(k )krak, .

The contribution due to the electron-neutrino self-energy X" is further proportional to b,"( t') with—
X'(k )=-, 6"(k )(1—y5)it .

The wave-function renormalization of the charged weak vector bosons is also determined by their self-energy

X&„. Again two types of graphs contribute. The renormalized 8'-+ wave functions are equal to

, , aa,
k =—m~

Finally writing the electron (positron} self-energy as

X'(k )=i[6,1(k ) —62(k )y5])t+63(k }m, ,

the renormalized e-+wave functions are given by their free spinors multiplied with

aa',
2 e 21+—g b, 1( —rn, ) —2m, — + —,g h2( —m, ) .e e gk2 k = —m gk2 k = —m

e

Note that the electron is taken to be massive. I
also checked the Slavnov-Taylor identities for the
various vector-boson self-energies.

(ii) Vertex correction di-agrams (see Fig. 4 and
Table III). A large number of graphs contribute to
the corrections to the e+e y, e+e Z, yS'+8'
ZS'+8', e+v, 8'+, and e v.,8' vertices.

Again two different topologies (t1 and t2) can be
distinguished. The three-vector-boson vertex
corrections are free of anomalies, because quark
loop are also taken into account.

(iii) Box diagrams (see Fig. 5 and Table IV).
The box graphs can be divided into three different
classes, namely the direct (t1), crossed (t1) and tri-
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angular (t2) box graphs. Their contribution 5s to
the cross section is given by their interference with
the three lowest-order diagrams.

Topology

Number
of

diagrams

TABLE IV. Box diagrams.

Example

VI. RENORMALIZATION

The one-loop virtual corrections are in general
ultraviolet divergent. In order to remove these
divergencies, appearing in the dimensional regulari-
zation scheme as terms containing

I= +inn. —y
2

n —4

with n the number of space-time dimensions and y
Euler's constant, counterterms have to be added to
the Lagrangian. In QFD it is enough to renormal-
ize three free parameters, for example, the elec-

tromagnetic coupling constant, the weak mixing
angle, and the mass of the charged weak vector bo-
sons. Therefore, one needs three experimental
data. The electromagnetic fine-structure constant
and the weak mixing angle' are equal to

Direct

Crossed

13

13

„&e

sm Ops =0.23 ~
Triangular

so that, using a lowest-order relation, the weak
fine-structure constant equals

82 ~2 ]

4m Sin20~

The value of the mass of the charged weak vector
bosons is, however, not yet known. I take

mp ——80.33 GeV

and

Pl~
=cos8w .

Plz

The renormalization 5e of the electric charge
can be determined by computing the one-loop

mz ——91.54 GeV .

These numbers are very near to the one-loop-
corrected values calculated by Antonelli et al. ,

'

but they still satisfy the lowest-order relation

Y

w/

Y

e++Qw' e+Q+w' e++Qw' e+++w'
Y

Ye-XXw- eAkw- e-XXw- eX &w-
Y

FIG. 5. Box diagrams. FIG. 6. Diagrams for e+e ~8'+8' y.
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FIG. 7. The lowest-order total cross section for
e+e ~8'+ W
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5 sin Ogr =2
2 2cos 0~5mz —5m@
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The contribution from the counterterm Lagrangian

tom )5~QFD QFD e(e+ tIe, sin8~+5 ssnOII, mII. +
—W&FD(e, sin8~, m z )

to the cross section is then equal to

B . B d
5e +5sin 8~

Be B sin

corrections to ouC lomb scattering of muons on
nelliThis has also been done by Antone ielectrons. is as
.izationet al. ' and I use their result. The renorma iza

'

is further fixed byof the weak-vector-boson masses is u
their self-energies, name y,

~ ~

1

2 —z 2t)m '=aI ( —m~') Smz'=aI( mz-5m~ ——

0 4

so that the renormalization of the weak mixing an-

gele is given by the formula

0.25—

I I

0' 18' 36' 54' 72'
I I I I I

90' 'I08' 126' 144' 162' 180

~c.m,

The total virtual correct~on now tuturns out to be ul-
~ ~ ~

ected in a renormalizabletraviolet inite, as ex
theory.

VII. BREN SSTRAH LUNG

F' ll there are the infrared div ger encies of theina y
' 'ies reu-one-loop virtua co'rt 1 orrections. These infinit', g

+5

6(v. )

Ec~=175 GeV ..""
~ ~ ~ ~

~ ~
~ \

FIG. 8. The lowest-order differential cross section for
e+e 8'+ W for some values of the center-of-mass
energy.

—10

BLE V. The lowest-order total cross section forTA
center-of-e+e 8'+8' for different values of the

mass energy.

E,.(GeV)

165
175
200
225
250
350
500

o. (10 pb)

1.02
1.54
1.71
1.60
1.45
1.00
0.63

+E =250 GeV

-25
0'

I

45'
I I

90' 135' 180'
e,

FIG. 9. The percentage one-loop radradiative corrections
to the lowest-or er id r differential cross section or

s of 100 GeVe+e ~W+8' for a Higgs-boson mass o e
and or some va uevalues of the center-of-mass energy.
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TABLE VI. The lowest-order differential cross section for e+e —+8'+8' in 10 ' nb for different values of the
center-of-mass energy and the scattering angle.

0,
g
(GeV)

175
200
250
500

0'

0.106
0.061
0.023
0.001

18'

0.110
0.065
0.026
0.002

36'

0.123
0.078
0.035
0.004

0.147
0.100
0.049
0.008

72

0.185
0.137
0.071
0.012

90'

0.243
0.198
0.108
0.018

108'

0.331
0.307
0.183
0.033

126'

0.458
0.513
0.355
0.074

144'

0.619
0.889
0.797
0.209

162'

0.770
1.406
1.973
0.942

180'

0.832
1.619
2.467
3.511

sin Ogr
6g ——

3 g
16m

dk P+
(k+A, )' kp kp

q+ q+k.q+ k.q

'2

with k the photon four-momentum and into the
lowest-order cross section do /dQ. This infrared
integral has been worked out previously by 't Hooft
and Veltman. ' Also here the mass of the electron
cannot be neglected. I take the threshold energy
E,h at which the charged weak vector bosons can
be detected equal to 0.45 E, , so that the cutoff
is given by '

2

20[0.55E, + (0.2025E, —m ~ )' ]

TABLE VII. The percentage one-loop radiative
corrections to the lowest-order differential cross section
for e+e ~8'+8' at a center-of-mass energy E, of
17S GeV for different values of the Higgs-boson mass
and the scattering angle.

larized by introducing a small fictitious photon
mass A, , are canceled by the soft-real-photon brems-
strahlung contribution. Therefore, the Feynman
diagrams of Fig. 6 have to be evaluated. Owing to
a Slavnov-Taylor identity for the lowest-order am-

plitude, the bremsstrahlung cross section factorizes
into an infrared factor

VIII. RESULTS

There are very strong cancellations between the
different contributions to the lowest-order total
cross section for e+e —+8'+8' . This is charac-
teristic for gauge theories. The cross section, of
the order of 10 pb, rises sharply and attains not far
above threshold its maximum (17.2 pb at
E, =195 GeV), from where on it decreases slow-

ly. Numerical results are given in Table V and
plotted in Fig. 7.

The lowest-order differential cross section, of the
order of 10 ' nb, is very asymmetric: it is strong-
ly peaked near t9, equal to 180'. This effect gets
more pronounced at higher energies (at E, =500
GeV the cross section almost reaches 1 nb). The
electron-neutrino exchange is responsible for this
peaking. It was, however, pointed out by Gaemers
and Gounaris that it is possible to eliminate the
neutrino-exchange contribution by using polarized
beams. Numerical results are listed in Table VI
and plotted in Fig. 8.

The percentage one-loop radiative corrections to
the lowest-order angular distribution are found to
be negative, except in the case of low energy, and
they increase considerably in going from 175 to
500 GeV. The percentage corrections decrease
while, because of the peaking of the cross section,
the absolute corrections increase with growing
scattering angles. I calculated the corrections for
different values of the Higgs-boson mass (mH ——25,
100, and 750 GeV). The dependence on that mass

TABLE VIII. Same as Table VII with E, =200
GeV.

00 45' 90' 135' 180' 0' 45' 90' 135 180'

25
100
750

—5.54 —4.86 —2.98 —1.09 —0.38
—3.57 —2.85 —0.95 + 0.95 + 1.67
+ 0.03 + 0.79 + 2.71 + 4.62 + 5.35

25
100
750

—14.27 —12.82 —9.63 —6.44 —4.99
—12.62 —11.17 —7.98 —4.79 —3.34
—9.63 —8.18 —4.99 —1.80 —0.35
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TABLE IX. Same as Table VII with E, =250
GeV. 00 45' 90' 135' 180'

TABLE X. Same as Table VII with E, =500 GeV.

00 45' 90' 135' 180'

(Ge

25
100
750

—22.54 —18.:3
—20.83 —16.54
—17.89 —13.73

—13.78 —9.46 —5.15
—12.25 —7.96 —3.68
—9.50 —5.24 —0.98

25
100
750

—52.05 —37.99 —29.56 —21.18 —7.23
—50.06 —36.16 —27.81 —19.47 —5.56
—46.32 —32.57 —24.31 —16.01 —2.14

is about S%%uo, so that, in order to see the effect of
the Higgs particle, very accurate measurements of
the cross section are required. Note finally that
the corrections at E, =175 GeV have a different

sign for small and large Higgs-boson mass. Nu-

merical results for the percentage corrections are
presented in Tables VII—X and plotted in Fig. 9.
The relative behavior of the one-loop corrections
for various energies and Higgs-boson masses is
nearly the same as that of Ref. 5. The shifts in

magnitude are probably a consequence of the adop-
tion of a different, but related, renormalization
procedure and the use of smaller quark masses.

IX. CONCLUSIONS

In this work I presented the cross section for
e+e —+8'+ 8' up to the one-loop level within

the framework of quantum flavor dynamics. Ex-
perimental confirmation of the theoretical predic-

tion wi11 be crucial for the validity of the non-

Abelian gauge idea.
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APPENDIX

The QFD Feynman rules are easily derived from the Lagrangian, neglecting Higgs-boson —fermion cou-

plings and quark mixings,

1 1
-FgFD= ,A„Q„„—, Z—„„Zq„—————2m' Z„Zq —Wq „Wq „ms Wq W„—

c
1

C

isg (Aq „W—~(+ W„) A„Wq(+ Wq —1 +A„W(+W„ l ) icg (Z„„W~(+—W, l Z, W~(+ W~ 1 +—Z„W(+ W„ l )

—s g (A„AqW+W„A„Wq+A, W„—) —c g (ZqZ„W+W, —ZqWq+Z„W„)

scg 2[2A „—Zp W+ W, —AqZ, ( W„+W„+W„+Wq ) ]

g28+8 8+8 + g %+8 8+8 + mH2mw2g-2 2Nmw2g 2

mH
2comg g 'H —2co[H +(4—) +24+4 ] — gH[H—+(4 ) +24+4 ]4 mw

1 mH 2 4
2

, g'[H'+(4')'+2H'(4')2+ 4H'4 +4 +4(4')'4+4 +—4(C+C —)']-
mw
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2—2m—n gzpzpH m—u gwp Wp H/ismu gAp(Wp 4 —Wp 4+) i——mn gzp(Wp+4 —Wu 4+)
2 C

I
C

+ —gZ—u(H@ u
4—H „)+isgA„(C&+4 q

—4 4+„)+i gZ„(4+4„@—4+„)

+ —,g[Wq (H4„4H—„)+W„(H4q 4+H—„)]

——,
'

t [W+(e'C -„—e-e'„)—W„-(C'C+ —e+C'„)]

—s2g2AuA„4+4 — gZ—„—Z„[H +(4 ) +8(s —, ) 4+—4 ]—2—(c —, )g A„Z—„4+4
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C 2 C

where c =cos0~, s =sinO~, x
&
——B&x, and x ~'y =x'y —x y'. The factor co must be adjusted so that the

sum of the Higgs-boson tadpole diagram contributions is equal to zero.
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