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We study the formation of a mass gap, or effective gluon mass (and consequent dimen-
sionful parameters such as the string tension, glueball mass, (Trg„„2), correlation
lengths) in continuum QCD, using a special set of Schwinger-Dyson equations. These
equations are derived from a resummation of the Feynman graphs which represent cer-
tain gauge-invariant color-singlet Green s functions, and are themselves essentially gauge
invariant. This resummation is essential to the multiplicative renormalizability of QCD
in the light-cone gauge, which we adopt for technical reasons. We close the dynamical
equations by "solving" a Ward identity, a procedure which, while exact in the infrared re-

gime, is subject to ambiguities and corrections in the ultraviolet regime which are beyond
the scope of the present work. (These ambiguities are less prominent for QCD in three
dimensions, which we discuss also. ) As discussed in an earlier work, quark confinement
arises from a vortex condensate supported by the mass gap. Numerical calculations of
the mass gap are presented, suggesting an effective gluon mass of 500+200 MeV and a
0+ glueball mass of about twice this value.

I. INTRGDUCTION

The extraction of dimensionful quantities (e.g.,
the string tension) in continuum QCD is a truly
quantum-mechanical problem since the classical
Lagrangian has no fixed scale of mass. The
pioneering instanton/meron work of Callan,
Dashen, and Gross' emphasized classical solutions
which themselves have no fixed mass scale, and
then attempted to introduce the renormalization-

group mass through one-loop quantum corrections.
However, even this difficult calculation failed to
provide a definitive cutoff mechanism for infrared
singularities, and it appears that the proposed
phase transition to a baglike state takes one un-

comfortably close to the momentum scale at which
the square of the one-loop running charge

g (k)=[bin( —k /A )]

turns negative and unphysical. [Here

11'b=
48m

is the lowest-order coefficient in the P function
P= bg + . . ;C~—is the Casimir eigenvalue of
the adjoint representation if no quarks are present,
as we shall assume, and C„=N for SU(N.]

Other authors have attempted to account for the
presence of fluctuating color-magnetic fields in the
QCD vacuum, beginning with the famous one-loop
correction to the QCD Lagrangian for constant

fields. But this has a minimum only for unphysi-
cal values of g; moreover, the minimum is un-
stable. Even in three-dimensional (d =3) QCD
(or equivalently, d =4 QCD at very high tempera-
tures) which has a dimensionful parameter in the
Lagrangian (g -mass) perturbation theory is only
useful at large momenta, just as for d =4, and the
problem of infrared singularities remains un-

resolved.
It may well happen that continued work on

merons, instantons, corrections to the Lagrangian,
etc., ultimately leads to a systematic and practical
picture of confinement in continuum QCD. But it
would clearly be valuable to have a picture which
allowed for a direct, intuitive grasp of the role of
the infrared cutoff and how it is used in calculat-
ing various dimensionful quantities. Moreover, it
must be shown that such a picture is systematically
derivable from first principles. We offer here the
first steps in such a derivation, which leads to the
conclusion that the gauge fields are effectively
described as massive. The gluon "mass" is not a
directly measurable quantity, but must be related
to other physical parameters by difficult calcula-
tions not yet done. Nevertheless the ideas behind
these calculations are easily grasped, and semi-
quantitative estimates of, e.g., the string tension
and glueball mass can be made.

We begin with a description of massive gluons at
the Lagrangian level, emphasizing that this can be
made locally gauge invariant. Although we speak
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of thc IDass 1n thc LRgI'ang1an context Rs 1f 1t werc
a constant, in fact a dynamically generated gluon
mass depends on momentum and vanishes at large
momentuIn. The reader will see that, at every

stage of the work, this vanishing at large momen-

tum is essential to achieve finite results.

A. QCD with massive gluons

For some time, the author has advocated that
the strong interactions of QCD generate a dynami-
cal gluon mass. Qbviously such a mass will regu-

late all infrared singularities and yield a rather
direct qualitative understanding of many dimen-

sionful parameters of QCD, including (perhaps not
so obviously) the string tension. The most direct
manifestation of the gluon mass is a perimeter law

for adjoint-representation Wilson loops, as expect-
ed from strong-coupling expansions in lattice
gauge theories, and indirectly verified in Monte
Carlo simulations from the energy needed to ma-
terialize gluon pairs from the vacuum.

Although we argue for a dynamically generated
gluon mass, much can be learned from the
kinematical description of gluon mass via a locally
gauge-invariant Lagrangian. It has been argued'
that this theory is not perturbatively renormaliz-

able in d =4, but this is based on the persistence of
a mass term at very large momentum. Dynamical-

ly generated masses must, however, vanish at large
momentum, "which we will demonstrate explicitly
in this paper for QCD. It should be noted that a
locally gauge-invariant description of gluon mass
demands the existence of massless scalar fields,
which —just like their Goldstone counterparts in

spontaneously broken gauge theories —-do not ap-
pear in the S matrix. We emphasize that there is
no spontaneous symmetry breaking Rssoclatcd with

gluon mass generation.
There are classical solutions for the massive

gauge-invariant Lagrangian, such as a finite-energy
J =0+ glueball (first paper of Ref. 6), vortices,
and Euclidean solutions which are the counterparts
of instantons (both discussed in the second paper
of Ref. 9). All are of finite size, with field
strengths exponentially damped at large distances.
However, the vortices have a long-range pure-

gauge term in their gauge potentials, which endows
them with a topological quantum number corre-
sponding to the center of the gauge group [Z~ for
SU(Ã] and which is responsible for quark confine-
ment. Given that the true dynamically generated
mass vanishes at short distances, the action per

unit area of a vortex is finite, and it is then very
likely that the QCD vacuum is a vortex condensate
characterized by ( G&, ) =0, (TrG„„)+0 (second
paper of Ref. 6). (If vortices do not condense, the
mass then appears in a screened phase. ) It is wide-

ly believed that the QCD vacuum is a tangle of
fluctuating color fields, and Shifman, Vainshtein,
and Zakharov' have given sum rules which can be
used for an experimental determination of
(TrG„„'&.

%e are now in a position to resolve the apparent
paradox of producing quark confinement with
massive gluons and attendant short-range forces.
The key is the vortex condensate with its short-
range Auctuations, as a simple argument for a
massive Abelian gauge theory shows. To begin
with, assume Gaussian statistics for the gauge-field
fluctuations. With the use of Stoke's theorem, the
%ilson-loop expectation value is transformed:

cxp lg dxpA p

=exp ——,g' f dx„ f dx,'(A„A„)

=exp ——,'g I der„„f do'&(G„„G &&

8'= exp ——g (her) ( G )
2

(1.4)

where X is the number of cells in an area spanning
the loop (i.e., the actual area is %ho) This sort .o.f
argument has been given before' and our version
of it is not quite enough for non-Abelian gauge
theories where, for one thing, the correct Stokes
theorem must be used. ' Moreover, in the naive
form of the argument we have given, an area law
is predicted for adjoint Wilson loops as well as
quarklike loops. But it must be recognized that
vortex fluctuations are quantized in such a way
that for adjoint loops the flux g f dx&A& is 2m%

where X is an integer, and integral Auctuations in
X do not affect the Wilson loop at all. This is
made clear in earlier derivations of the %ilson-loop
expectation value based directly on a condensate of
vortices. ' Later we will use a formula like (1.4) to
estimate the string tension in terms of the gluon

mass.
Incidentally, it is worth noting that a short-

(1.3)

Then, with the assumption that the gauge fields
are correlated inside cells of area Ao., but com-
pletely uncorrelated in different cells, (1.3) becomes
an area law:
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ranged gauge field with finite flux is necessarily as-

sociated with a long-range gauge potential, as
Stokes's theorem immediately shows. The (pure-
gauge) long-range part of the potential is derived
from the massless scalar fields which are necessary
to maintain local gauge invariance in the presence
of a gluon mass.

There is a close connection between the vortex
condensate formed from massive gluons and the
vacuum structure advocated by the Copenhagen
school, ' which is essentially a quantum liquid of
vortexlike objects formed from the Nielsen-Olesen
unstable modes. There is no mass as such in the
Copenhagen description, but there are tantalizing
hints of dynamical mass mechanisms. In the
present work we will not discuss the vacuum any
further than to argue that (TrG&„)+0, which
means that we cannot fully describe the long-
distance dynamics of gluons; this depends on de-
tails of fluctuations in the vacuum structure which
we do not yet understand.

The physical picture underlying the present work
is that the forces between gluons are certainly
strong enough to produce bound states, notably a
J =0+ color-singlet glueball described by a com-
posite field tI)(x) whose vacuum expectation value
is directly related to the gluon mass and to
(TrG&„). We can guess which channels are likely
to have bound states simply by looking for attrac-
tive forces, and it is easy to see that the most at-
tractive forces between two gluons are in the 0+
color-singlet state. Here the direct Coulombic
forces have strength Cqg /4n, and if we take

g -b ' with logarithmic accuracy [see Eq. (1.1)]
this strength is 12m. 1/1-3. .4Additional short-
range attraction comes from gluon spin-spin forces.
Since the critical coupling for overbinding
Coulombic systems (i.e., producing tachyons) is
likely to be a=2, it may well be that the Coulomb
approximation leads to a tachyonic 0+ state; in
this case the composite field P(x) will be forced to
have a vacuum expectation value (VEV). Of
course, since no symmetry breaking is associated
with the P field, there is no reason in general why
it should not have a VEV. We will see below that
this VEV leads to a gluon mass, which one might
interpret as the Coulombic force law changing to a
Yukawa force to prevent overbinding.

The next most strongly bound channel is the 0+
color octet, the channel which carries the massless
fields which are necessary to maintain local gauge
invariance for massive gluons (third paper of Ref.
9). These, too, are composites resulting from
strong binding.

The fact that these forces are attractive is direct-
ly related to the vanishing of the momentum-
dependent dynamical mass at large momentum
(i.e., the mass operator has positive anomalous di-
mension). The rate at which the mass term van-

ishes, which renormalization-group-improved per-
turbation theory gives as (ink ) '2~", is directly
related to the strength of the forces which we gave
above as 12m./11. (A more likely nonperturbative
alternative is the behavior k (ink )+' ~", as ar-

gued by Lane and by Pagels. '
)

Essentially the same physical picture underlies
the current MIT bag model': the 0+ bag state is
overbound into a tachyonic state, and the conse-
quent VEV provides a vacuum structure filled with

empty bags. Color fluctuations in different bags
are uncorrelated, so the bag radius corresponds in
some sense to the inverse gluon mass.

Other authors' have attempted the problem of
dynamical gluon mass generation before, but these
works have suffered from lack of gauge invariance
and/or Lorentz invariance. Below we will take up
some of the technical issues which allow these crit-
ical invariances to be preserved in the present cal-
culation.

S. How to generate a dynamical mass

Our general approach is to study equations of
Schwinger-Dyson-type for certain Green's func-
tions. This immediately leads to a problem: the
conventionally defined gluon Green's functions of
QCD are gauge dependent, and in themselves con-
tain no physics. In contrast, the photon propaga-
tor of QED has only a trivial gauge dependence in
the free propagators, with a gauge-invariant and

physical vacuum polarization tensor.
It turns out that the same happy state of affairs

can be reach&8 in QCD by rearranging the Feyn-
man graphs which contribute to gauge-invariant
amplitudes. A new gluon "propagator" emerges,
whose only gauge dependence is in the free propa-
gator; this new propagator has pieces which come
from three- and higher-point functions as well as
from the usual two-point functions. That such a
propagator could be defined was noted some time
ago and used in leading-logarithm summations of
perturbation theory. Here we make the further ob-
servation that the new propagator obeys a
Schwinger-Dyson equation involving itself as well
as a new vertex related to the new propagator by a
Ward identity. The new vertex likewise satisfies a
dynamical equation involving a four-point kernel,
but we will not be concerned with that equation
here.
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While this resummation of graphs is to some ex-
tent merely a convenience in covariant gauges, it is
a necessity in the gauge we use in this paper: the
light-conc gauge. We will show that even at the
one-loop level the conventionally defined light-cone
gauge propagator cannot be multiplicatively renor-
malized, but that our new propagator is precisely
the linear combination of Green's functions that
can be renormalized. In principle it does not
matter what gauge we start with; the modified pro-
pagator always has the same proper self-energy,
just as in QED. But the light-cone gauge is very
convenient because it has no ghosts and because
the rules for integration in momentum space are
very simple (third paper of Ref. 9). A peculiar in-

tegration singularity discussed in the above refer-
ences is of no concern, since it does not appear in
gauge-invariant quantities.

The nonlinear propagator equation and its solu-
tion are at the heart of our study, since the resolu-
tion of all infrared problems in QCD stems from
them. We will show that only a massive solution
exists, which leads directly to a perimeter law for
adjoint Wilson loops. Unfortunately, a quantita-
tive expression of the (finite part of the) perimeter
law in terms of the propagator mass is not easy,
because the full structural complications of a non-
Abelian gauge theory still persist even though the
infrared singularities are gone. It is no simpler to
express precisely such quantities as the string ten-
sion or (TrG» ) in terms of the propagator mass,
but in all cases we can make reasonable estimates
which we might hope are accurate to within less
than a factor of 2, given precise knowledge of the
propagator mass. These estimates can be systemat-
ically improved, with no new problems of principle
arising.

We do not, in fact, have a precise value of the
propagator mass, because the propagator equation
can be made self-contained only by approximating
the vertex which appears in it, and because of un-

certainties which arise in regulating the seagull
graph (or equivalently regulating (TrG»~)). Let
us list and comment upon the necessary approxi-
mations and the difficulties they produce.

on whether one does or does not allow massless
poles in the vertex) of writing down an expression
in terms of the propagator for the part of the ver-
tex (called the longitudinal part) which exactly sa-
tisfies the Ward identity on one of the vertex legs.
To this one can, of course, add an arbitrary com-
pletely conserved (transverse) vertex part. But this
unknown transverse part has two properties which
make usable the first approximation of dropping it
altogether: (I) in a theory with a mass gap, it van-

ishes by at least one power of momentum com-
pared to the longitudinal part at small momentum;
(2) the transverse part is O(g ) compared to the
longitudinal part. Because of the first property,
using only the longitudinal part exactly reproduces
the low-energy structure of the theory, and because
of the second, the ultraviolet behavior of the pro-
pagator is correctly given through one-loop graphs
by dropping transverse parts. If only the longitu-
dinal part is kept in the propagator equation, it be-
comes a self-contained nonlinear equation for the
propagator.

The idea of solving Ward identities is quite old,
and was revived a few years ago ' when it was
realized that it allowed for /inearization of the
Schwinger-Dyson equation for fermion propagators
in a gauge theory. It was then used by Baker, Ball,
Zachariasen, et al. in their program of studying
the equations for the conventional (gauge-
dependent) gluon propagator in the axial gauge.
Their results are quite different from ours, which
can be traced directly to the fact that they do not
allow massless scalar poles in their vertex function;
thus they explicitly exclude the possibility of
dynamical mass generation.

Throughout this paper we will only use the long-
itudinal vertex, completely dropping any transverse
part. (It is worth noting that this approximation
can be systematically improved, as will be discussed
elsewhere. ) This approximation yields some pecu-
liar results in the ultraviolet regime which we now
discuss.

2. Renormalizing the approximate equation

1. "Solving" the 8'ard identity

The vertex which appears in the propagator
equation obeys a Ward identity of the simple type
encountered in ghost-free gauges, rdating the
divergence of the vertex to the inverse propagator.
There are essentially two different ways (depending

It turns out that dropping transverse vertex parts
leads to mishandling overlapping divergences, with
consequent ambiguities in renormalizing. Multipli-
cative renormalization fails in O(g ), but the equa-
tion can be made finite by subtractive renormaliza-
tion [the two procedures are equivalent in 0 (g2)].
The renormalized propagator then fails to have the
correct large-k behavior at O(g ); for example, a
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simplified version of the propagator equation
yields an inverse propagator
-k [1+2bg ln( k —lp, )]'~ instead of
k [1+bg ln( —k /p )]. This sort of difficulty is
formally expressed in erroneous values for
renormalization-group coefficients; thus the P
function for the approximate equation is
P= 2bg—+ ~ instead of bg —. (The same
sort of error occurs in Ref. 22, where 2 is replaced

16
by» .) These errors lead to a slight but annoying

dependence on the renormalization mass p of
physical quantities which should be independent of
p, but this dependence is only an artifact of the
approximation used and can be systematically re-
moved.

Such problems are special to d =4 in the sense
that no renormalization is needed for d =3, so we
have also considered this case. The propagator
equation leads to mass generation just as
in d =4, with the mass ' m=bg, where b
=15C&(32m.) '. We will discuss the d =3 case
only briefly, deferring details to another work.

tive d). One scheme relates the integral (1.5)
directly to the expectation value (P) of the com-
posite 0+ state, and yields a finite value which is
then used in a self-consistency equation (rather like
a BCS gap equation) to determine the gluon mass
in terms of A. This phenomenological regulariza-
tion is so severe that a finite value for (1.5) obtains
even for a gluon mass not decreasing at large k; as
a result, the gluon mass may be underestimated
(m =1—2A).

A better way is to relate m to (TrG» ). We
give an exact formula for this expectation value in
terms of the Euclidean vacuum self-energy. In
turn„ this latter quantity lies a finite and calculable
amount below the perturbative vacuum self-energy,
given a dynamical gluon mass decreasing at large
k. There are two ways of estimating the vacuum

energy: a graphically oriented Hartree expansion,
and a direct regulation of (TrG» }based on sav-

ing only the contribution of the fluctuating vertex
condensate (second paper of Ref. 6). The value of
m found these ways varies from 350 to 600 MeV.

3. Regulating the seagul/ graph 4. Omission of three gluon skel-eton graphs

In order for there to be a gluon mass, a certain
gauge-invariant projection of the seagull graph
must be given a finite, nonzero value: the integral

fdkd(k ), (1.5)

where d (k } is our modified gauge-invariant pro-

pagator, must exist after suitable regularization,
and its value is then proportional to m, where m

is the gluon mass. A similar regularization pro-
cedure is necessary to define (TrG» ), which has
terms like k d(k ) as the integrand in (1.5). The
dimensional regularization rules for d =3.4,

The skeleton graphs (with dressed vertices and
propagators) for the gluon propagator consist of
the usual one-loop graphs, plus two-loop graphs
which have three-gluon cuts. These can be omitted
without interfering with gauge invariance (because
they are of different order in g than the graphs
we save), and we will omit them because their in-

clusion not only complicates the technical prob-
lems enormously, but also because, to be consistent,
we should then add transverse corrections to the
gluon vertex (also of higher order in g ). The same
approximation has been made in Ref. 22.

f 0
"k

ln k =0, N=0, 1,2, . . .
k

(1.6)
C. Current status of the dynamical-mass problem

ensure the masslessness of the gluon order by order
in perturbation theory, but it is problematical to
use this in the sum of perturbative contributions to
d (k ) since these have a Landau ghost pole some-
where. We will show below that if there is a mass
term in the propagator which vanishes at large k
like a power of ink, then (1.5) is in fact finite, as
is necessary for the self-consistency of the theory.
But this turns out to be of little practical help in
dealing with the approximate propagator equation,
so we discuss instead physically motivated approxi-
mations to (1.5} which have the essential property
that (1.5) is positive in Euclidean space (for posi-

Our goal is to understand the gluon mass and all
other dimensionful parameters as numerical multi-

ples of A. It is a goal which cannot even in princi-
ple be met precisely, with the above approxima-
tions, since A itself is not well defined until two-
loop terms are retained. We will therefore have to
be content with going (in some approximate sense)
only halfway to the goal, by using (TrG» } in-
stead of A as our scale of mass, as described above
in connection with regularizing the seagull graph.
We repeat that the deficiencies of the present paper
can be corrected systematically, and that this is
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only the beginning of a program whose end is not
yet in sight.

The main accomplishments of this program so
far are the following: (1) a reorganization of the
Schwinger-Dyson equations of QCD into a form
which allows us to deal directly with gauge-
independent and renormalization-group-
independent quantities; (2) an approximate version
of one of these equations which respects gauge in-

dependence, which is accurate in the infrared, and
which necessarily has a mass gap; (3) a demonstra-
tion that the mass vanishes at large momenta; (4)
an exact relation between (TrG„, ) and the (Eu-
clidean) vacuum self-energy, which yields an ap-
proximate value of 500+200 MeV for the gluon
"mass"; (5) a useful semiquantitative picture of the
relation of this mass to the glueball mass and
string tension. The two major unresolved problems
are a systematic improvement (via a dressed-loop
expansion) of the lowest-order results, and a
demonstration that vortices actually condense in
the vacuum (i.e., that their finite action is less than
their entropy).

U, namely

D„(A~—g-'Ua„U-') =0 (2.7)

can be solved as a power series in g (third paper of
Ref. 9):

-(& A)x —(& A)g 1

Q 2 CI

[where

+~~~a —~~ +1

Pg
a

(2.8)

(A x8),=C,b,AbB, (2.9)

in terms of the group structure constants]. The
0 ' terms in 8, reveal the massless scalar fields
necessary for gauge invariance. To (2.8) can be ad-
ded solutions of the homogeneous version of (2.7);
these are vortices and cannot be gauged away with
the help of (2.6). In graphical applications we will

always eliminate 8, with (2.8).
Add the gauge-fixing term

II. REARRANGEMENT OF GRAPHS
IN LIGHT-CONE-GAUGE QCD WoF=ri Tr(n„A") (2.10)

The light-cone gauge is specified by

npA"=0, n =0 (2.1)

(plus other conditions which do not enter the
graphical analysis). Although we are interested at
the moment in conventional massless QCD, it is
convenient to give the Lagrangian for massive
gauge-invariant QCD, since we will later need a
few elementary Green's functions of the massive
theory (second paper of Ref. 6):

W= —,TrG&„ni Tr[A& g'U—(8)B&U '(—8)]

(2.2)

(~) pv qpqvP
'9

q' m'+i—e (n q)'
' (2.11)

npqv+nvqp
P~.=-g~ +

nq
The free massless propagator will be called 4„' '.
The gauge parameter g is to be set to zero at the
end of a calculation; normally we will suppress

(2.12)

to (2.2) and find the free propagator for the mas-
sive theory:

where

A~ ——g A, A@, TrA,,Ab =25gb
2I

(2.3)

U(8)=exp i g 2 A,~8' (2.4)

The Lagrangian (2.2) is invariant under

A~ ——VAq V ' —g '(BqV) V

U'= U(8') = VU

(2.5)

(2.6)

for a group matrix V. The equations of motion for
FIG. 1. Feynman graph for the massive-theory ver-

tex of Eq. (2.13).
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writing the g term.
For future use, we quote the lowest-order three-

particle vertex for the massive theory (see Fig. 1):

r'.,„'(k„k,,k, )= (k, —k, )~.,
m2 k) k~p(k) —k~)r

k k

center is trivially represented (e.g., the adjoint),
which thus does not couple topologically to vor-
tices. We will compute some contributions to the
gauge-invariant Green's function

G (x,y) = (0
~
T[Tret(x)e(x)Trot(y)e(y)]

~
0)

+c.p. (2.13) (2.17)

where c.p. means to add cyclic permutations. (An
overall factor iC,e, is omitted. ) This vertex obeys
the Ward identity

omitting graphs with internal closed 4 loops. In
the limit of very heavy 4 particles this Green's
function is closely related to a Wilson loop with
two long straight sides. Usually one thinks of 6 as
being composed of gauge-variant pieces (e.g., prop-
agators) which sum to a gauge-invariant total. But
we will see that 6 can be rearranged into new pro-
pagators whose only gauge dependence is in their
free parts.

kal (m) g(m)(k )
—1 g(~)(k )

—1 (2.14)

which is true for the fully corrected vertex and

propagators both for the massive and massless
theories (third paper of Ref. 9). It reduces to the
usual vertex for m =0.

The simple form of (2.14) is one reason for using
the ghost-free light-cone gauge. There are two
other reasons: (1) a scalar Green's function of one
momentum cannot depend on n„; (2) momentum-
space integrals involving n& are trivially reduced to
n„-independent integrals. Neither of these state-
ments holds for an axial gauge (n +0). The first
holds because Green's functions are homogeneous
in nz of degree zero (as is the propagator) so a
general scalar function of one momentum depends
on q and n (n q); the latter vanishes. The
second statement is contained in the following
theorem (third paper of Ref. 9). Let

A. Zero- and one-loop graphs

The relevant graphs are shown in Fig. 2 (there
are other graphs, of course, but they are not needed
for our purpose). We count loops as if the 4 loop
were opened at x and y.

Each of these graphs has certain extraneous fac-
tors in common, such as 4 propagators and ver-

tices, which we will leave out. As mentioned
above, all our graphical calculations are done for
conventional massless @CD.

With extraneous factors omitted, Figs. 2(a) and
2(b) are just the usual propagator to one-loop or-
der. We find

(2.15)

then

R (p;;q)
2 2 l[(p —q)' —~'1'

R (p;;q)—
&.(p) —q)n. (p2 —q) . n. (pj. q)—

& (pj+i —q)

d"
[( —)'—M']'

(2.16)

(a) {b)

That is, an integration variable q is simply replaced
by its shifted value in doing momentum-space in-
tegrals. This is an extraordinary simplification
compared to the axial gauge.

In order to make useful gauge-invariant calcula-
tions, we introduce a set of heavy scalar test parti-
cles, described by a matrix 4(x). These are in a
representation E. of the gauge group in which the

(c) {d) (e}
FIG. 2. Relevant graphs through 0(g") for con-

structing the gauge-invariant propagator.
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where

n~ny
, (8I +8I')

(n.q)

(2.18)

where D (p} is a 4-propagator. Figure 3 shows the
structure of SGP's resulting from Figs. 2(c)—2(e),
with Figs. 2(d) and 2(e) both leading to the struc-
ture in Fig. 3(b). [In QED, the SGP of 2(d) can-
cels exactly with that of 2(e).] The SGP's calculat-
ed from Fig. 3 are

8I'p„I'
Fig. 3(a): —, g Cz

l d'k
(2n) k (q —k)

l d4kI'= (n q)
(2~) k (q —k) (n k)

(2.19)

(2.20)

4npn ~ (2I +I')
(n q)

(2.22)

are logarithmically divergent integrals. According
to (2.16), I is independent of n&, but when it is di-
mensionally regularized it has a peculiar divergence
in a Feynman-parameter integral (third paper of
Ref. 9). This divergence is an artifact of the
light-cone gauge and will cancel out in physical
quantities.

One conclusion is apparent from (2.18)—(2.20}:
there is no choice of wave-function renormalization
constant Z3 which, divided into (2.18), makes it
finite to 0 (g ). This is simply because divergences

appear multiplying two independent kinematical
tensors, only one of which appears in the free pro-
pagator. The conuentional gluon propagator is not
multiplicatiuely renormalizable in the light cone-
gauge.

Now consider graphs 2(c)—2(e). These have
uniquely definable parts which are tied to the 4
lines at only two points, and have no 4 propaga-
tors in them, we call these single-gluon parts, or
SGP's, since they are kinematically equivalent to a
propagator part. SGP's arise when longitudinal
parts of a propagator numerator P&„or a vertex
are applied to a 4-4-gluon vertex, where they gen-
erate an elementary Ward identity. For example,
the vertex of Fig. 1(a) is (2p +q)&, and we note

q (2p+q) =D '(p +q) D'(p), —(2.21)

4nqn„I'
Fig. 3(b): —,g Cz

(n q)
(2.23)

When the SGP's are added to the conventional
propagator, the result is the modified propagator
which is the object of our attention, and which we
call 6&„,'its renormalized form is

"2 [1—bg ln( —q /p )+ . ],
g

(2.24)

where p is the renormalization point. k„„can be
renormalized multiplicatively because only one
kinematic tensor, namely P&„, appears in it. This
feature persists to all orders of perturbation theory,
as we show below.

B. Two- and higher-loop graphs

There are some useful things which are easily
shown to be true to all orders, but as is not uncom-
mon in graphical studies some aspects have been
thoroughly investigated only through two loops
and these extrapolation to all orders is speculative.

First we show to all orders that 6&„, defined as
the sum of all propagator parts and SGP's, has an
inverse which can be written

(o) (bj
FIG. 3. Structure of the SGP's arising from Fig. 2.

p„-i=2 p(0)-i-(q2gp. —qpq. )II(q2) . (2.25)

The significance of this is that in general other
kinematic forms of the self-energy are allowed, as
in fact happened with the one-loop calculation of
6&„, these other forms interfere with renormaliza-
bility and gauge invariance.

Clearly, 5&„is symmetric in p and v, and a bit
of thought shows that n "5„„=0.This is because
forming an SGP does not affect the fact that the
index p, or v is part of a projection operator like
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(a) (b) (c) (b)

(d) (e)
FIG. 4. Some of the graphs relevant to the new ver-

tex f'.s~

P&~ associated with a free propagator. It then fol-
lows that b,&„has the general form

(n .q) (n .q)
(2.26)

n~nv

7l
(2.27}

from which (2.25) follows if 8 =0. But 8 must
vanish by gauge invariance, since the n-dependent
terms in the gauge-invariant Green's function
(2.17) which would arise from a term -n&n„can-
not be cancelled by other terms in the Green's
function which are not SGP's. In contrast, the n

dependence coming from P» is associated with a
longitudinal gradient which mixes, through Ward
identities, SGP's, and other non-SGP graphs to
cancel the n dependence.

The proper self-energy given in (2.25) is not only
conserved, but completely independent of n„—that
is, it is gauge invariant, just as in QED. The only
remaining gauge dependence of 6&„is in the free
propagator, which must be gauge dependent in or-
der to define the inverse propagator. We would ar-
rive at the same proper self-energy II& in any
gauge.

where the term in g comes from the free propaga-
tor. Simple algebra shows that

r

gpgv
p,v

— gpv
q

n&q n~q
2 2

Aq'(8+Aq') " ii q ii q
qp qv

FIG. 5. Contributions of the graphs of Fig. 4 to the
new (improper) vertex.

To understand the structure of II» at the two-
loop level and beyond we need to know something
about a new vertex I &~ (and a corresponding
seagull vertex which we will not discuss explicitly)
and the Ward identity it satisfies. This vertex, like

h&~ receives contributions from pinching out 4
propagators, but this time we look at gauge-
invariant processes with three lines, such as shown
in Fig. 4. [For group-theoretical reasons, the
lowest-order graph of Fig. 4(a) vanishes when the
three lines are identical, even when these represent
quarks, so one has to think in terms of three dif-
ferent 4 fields or, say qq4 fields. ] By pinching
out lines, one comes to graphs like those of Fig. 5,
which represent contributions to the improper ver-

A A AA
tex (schematically, 5 b, b, I ). There are many
Feynman graphs which contribute to a single
graph for I", just as Figs. 2(d} and 2(e) give rise to
Fig. 3(b).

It is straightforward to show that I obeys the
Ward identity like (2.14) to all orders:

ki I pr ——Zpr(k2) ' —Zpr(ks) (2.28)

(Incidentally, this shows the equality of wave-
function and vertex renormalization constants. }
Actually it is easiest to derive the Ward identity
for the improper vertex graphs of Fig. 5. The
canonical light-cone gauge Ward identities follow
(third paper of Ref. 9) from applying

'(n. k& )n~ to the improper vertex, with results
easily seen to be equivalent to applying ki to the
proper vertex [see (2.11)]. If rl '(n k)n~ is applied
to any of the heavily dotted vertices in Fig. 5 the
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FIG. 8. Graphical representation of the gauge-
invariant propagator 6 (dashed line) in terms of the free
propagator (wiggly line), and the inverse relationship.

(b)

(e)
FIG. 6. Some relevant graphs at 0(g6) for the

Green's function (2.17).

result is zero. To see what happens when this is
used on a normal line, it is simplest to generate the
Ward identity before pinching out lines; that is,
one uses the elementary Ward identity (2.14) (for
m =0) in Fig. 4, and then pinches out lines (not
using, of course, the propagator which had

'(n k)n use. d on it). Comparing the results
with SGP's (e.g. Fig. 3) establishes the Ward iden-
tity. A similar Ward identity is derived for the
new seagull vertex.

%e are now in a position to discuss systematical-

ly the Schwinger-Dyson equation for h. In fact,
this will not be done in detail because we lack a
systematic discussion of transverse corrections to
the vertex I' (see the next section). This lack is not
one of principle, but results only from computa-
tional difficulties, and a systematic treatment of
transverse corrections could also be given.

The first step is to look at two- and higher-loop
SGP's contributing to h. A few two-loop Feyn-
man graphs are shown in Fig. 6, and their SGP's
in Fig. 7. Note that (crossed) ladder graphs are
missing; it is not hard to show that these have no
SGP's if they have three or more rungs. In Fig. 7
we recognize the appearance of one-loop contribu-
tions to 6 as internal lines, as well as one-loop ver-
tex parts which appear in I . However, the SGP of
Fig. 3(b) never appears as an internal part of a
two-loop SGP. This is as it should be, although it
is not obvious.

In Fig. 8 we introduce a dotted line to represent
the propagator b„which is expressed as a sum of
Feynman graphs as shown by the top line. This is
solved for the free propagator b, ' ' as on the bot-
tom line of Fig. 8, and a dynamical equation de-
rived by substituting this solution in the top equa-
tion of Fig. 8 everywhere except for the first term
on the right. Similarly, one solves for the bare ver-

tex I"' ' in terms of I (and also for the seagull ver-

tex). The result is an equation for ll„„[see (2.25)]
expressed in terms of 6, I', . . .. This is not neces-
sarily as simple as the usual Schwinger-Dyson
equation for b, , the conventional propagator. We

(a) (1} (c)
FIG. 7. SGP's coming from Fig. 6.

FIG. 9. A graph, written in terms of 6, which might
naively contribute to an SGP.
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/
h (o)-&
Q y — b, y +-& &- + --~'--+"

FIG. 11. The first few terms in the Dyson equation
for h.

(0j
FIG. 10. {a) The nonexistent SGP which would

naively stem from Fig. 9. {b) A graph with no SGP.

have looked at the two-loop equation generated by
this procedure, and find many cancellations, which
stem in part from the appearance of one-loop
SGP's and terms in I' as internal parts of the two-

loop graphs. Other simplifications arise because
the part of Z shown in Fig. 3(b) cannot generate
SGP's, consistent —as noted above —with the fact
that Fig. 3(b) does not appear as part of a two-loop
SGP. In detail, note that Fig. 9 arises in the
course of rewriting the Feynman graphs in terms
of 2; then one might expect to find the SGP of
Fig. 10(a). But Fig. 10(a) does not exist, because
Fig. 3(b) has the kinematic structure n~nii while

the other propagators have P„„asnumerators.
Straightforward calculation shows that there can
be no SGP in such a case. Similarly, Fig. 3(b) does
not appear as an internal part in Fig. 7 because
Fig. 10(b), which also arises in the course of
rewriting the Feynman graphs in terms of 8„has
no SGP (as noted above, ladders with more than
two rungs have no SGP's). Of course, these re-
marks about the contribution of specific graphs are
only true in the light-cone gauge, and we have not
discussed the details of the modified seagull vertex.

The upshot of our investigation at the two-loop
level is that it is possible {but not yet proven) for

1
A~ —— n "G~„.

n 8
(2.29}

A gauge-invariant propagator can be written by in-
serting a string operator between two field
strengths, and using (2.29), so we speculate that

the Schwinger Dyson equation for 6 to be as sim-

ple, in a sense, as for the conventional propagator.
That is, the equation starts off as shown in Fig. 11,
where we have not written two-loop graphs which
have explicit modified seagull vertices (this trunca-
tion is gauge invariant; such graphs are higher or-
der in g, in perturbation theory). The omitted
terms, analogous to the new terms in Fig. 8, are
such as to render II„„gauge invariant, and we
speculate that their effect can be found by omitting
from the equation of Fig. 11 all terms which refer
to n„[including the peculiar divergences exempli-
fied in (2.20)). This speculation is consistent with
our approximate solution of the Ward identity I",
but it need not be used in the context of this ap-
proximation, since we will be able to show explicit-

ly the cancellation of n&-dependent terms.
The reader who has bothered to read this section

in any detail will be struck by the awkwardness
and opacity of our graphical analysis. There surely
must be a deeper principle underlying an algorithm
which enforces such elementary requirements as
multiplicative renormalizability and gauge invari-
ance. In this vein, we offer another speculation.
In ghost-free gauges, the field strengths uniquely
determine the potential (at least in perturbation
theory}:

n n&
ih&„{x,x')=, 0 T G&~(x)P exp ig J dz A

X
G„p(x') 0), (2.30)

where the string factor is in the adjoint representa-
tion and the path is a straight line from x to x'. It
is very simple to verify (2.30} to zeroth order in g,
but not so simple at higher orders because of the
string factors and associated divergences; however,
calculations are in progress which show suggestive
correspondences with the extra graphical pieces in
Fig. 3.

III. "SOLVING" THE WARD IDENTITY

%ard identities can be solved either by directly
working with differences of propagators, or by us-

ing spectral techniques based on the Lehmann rep-
resentation. ' In certain elementary cases, they
give the same result, and in any event they differ
only by transverse parts which are, for a theory
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with a mass gap, of higher order in the gauge-
particle momentum when this momentum is small.
However, in a theory with no mass gap (e.g. , per-
turbative QCD) transverse vertex parts are found
to be less singular only by a single logarithm than
the longitudinal parts. It has been pointed out
that the eikonal approximation to gauge theories
(which is justified only if the charged particles are
massive) is exactly equivalent to the propagator-
difference solution to Ward identities with neglect
of transverse parts. For example, in scalar QED
the improper vertex in the eikonal limit is, to all
ordel s,

D(p)D(p+q)I „(pp+q)

" [D(p) D(p+—q)], (3.1)
p g

where D is the propagator of the massive charged
scalar, and q is much less than p, which is nearly
on shell. Clearly (3.1) obeys the Ward identity.
Similar differences of propagators were used by
Baker et al. , but their theory has no mass gap
and the neglect of transverse parts in the infrared
might be hard to justify.

The I.ehmann representation for D,

(3.2)

gives an essentially equivalent solution to (3.1):

D (p)D(p+q)&„(p,p+q)
p(&')(2p +q)„=i dA,

[p' —~'+ i e][(p + q}'—X'+ is]

(3.3)

(3 4)

i (2p +q}p
," [D(p) —D(p+q)] .

2S'e +e
We will generalize (3.3) to the QCD case. Figure
11 shows that for II&„we need the improper vertex
with one leg truncated, that is, something corre-
sponding to 5h I .

There are actually two classes of solutions to the
Ward identity (2.28): those with longitudinally cou-
pled massless scalar fields, as in the massive
gauge-theory vertex (2.13), and those without such
fields. The second class has been used by Baker
et al. , while we will examine the first class. The
distinction between them is all important, since
adding the massless scalar fields allows for the
kinematical description of gluon mass and hence
short-range correlations of fluctuating color fields.

The Lehmann representation for hz

b,„,(q)=P„,f dA,
+l6

shows that 5 can be thought of as a linear super-
position of free, massive gauge propagators [see
(2.11)]. Since the massive vertex (2.13) obeys a
Ward identity (2.14) of exactly the type we need,
and since this Ward identity when multiplied by
two 6's becomes linear in 6, the required generali-
zation of (3.3) is almost obvious. We define the
longitudinal part of I by I':

p~~'(k, ) prr'(k, )pi~(ki)I' p .brr(ks)= fdic(iP) I'pr(ki, k2, ki)
(kz A+if) —, (ki A, +i@)— (3.5)

where I'A, ) is the massive vertex (2.13) for mass
m =A,. It is very simple to verify the correct %ard
identity (2.28) by multiplying by ki . Although
I has massless poles, these couple as pure gauge
fields and never appear in physical quantities; they
do not affect our general conclusion that if there is

La mass gap, transverse corrections to I are small

by at lease one power of k~ when k& is small.
Let us discuss the relationship of I to pertur-

bation theory. In zeroth order, p(A, ) =5(A, ), and
then I' is precisely the free massless vertex (the
massless scalar fields decouple). Thus transverse
corrections are of O(g ). These appear as O(g )

corrections in 6, and their main effect is in the ul-

traviolet regime, where they are important for deal-

ing with overlapping divergences. Another con-
cern might be the applicability of the Lehman rep-
resentation in a theory with only massless particles,
such as perturbative QCD. However, one can find
singular spectral functions which yield the pertur-
bative propagator and give zero for seagull graphs.
For example, the one-loop result (2.24) for
5 is consistent with the spectral function

2

p=5(k, )(1—bg 1nep, )— 8(A, —e) (3.6)
A,

2

in which the limit e~O is taken after integrating
over A,. Of course, this p used in (3.5) does not
generate the correct O(g ) corrections to I; trans-
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verse parts must be added separately.
We are concerned not only with the Ward iden-

tity (2.28) for I', but also with enforcing the
gauge-invariant structure (2.25) for II„ in which
one of the two possible kinematic structures [see
(2.27)] is missing. Obviously these two issues are
closely related, and any approximation made in I
will be reflected in an analogous approximation for
II& which receives not only the usual contribu-
tions listed in Fig. 11, but also from (dressed) SGP
graphs. Now the graphs of Fig. 11 are precisely
linear superpositions of one-loop graphs for the
massive gauge theory, each mass A, being weighted

by p(A, ). If this prescription is used for the other
one-loop SGP's (see Figs. 3 and 8), it will not be a
surprise that II&, is, in fact, of the n-independent
and conserved form shown in (2.25). Explicit cal-
culation shows this to be true, and in the next sec-

tion we give the resulting one-dressed-loop value
for II„,and discuss its renormalization.

IV. THE DYNAMICAL EQUATION
AND ITS RENORMALIZATION

Introduce the notation

Z„„(q )=Pq, b,(q ) . (4.1)

The dynamical equation (2.25) (see Fig. 8) for b, ,

'(q )=q —II(q ), (4 2)

plus the solution of the Ward identity in Sec. III
requires us to repeat the one-loop calculation of
Sec. II using massive propagators and one massive
vertex, then to sum over masses A, with weight
p(A, ). A rather lengthy calculation gives the fol-
lowing result for the renormahzed propagator in
terms of the renormalized coupling constant g:

2
A,

z
8-'(q')=Z, q' 1+' fd'k fdic',

(k —A, )[(k+q) —A,']

+ ibg fd4k fdg2 X &(1 ) 4ibg fd4kj(k2)
11m (k —A, )[(k+q) —A, ] 116

(4.3)

where b is given in (1.2). In writing (4.3) we have assumed, as directed by the Ward identity (2.28), that
Z) ——Z3, where Z~ is the vertex renormalization constant. But because we have dropped all transverse ver-
tex parts we have mishandled overlapping divergences, so that the actual relation between Z~ and Z3 is am-
biluous and depends on the way we choose to resolve this mishandling.

It is convenient to isolate all the divergences in the k integrations at q =0. In so doing, we will encounter
the integral

A2 A2
fd'k fdic' , =—fd'k 1+k' Z(k').

(k —I, )2 Bk
(4.4)

If this integral converged, it would be elementary to show that

j(k2) —fd4k j(k2)
Bk

(4.5)

Even though the integrals are divergent, (4.5) is true in dimensional regularization (at d =4) and we will use
it freely below. Then (4.3) can be rewritten as [using fdi, p(A, )=0, which follows from perturbation

theory]

'(q')=Z3 q' 1 — fd'k, Z(k') +bg'f dPfdA2p(A, ')ln 1—

2

+ f dPfdA, 'A, ' (A, ')ln 1 — fd'kj, (k') .

11 11m
(4.6)

Note that (4.3) or (4.6) makes sense in Euclidean space, becuase all dependence on the lightlike vector n„ is
gone. Also note in (4.3) that the massless scalar fields which appeared in the vertex do not appear in the in-
tegrands; their only role is to allow for the possibility that 5 '(q2=0)+0.

Next we go to Euclidean space, defining the Euclidean propagator d by
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d(q )= —5( —q ). (4.7)

In what follows, q is the positive square of a Euclidean four-vector. It is possible to do the P integrations
in (4.6) explicitly, and the result is

1/2

d '(q')=Z, .q' 1+bg'f dz 1—, d(z}+, fd'k, d(k')

There are now two potential infinities inside the curly brackets. The last term, which gives a mass, is ac-
tually finite after a physically appropriate regularization; we will discuss it in the next section. The other
infinite is multiplied by q, and is the first term of an infinite series which is to be removed by the Z3 fac-
tor. Since Z3 is divergent, it is clearly impossible that (4.8) is finite to all orders in g . The exact version of
(4.8) would have an intricate structure of overlapping divergences allowing it to be finite order by order.
The best we can do at present is to interpret the renormalization algorithm subtractiuely rather than rnultipli-
catiuely, that is, to ignore infinities of O(g ) and higher. We thus interpret Z3 as a factor which renders the
product

b
Z3 1+ fd k, d(k') =—K

Bk
(4.9)

finite and set Z3 =1 elsewhere. The final renormalized equation is therefore

d '(q)=q E+bg f dz 1 — d(z) + f dzz 1 — d(z)+d '(0), (4.10)

2

d '(0)= fd kd(k ).
11

(4.11)

E is fixed by imposing the renormalization condi-
tion

d —1(p2) 2 (4.12)

D(q') =g'd(q') .

If one substitutes this in (4.8} and uses

2 —2Z3=g go

(4.13)

(4.14)

where go is the bare coupling constant, all refer-

and we will always take p &&A, where A is the
renormalization-group mass of a few hundred
MeV.

Now (4.10) differs from (4.8) in a profound way;
(4.10) comes with a built-in renormalization group
whose parameters must be deduced from that
equation, and not simply taken from perturbation
theory. One way of making this difference clear is
to note that d(q ), although gauge invariant, is not
physical because it depends on the renormalization
point p, . But just as in QED (where Zi ——Z2) the
fact that Z~ ——Z3 allows us to write a propagator
which is both gauge invariant and renormal-
ization-group invariant; it is

p +P —2y d-'=0,
Bp Bg

(4.15)

+Pa a
Bg

(4.16)

and check for consistency with (4.8) or (4.10).
Here y is the anomalous dimension associated with
Zi. Calculation shows that (4.15) and (4.16) are
consistent with (4.8} if P=yg, which is the same as

I

ence to g and hence to p is removed, as expected.
But the price paid for this is the appearance of the
divergent quantity go in the equation. Of course
this divergence is canceled by other terms in (4.8),
which leads us back to the ambiguities of renor-
malizing it.

The substitution (4.13) in the subtractively renor-
malized equation (4.10) does not remove the depen-
dence on g . Instead, it is clear that (with a suit-
able choice of E) (4.10) has no explicit g depen-
dence when written in terms of gd(q ); that is,
this quantity is p independent on the basis of
(4.10). This is precisely what happens if instead of
Z) ——Z3 these constants are related by Z& ——Z3'
A formal way of understanding this peculiar result
is to write the renormalization-group equations
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Zi ——Z3, while for (4.10) the necessary relation is
P=2yg, or Zi ——Zs' . In more detail, we find

P= 2b—g' (4.17)

The renormalization-group coefficients are falsely
represented because we dropped transverse vertex
parts. The same thing happens in Baker et al. ,

16
where 2 is replaced by» .

An easy way to see what is happening is to write
a simplified version of (4.10), which is exact for
large q:

2

d '(q )=q 1+bg f, dzd(z)

whose solution is

d '(q )=q [1+2bg ln(q /p )]'~

(4.18)

(4.19)

go =bin(A„„ /A ) (4.20)

(A„„is the ultraviolet cutoff) into a finite factor

go
' (4.21)

where g & 1 is both finite and p independent; we

expect g to be logarithmically sensitive to our
mishandling of the true ultraviolet behavior. In-
stead, we will use (4.10). It turns out that this
amounts, mathematically, precisely to using (4.8)
and (4.21), except that g will be construed to de-

pend logarithmically on p and the physical quanti-

ty D =g d will have a p dependence roughly like
(in@, )r/2. This appearance of p dependence is
mathematical and formal, not physical, since we
can systematically improve the deficiencies of (4.8)
or (4.10) by adding transverse vertex parts of
0(g ) and higher.

This agrees, as it must, with the exact result to
0 (g ) but disagrees at higher order.

The upshot is that dropping transverse vertex
parts forces us to a subtractively renormalized
equation (4.10) which is free of infinities, but
which has a false renormalization group. We
could, of course, use (4.8) which respects the true
renormalization group but which is not easily
made finite. One might do this by setting

Z3 —g go, and guessing that correctly incor-
porating transverse vertex parts will convert the in-

finity in go of the form (in lowest order)

are very closely related concepts. In physical
terms, a gluon "mass" may lead to a vortex con-
densate with (TrG» )+0 (second paper of Ref.
6), and conversely (TrG» )+0 generates a gluon
mass, so knowledge of a regularized value for one
of these quantities may furnish a regularization for
the other. 5

We will discuss two kinds of regularization
schemes: those stemming from first principles, and
which are necessary for a systematic treatment of
the mass gap; and more phenomenologically orient-
ed schemes. The first-principle schemes depend in
an essential way on the vanishing of the gluon
mass at large momentum, while one phenomeno-
logical model we use is severely regulated that even
a constant mass gives a finite value to (4.11). Oth-
er semiphenomenological schemes for estimating
(TrG» ) (or equivalently the vacuum self-energy)
will be elaborated. One of these is based on the
semiclassical vortex condensate of the massive
theory and requires a number which is very diffi-
cult to calculate: the areal density of vortices. A
self-consistency argument for this density leads us
back to the glueball regularization scheme.

We begin with a discussion of the vanishing of
the dynamical mass at large momenta.

A. Behavior of dynamically generated mass
at short distance

It is the essence of a dynamically generated mass
that is is not constant but vanishes at large
momentum. " This vanishing —expressed as the
positivity of the anomalous dimension of the mass
operator —reflects in a quantitative way the attrac-
tiveness of forces in the channel carrying the mass
quantum numbers. This soft behavior at short dis-
tances, when coupled with dimensional regulariza-
tion or an equivalent gauge-invariant prescription
which denies the perturbative generation of mass,
ensures from first principles the finiteness of the
mass (seagull) integral given in (4.11). To speak
heuristically, one might anticipate that a mass
term in d (k ) appears in some such way as

d(k )- k+m(k)
The dimensional regularization rules (1.6) allow
(4.11) to be written as

V. REGULARIZATION OF THE SEAGULL GRAPH
AND OF (TrG„„)

Regularizing the seagull graph —that is, giving a
finite value to (4.11)—and regularizing (TrG» )

Jd4k d(k )—
k

2 k2

k [k +m (k )]
d k . (5.2)
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If m (k ) vanishes sufficiently rapidly, this in-

tegral is finite. Unfortunately, this approach is too
simple minded, because it gives the wrong sign for
the mass term. Something more elaborate than
(5.1) happens for small k, but the basic idea
which leads to ultraviolet finiteness is expressed in
(5.2).

An asymptotically free gauge theory is some-
what more complicated, with its powers of loga-
rithms. %e can find the anomalous mass-operator

dimension in lowest-order perturbation theory by
adding a bare mass mo to the fundamental equa-
tion (4.6) (which is in Minkowski space; we use its
Euclidean analog), and then choosing
p(A, ) =5(A, —mo ). This works because (4.6) be-

comes precisely the one-loop result for the massive
gauge-invariant Lagrangian of Sec. II. The dimen-

sionally regularized result for the renormalized

propagator is, for q, p yam,

d —1 a+ Qg2

(5.3)

where e=d —4 and the factor in front is Z& to O(g ). To this order, the physical, finite mass m is deter-
mined by

m =m 1 — bg (m /p)a6

a a(E
(5.4)

which gives a pole in (5.3) at —q =I + finite corrections). (These corrections vanish when the correct
low-energy version of (5.3) is used. ) The renormalized propagator is, with (5A).

T

d '=[1+bg ln(q Ip )] q +m 1 ——„bg ln(q Im ) (5.5)

which will be recognized as the lowest-order term in a renormalization-group- improved expansion:

d '=[1+bg ln(q Ip )]tq +m [1+bg ln(q Im )] (5.6)

(5.7}

where

d~„'(k )=k [1+bg ln(k /p )] (5.8)

is the renormalization-group-improved propagator.
Even though this quantity has a Landau ghost
making the interpretation of (5.7) problematical,
(5.7} is necessary to ensure the nongeneration of
mass (through a seagull term) in perturbation

As we mentioned in the Introduction, the power—„ is m times the Coulombic strength of attrac-
tion in the 0+ channel with quantum numbers of
the mass operator. The mass term in (5.6) is the
solution of a standard linearized mass equation,
which also has another solution' behaving like

q (lnq )+' ". This latter behavior is likely to
be correct, but either solution works in the qualita-
tive discussion which follows.

Now we argue that there is a sense in which the
seagull integral vanishes in perturbation theory:

fd kd~, „(k ) =0,

I

theory. It is then trivial that the regulated seagull

Jd k[d(k ) —d~„(k )] (5.9)

is finite, when d is taken from (S.6).
Let us comment briefly on the three-dimensional

case. Asymptotic freedom is replaced by super-
renormalizability, so the powers of logarithims are
gone, and the dynamical mass need have no special
behavior at large k. One might then use (5.1) and
(5.2) with d =3 to conclude finiteness of the
seagull. It is not quite this easy, because the actual
behavior of the gauge-invariant propagator at large
kis

d '(k )=k ~bg k+O(ink )—,
where b =15'(32m. ) '. lf now we add to (5.10) a
constant mass term, and form (S.2) in three dimen-
sions, a logarithmic divergence appears. But this is
a purely perturbatiue divergence, which is neces-
sarily canceled in nonseagull two-loop graphs. So
finiteness of a dynamical mass in d =3 QCD in-
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volves more than just the seagull and more than
just the one-dressed-loop approximation we use in
this paper.

Next we discuss some semiphenomenological
regularization ideas. To begin with, we derive an
exact relation between the vacuum self-energy and
(TrG„„').

B. Regularizing (TrG„„)with

a finite vacuum energy g' Gp (5.17)

(the subscript reg is understood). Finally, observe
that 0 can be expressed as a functional of the pro-
pagator d (k ), and that the only dependence of Q
on m is through d. Since the functional deriva-
tives of 0 with respect to d vanishes when d is the
solution to the Schwinger-Dyson equation, it fol-
lows that m BQ/Bm =0 and finally

Le'. us temporarily rescale the fields:

A~ ——g 'Ap, Gp„——g 'Gp~ . (5.11)

Z =Zi, '
J (dA„)exp g —Jd x 4 g(G„', )

The basis of the regularization will be to set the
energy of the perturbation vacuum to zero, so we
define the vacuum partition function Z and vacu-
um self-energy 0 by

which is positive since Q (0. (Incidentally, these
equations when combined with the Euclidean trace
anomaly yields the result (8&&)= —4Q, with

(8&&) being interpreted as the positive pressure of
the gluon condensate. ) The bag constant 8 is equal
to —Q, and (5.17) yields 8'~ =250 MeV for the
phenomenological value of (TrG„„) in Ref. 12.

We remind the reader that relations like (5.17),
although derived for bare quantities, survive renor-
malization intact; and that Q is gauge invariant.

(5.12)

where V is the volume of Euclidean space-time and

Zz is the functional integral written as a formal
power series in g. By differentiation with respect
to g it follows that

BlnZ 1 Jd4 ~(G, )2
VBQ

~g 2g ~g

(5.13)

where the subscript reg indicates that the regulari-
zation is by subtraction of the perturbative expec-
tation value. The integral over x in (5.13) gives a
factor of V which can be canceled out.

We will show explicitly in the next section that
when a dynamical mass m is generated,
Q= (Qp,g, m)is a finite negative function of its
arguments —finite because the perturbative contri-
bution has been subtracted out. Of course, Q is
renormalization-group invariant, so

C. Glueball regularization.

A„—:U 'Aq U g'(B„U ')U— (5.18)

As discussed in the Introduction, one way of
looking at the physics behind mass generation is
that the (composite) field P which creates 0+ glue-
balls has a finite vacuum expectation value (VEV).
To describe this, we use a phenomenological effec-
tive Lagrangian with terms describing a VEV for
P, a coupling between P and the gauge fields, and a
Hartree-type term coming from the four-field cou-

pling in the gauge Lagrangian.
Our ultimate goal is in describing the VEV

(TrG» ); since G» is described from a gauge po-
tential, it will be necessary to speak of a VEV bi-
linear in the gauge potentials. This VEV must, of
course, be gauge invariant. We have at our dispo-
sal a completely gauge-invariant form of the poten-
tial, using the auxiliary fields U introduced in the
massive Lagrangian (2.2). It is

p +P Q=O.a a

Bp Bg
(5.14) which can be shown, using the equations for U, to

be conserved. In lowest order of g,

By simple dimensional analysis, A„=A„—a„o-'a A . (5.19)

More generally, it must be the case that propaga-
tors of Az involve the gauge-invariant propagator

[see (2.24)j, except that the projection operator

P» of (2.12) is replaced with the conserved projec-

(S.15)p- +m —4 Q=O.
Bp BNl

Combining (5.13)—(S.15) yields (with P= bg ):—
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tion based on (5.19}. Thus we make the
(Euclidean-space) identification

(Az(x)A „(0))

d4k . k k„=b e '"'" 5 — " dk)
(2~)4

(5.20)

where d(k ) is the gauge-invariant propagator of
Sec. IV, and A„' the component form of the matrix

A&. The VEV of interest we write as, for gauge
group SU(N),

description of P as a composite field:

P(x}=g[Aq(x)] e '~" 0 g(A~) p
8

(5.26)

The normalization is such that
(0

~
P(x)

~ p ) = '~'", where
~ p ) is a glueball state

momentum p. It is more convenient to normalize
at p =0, simply by continuing the term in large
parentheses in (5.26} to zero momentum. This is
calculated from the vertex implicit in W,rf (assum-

ing 8 = constant in momentum space, which a re-
normalization group analysis shows to be very
nearly true). We may now calculate (t)I ) directly
from (5.26), with the result

d k=3(N —1)f 4d(k ) .
(2n. )

(5.21)

The effective Lagrangian involving P and Q is

g2 2 2' 2
~4 V ~z+ ~~Q+ g NQ

4 2 2 12 (N'

g(y) = f d"kd(k ) f d4kd2(k2)

(5.27)

(p) =+
~

p'+
2g Pf

(5.23)

3(N —1)
(5.24)

Positivity of Q requires R (P) ~0, of course. As
we have already said, Q is related to d '(0) by
(4.11) and (5.21), which yields an important rela-
tion:

d '(0)= iR(P) i
. (5.25)

Another useful relation follows from an explicit

(5.22)

The first two terms summarize processes which
give a VEV to P, the third term is a renormalizable
coupling of P to two gauge fields, and the last
term is essentially the Hartree approximation to
the four-gluon term in the gauge Lagrangian.
However, the coefficient of Q is not what one
would expect from purely classical considerations
(which would be larger by a factor of —,; instead it
has been chosen so that the mass generated for
small fluctuations around Q is given by (4.11)
[with 3-+N for SU(N)] and (5.21). This renormal-
ization is necessary because it is not only seagull
terms which contribute to the mass; also contribut-
ing are the massless poles in the vertex (2.13).

Straightforward minimization of (5.22) with
respect to P and Q gives a minimum at P= (P),
where

This furnishes a finite, positive regulator for Q, be-
cause the second factor in (5.27) is convergent
(even for constant mass}. The reason for this con-
vergence is that d-(k ink )

' at large k. Com-
bining (5.25) and (5.27) yields the exphcit regulari-
zation

f d'kd(k') =d-'(0) f d'kd'(k')
reg

(5.28)

This has the virtues of being finite, positive, con-
sistent with the renormalization group, and zero in
perturbation theory [where d '(0) =0].

D. Vortex-condensate regularization.

The massive Lagrangian (2.2) has vortex solu-
tions (second paper of Ref. 6). The gauge poten-
tials are regular at the center of the vortex, but the
invariant potential A& has a singularity. For a sta-
tionary vortex running along the z axis we have [in
SU (3)]

(5.29)A'"'=+i—P ——mEi(mp)

where j =(x,y), PJ is the unit vector in the P direc-
tion (angle around the z axis), Q is the quark
charge matrix, and E] is a modified Hankel func-
tion. The invariant potential AJ is gotten from
(5.29) by dropping the (pure-gauge) p

' term. The
resulting singularity (mICi -p ') leads to a short-
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distance logarithmic singularity in the vortex ac-
tion, coming from the mass term in (2.2). We will

discuss in detail elsewhere how the fact that a
dynamically generated mass (in effect, m ~0 as

p —+0) removes this singularity, giving the vortex a
finite action proportional to the area of its world

sheet [in the present case, the (zt) plane].
In two dimensions, where vortices are point par-

ticles, we can calculate the classical gauge-invariant
propagator corresponding to (5.20), using standard
collective-coordinate calculations:

(
—S

gA (x)AJ'(y() =g Id~a( —2Tr(A; (x —a)AJ (y —a)
a

—s k2 k;k.
(4Trg2) e d2ke ik —(x —y) 8

' J
Ug (k+m ) k

(5.30)

The translation collective coordinate a has been ex-
plicitly indicated, while the summation sign refers
to all other coordinates [including group degrees of
freedom and summing over + in (5.29)]. In (5.30),
S is the vortex action and U an area calculated
from quantum fluctuations. It will be very impor-
tant to calculate U 'e someday, but it is beyond
our powers now. An estimate is not hard to come
by, since this number is simply the areal density of
vortices. A vortex has area -mm, so we expect
U 'e to be m /n. times a number ranging from,
say, 0.1 to 0.5. Below we give a self-consistency
argument which yields values in this range.

The four-dimensional calculation corresponding
to (5.30) is much harder, but we can see the gen-
eral features it must have. Of course, the projec-
tion tensor 5; —k;k k is immediately general-
ized to four dimensions. The quantity U 'e re-
tains its interpretation as an areal density of vor-

(k +m )
' —+[m d(0)] 'd(k ) . (5.31)

The upshot of all these-considerations is an ap-
proximation to the propagator which is regulated
at small distances, regularized because no contribu-
tions solely stemming from perturbation theory
have been kept. We find [4TrQ = —, for SU(3)]

l

tices. The most important charge is that we can
incorporate in 5 the entropy arising from summing
over different sizes and shapes of vortices (this en-

tropy must be at least as great as the vortex action
if there is to be condensation). Note that, because
of the k in the numerator (5.30), we can readily
interpret the integral as four dimensional. Finally,
as will be discussed elsewhere, the effect of radia-
tive corrections on this classical formula is essen-
tially to replace (k +m )

'
by the full propaga-

tor, appropriately normalized at small k:

~„'(x)A',(0) = [m d(0)] I d « ' d (k)
rcg 3' U

(5.32)

—S 4e 3nm 2d( )(2~)'
(5.33)

which correctly shows the left-hand side to be
renormalization-group independent. We will see in
the next section that (5.33) gives e '/U
=(m /m) && (0. 1 —0.3), in agreement with expecta-
tions.

Similarly, the vortex condensate can be used to

which is finite at x =0. This regularization is in
the same spirit as (5.28), differing only by a con-
stant factor associated with the unknown e /U.
We can rex:over (5.28) precisely by making the not
unreasonable demand that the regulated propagator
should agree with the true propagator at large dis-
tances (small k). The Fourier transform of (5.32)
at k =0 yields upon comparison with (5.20)

g 6„'„—16 d k
a

2e
—S

= 16mm-
U

(5.34)

The non-Abelian terms add about 0.5m to this.
Estimating e /U-n /4m and using the
phenomenological value' of 0.47 GeV for the
left-hand side of (5.34) gives m =600 MeV.

I

estimate (TrG&„). We record the contribution to
G&„ from i}„A„—B„A„;the part coming from the
non-Abelian term gA„XA„can easily be estimated
and turns out to be numerically rather small. Note
that it is important to use A„and not Az', these
differ by a singular gauge transformation which af-
fects G&„. The result is
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VI. SOLUTION OF THE SCHWINGER-DYSON EQUATION AND ESTIMATES
OF THE GLUON MASS

26

The equation to be solved is (4.10), which we repeat for convenience:

d '(g )=g K+bg J dz 1 — d(z) + J dzz
*

d(z)+d-'(0) . (6.1)

K is determined by the requirement d '(q =p )

=p, where p »d '(0), and d '(0), of course
undetermined by (6.1), will later be found from ei-
ther (5.17) or (5.28). As we know from Sec. IV,
(6.1) has the unpleasant feature that gzd, which
should be independent of g (or p), in fact depends
roughly on g because of the renormalization pro-
cedure we were forced to adopt. Now g is not very
sensitive to p, changing by about 30% as p/A
ranges from 20 to 200. But this sort of ambiguity
which is intrinsic to (6.1) means that an exact nu-

merical solution is of less importance than an ap-
proximate solution which respects the true renor-
malization group. That is, we are better off using
the first significant term of the expansion of the
exact large-q solution (4.19) than we are using
(4.19) itself; the error committed will be small as
long as bg ln(q /p ) «1. This one-term expan-
sion can be renormalized according to the true re-
normalization group. For very small values of q
(6.1) is exact, aside from renormalization-group
ambiguities (choice of K), so we want to find nu-

merical solutions to (6.1) and then fit them to ap-
proximate trial functions which are chosen to be
renormalized according to the true renormalization
group.

[Although we will not study it in detail here, we

give the corresponding dynamical equation for the
three-dimensional case:

ao

d '(q )=q 1 — I dzK(z, q )d(z)

+ Jd kd(k ),2b

15
(6.2)

1/2
K(z,q )=q 'ln

2Z 1 /2
q

(6.3)

and b = 15C& /32m. This equation —or more pre-
cisely the two-loop version of it—has no ultraviolet
divergences (see the discussion of the seagull in
Sec. VI), but it appears to compensate for such
good large-momentum behavior by a more virulent
infrared behavior than is found in the four-
dimensional case. This equation has only massive

+4m ( )
dz (q )=[q +m (q )]bg ln

+4m
m (q )=m ln

A

—12/11
4m

ln
A

(6.4)

(6.5)

It is manifest that g dr is independent of g. The
relationship between g, p, A, and m is defined by
dr '

(q =p ) =p; aside from mass terms, this re-
lationship is the usual one-loop result. The appear-
ance of 4m in (6.4) and (6.5) is suggested by sim-

ple theoretical arguments. Another possible trial
form would follow from the first iteration of (6.1)
using a free massive propagator as input; this is
closely related to but not identical to (6.2). Note
that dr becomes singular for m &A/2, which is re-
lated to the fact that (6.1) becomes a singular equa-
tion for d '(0) =0. We repeat that A can only be
defined precisely when at least' the two-loop correc-
tion is taken into account, but this ambiguity in A
is exactly of the same character as the dependence
of g d on p, , as discussed in Sec. IV, and need not
concern us until the two-loop corrections to the
basic equation (6.1) are incorporated.

In Sec. IV we saw that the dependence of (6.1)
on g can be formally scaled out. Introduce the
new quantities

K=gK, y=q /m2 2 (6.6)

and define F by

I

solutions, and the minimum mass for which there
is a solution is 0 (bg ') F. «SU(2) b -0» and

m =0.3g is the gluon mass found in lattice calcu-
lations. The perturbative solution of (6.2) and
(6.3) agrees with the calculations of Ref. 5, when
these are made gauge invariant according to the
prescription of Sec. VII.]

It turns out that the following trial propagator,
which incorporates the correct ultraviolet behavior
(including the momentum-dependent mass term)
and which is renormalized according to the true re-
normalization group, is an excellent fit to numeri-
cal solutions of (6.1):
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d '=gm F(y,K) .
Then (6.1) becomes

F(y,K)=K(y + 1)

(6.7)

' 1/2
x~4 4p+yb I dp 1 — F I(p,K)

+11 I dp 1 — pF '(pK).3 /'4 4p

p — p
gm

(6.9)

Equation (6.8) is easily solved on a computer, and

we will discuss such a solution later. But it is in-

structive to develop a power-series solution for
small y:

(6.8)

The lack of dependence on g is only formal, since
the normalization of F (choice of K) will depend
on g:

E=bg ln
4m 1 (6.12)

series for any desired value of y as follows. Use
the power series for y &yp & 4, then substitute in

the right-hand side of (6.8) to generate the solution

up to y =4yo, etc. This helps us to understand

why the trial form (6.4) agrees well with the exact

solution, at least for 0.2 &K &0.4: the first iterate

of (6.8) based on saving only the first two terms in

the power series is reasonably accurate at least to

y (16, and has the same asymptotic behavior as

(6 4) for larger y.
In Fig. 12 we show computer-generated solutions

of (6.8) for K=0.3, 0.4, as well as values of
m g dT from (6.4) for m /A =1.5, 2. From (6.7),
m g d=gF ', so g is the ratio between the dotted

and solid curves; Fig. 12 yields g in the range

1.5 —2, corresponding to IM/A in the range from 6
to 25. The precise relationship between E and g
follows from equating the first two terms of the

trial form (6.4) to the first two terms in the power

series for small y:

F(y,K)=K I+g aNy
1

The coefficients are found to be

a) ——1,
b—i(I+»o)

6E

as ——— z(1+»),b

60K

a4= ~(I+—„) 1—,(1+ „,)
b

1
i b

420K 6K

(6.10)

(6.1 1)

(The 4 is numerically unimportant. ) In principle,

this should be the same condition as (6.9), which

relates K and g at high energies (q =p), but in

practice there is a difference unless p is chosen to
be rather small. For large p, /m and q =p, it is

straightforward to show from (6.1) that
K= 1 bg 1n(IJ. /4—m )+0(bg ), which yields

(6.12) up to terms of 0(bg ) Part of th. e numeri-

cal discrepancy between (6.9) and (6.12) arises, of
course, becase dT is not exactly a solution to (6.1).
It is better to use (6.12) than (6.9), because the pro-

~ b 4i ~I (N —1)l'(3/2)
K' I (N +1/2)

)0 I ! I I ) I I I I l I I I I

X 1+
22(2N +3)

1+0 b

E

The radius of convergence of the power series is

y =4, as long as b/6K is not large compared to 1.
But when this quantity exceeds a value of order

unity, (6.8) appears to develop singular, unphysical

behavior. %hen E &~b, the equation is easily

solved, but the mass m will be too large to achieve

self-consistency through the regulated value of
d '(0) given in (5.28). In practice, 0.2 &K & 0.4 is

the interesting range for SU(3) (b =0.07), which

will correspond to mass values m/A=1. 5 —2.
One may solve (6.8) with the help of the power

I-
CJ

CV

0.)
E

, 01
0, 1 10 100

y=y/m2 2

FIG. 12. Numerical solutions of Eq. (6.1) (sohd lines)

for K=0.3 0.4, and the trial propagator d& of Eqs. (6.4)

and (6.5).
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pagator is largest for small y; an error in the ultra-
violet is much less important than are in the in-
frared.

We are now in a position to estimate the gluon
mass, in two different ways: a self-consistent
determination, based on (5.28), or an estimate in
terms of a phenomenological value of (Tro&„) us-

ing (5.17). In both cases we will use the trial pro-
pagator (6A). For the self-consistent determination
we do not even need to use the momentum-
dependent mass of (6.5) for convergence, but this
form is essential for (5.17).

Consider first the self-consistent case. The mass
equation, coming from using (5.28) in the right-
hand side of (4.11), is

2
1=— I d kd (k) .

11
(6.13)

m= —e' ~ .A 322b2
2

(6.14)

—1/2b 2If p is large enough A=pe '~, so (6.14) can be
written

m=pe (6.15)

Here d means dT of (6A) with m (q)—:m . Just
like (6.1), this condition is g independent only for
the false renormalization group, where gd is in-

dependent of g. It would be nice to use the exact
solution to (6.1) in (6.13) because of the g indepen-
dence of the results; unfortunately, (6.13) then
diverges because the solution to (6.1) behaves like
k (Ink )

' for large k. The divergence is very
tame ( -ln lnA&„). We have calculated masses us-

ing (6.13) and the exact solution to (6.1) for a
range of cutoff values, and get results
(m/A=1. 5 —2) consistent with the use of (6A) in

(6.13).
To calculate the self-consistent mass, pick a

value for bg, find a value for m/A, then use dT
(q =p )=p to eliminate g in favor of p/A. We
find in this way that the renormalization-point
range 5 &p/A & 100 corresponds to
m/A=1. 3+0.5. That is, a range of a factor of 20
in p/A corresponds to +40% spread in m /A, il-

lustrating the rather weak dependence of m on p
which inevitably follows from the mishandling of
overlapping divergences inherent in the one-loop
equation (6.1). This dependence can be fit as loga-
rithmic in p, , or as a small (-0.2) fractional power
dependence, over the above-mentioned range of
p/A.

For very large values of p/A, it is straightfor-
ward to show that (6.13) leads to

e- m' ~

11 ln4m '/A' (6.16)

and the second gives
448m

llln(4m /A )
(6.17)

The phenomenological value for the left-hand side
of 0.47 GeV gives rise to m =700 MeV.

Finally, consider a direct estimate of the vacuum
energy 0, based on the Hartree approximation.

with b'=( —, )b (compare to the false renor-

malization-group coefficient 2b as discussed in Sec.
IV). So the dependence of m on p can be thought
of as a simple consequence of using the wrong
value of b, and m is independent of p for another
value of b as in (6.15).

There is another sense in which m can be re-
garded as independent of p. Note that the original
equation (4.8) from which (6.1) was derived by sub-

tractive renormalization had its mass term multi-
plied by Z3, which we set equal to one in the sub-
tractive renormalization procedure. We might in-
stead replace Z3 by g go, in which case the self-
consistency condition (6.13) is independent of g
(hence independent of p) when g d is independent
of g, as is the case for dT from (6.4). We then
have to deal with the divergent quantity go, so p
dependence has been traded for cutoff dependence.
Correct treatment of the overlapping divergences in
the mass term will then replace go by a finite
but still p-independent quantity. What we have
termed p dependence of the mass ratio m /A is en-

tirely equivalent to our ignorance of what finite
but p-independent value we should use for go
That ignorance will be much reduced when the
two-loop version of (4.8) or (6.1) is studied.

Going to the two-dressed-loop version of (6.1),
which is a systematic improvement of that equa-
tion, will do two things: first, the renormalization
mismatch will be smaller by a factor of roughly

bg, and second, we will be able to say what A is
with some accuracy. It appears from the other
considerations we are about to give that
m =(2+0.5)A with A=300 MeV, consistent with
momentum-space renormalization with four quark
flavors.

Now that we have a specific form for the propa-
gator, namely dr from (6.4), we return to Eq.
(5.33) and (5.34) which deal with vortex-condensate
regulation. The first of these equations estimates
the areal density of vortices e ~"; using (6.4)
yields
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The vacuum energy is given by

VQ= —i Tr[lnddo dd—o +1]
+2PI graphs —(d-+d» ) . (6.18)

The divergent integral over lnd must be regulated,
which we do with the help of (4.5), yielding

3(N —1) d4k 1
k +m

2(2ir) k

4 2

+ ,g'N (N —1)—I 4 d (k')
(2n )

(6.19)

We have substituted d& —+do and dropped the per-
turbative contribution. The variational derivative
1s

Here d is the gauge-invariant propagator, do the
free-field propagator, and d» the perturbative coun-

terpart of d. The 2PI (two-particle irreducible)

graphs are not standard because of the appearance
of d in place of the conventional propagator, but
the graphical structure in terms of d can easily be
worked out.

The first and most important point to be made
is that 0 is finite, given a mass m(k ) that de-

creases at large k. The reason was given long ago
in a related context: clearly 0 vanishes at m =0,
and has a formal expansion in powers of m .
There could be a quadratic divergnece coming
from the term -m, but the coefficient must be
zero. This is because we can expand d as

d»+0(m ) at large momentum, and then the po-
tential divergence in 0 is 0(m )X50/5d. This
functional derivative vanishes when d is the propa-
gator which solves the Schwinger-Dyson equation.
The m terms are convergent because the mass de-
creases at large k, and higher powers converge even

with a constant mass.
To estimate 0 we will save only the Hartree

term corresponding to the last term of the effective
Lagrangian (5.22):

3N 1—0= — I d k [in(ddo ')—ddo '+1]
2(2ir)

( —)
( )4' (6.22)

Now the integral is at most logarithmically diver-
gent (the integrated goes like m k at large k).
But we know that it cannot diverge, once the radi-
ative corrections so far omitted cause m to de-

crease at large k, so we will simply substitute
m ~m (k ) by hand, leaving detailed justification
to a later work. Numerical evaluation of (6.22) for
SU(3) gives roughly —0.3m [depending, of
course, on m/A and on g, since the last term of
(6.22) is not renormalization-group invariant] and
thus a rather low mass of =350 MeV when com-
pared to phenomenology [0=—(250 MeV) ].

One may also compare directly (6.17}and
—Sb '0 from (6.22), to find a formula for m in
terms of A. It gives m =A, a low value judged by
other estimates. This is probably because our
crude calculations somewhat overestimate
—Qm 4

So we have several rough estimates for m, rang-
ing from, say, 300 MeV (m=A) to 700 MeV.
This spread illustrates the inherent inaccuracy of
the present calculations. It is amusing to note that
this spread may be greatly reduced by the simple
(ad hoc) expedient of multiplying the estimate
(6.16) of the vortex areal density e i by a factor
approximately equal to 2. This same factor will
then appear on the right-hand side of the mass
equation (6.13), leading to m =2A or possibly 600
MeV, while the comparison to (TrG„„) in (6.17)
lowers m from 700 MeV to around 600 MeV.

0 3(N —1) d4kl k +
2(2ir) k

3(N2 —1) d i( )
4%g2

(6.21)

50/5d=0-d ' —do
' — J d kd(k )

(2ir)

(6.20)

which at zero momentum (do '=0) gives back the
mass equation (4.11). To evaluate 0 we use a sim-

ple form for d: d '=k +m . Using the varia-
tional equation (6.20) for d in (6.19) allows the
rearrangement of 0 to

VII. PHYSICAL IMPLICATIONS
OF THE GLUON MASS

In this summary we discuss a half-dozen or so
different ways of relating the gluon mass m to
measurable quantities (including those measured on
the lattice}. In each instance, the theoretical errors
in the relationship are of the order of 50%, and in
one or two cases the relationship is nothing more
than a reasonably sophisticated guess. No single
connection between m and another physical param-
eter is quantitatively persuasive by itself, but taken
together they strongly suggest that m =(500+200}
MeV. We also discuss several other ways in which
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hadron physics is directly influenced by the gluon
mass, and which require further investigation.

The first two ways of determining m have al-

ready been discussed: with the phenomenological
glueball regularization of Sec. V, m =(1.59+0.9)A,
where A is a renormalization-group scale not deter-
mined by one-loop calculations. For consistency
with other values of m found later, we should take
A=300 MeV, consistent with AMQM in a four-
quark theory.

The second way is through (TrG&„) which is
related to the vacuum self-energy 0, which we

could only crudely estimate. This gave
m=350 —700 MeV. Each of these two ways has
an accuracy of only about +50%, but this can in
principle be greatly reduced by writing down and
solving the two-dressed-loop version of (6.1) (with
a correspondingly complex evaluation of 0). Cal-
culations in this direction are now in progress.

The third way is to relate m to the glueball spec-
trum expected in the continuum theory. It is at
least conceivable that the dynamics of massive-

gluon bound states may be usefully approximated
with a Schrodinger equation, and A. Soni and the
author are presently calculating glueball masses us-

ing potentials derived from single-gluon Yukawa
forces as well as a breakable string force which
characterizes adjoint Wilson loops (see below}. We
find that a gluon mass of m =500 MeV yields a
2++ glueball of mass —1600 MeV and a 0 +

mass of —1400 MeV. We have fitted these values
because there are experimental candidates for glue-
balls of these quantum numbers at the appropriate
masses. The theoretical errors in this
determination —even if one granted no experimen-
tal uncertainties —are not negligible because gluon
systems are reasonably relativistic and because of
mixing with qq states.

The fourth way is to compare these glueball cal-
culations with lattice calculations, which have the
advantage of no qq mixing as well as a clearly
identified 0++ glueball. Disadvantages are that
lattice measurements of glueball masses are them-

selves subject to +50% error, and that they are
done for SU(2) instead of SU(3). The 0++ glueball
calculated [for SU(3)] by Soni and the author has a
mass of =2.2m, while lattice calculations ' give

a mass (3+ I }+K+. In the continuum theory, at
least, there is no marked difference between glue-
balls for the color groups SU(2) and SU(3), so these
numbers ought to be comparable within errors.
For Ql(:z 400 MeV, we find ——m =(550+200)
MeV. One group has gone on to calculate the
0 + and 2++ masses in SU(2), getting 4.1

QI('F —1640 MeV and 4.4 ~E~-1760 MeV,
respectively, with rather large errors. The continu-
um theory fits these values with m=600 MeV.

A fifth way has already been mentioned. In a
lattice calculation, Bernard has measured the ener-

gy needed to pop two gluons out of the vacuum
(i.e., to break the adjoint string), which should be
of order 2m. He finds m )530 MeV (a lower
bound because of finite-size effects). It is not clear
how much the nominal value 2m is changed by
gluon-binding effects, so we should assign +50%%uo

errors to this comparison also.
The last two ways are really no better than edu-

cated guesses, but we record them because of their
intrinsic interest. In the Introduction we showed
how a vacuum field with Auctuating color fields
led to confinement. A rough estimate for the
string tension for QCD comes from (1.4), with an
extra factor of 1/2N because

1 1

Tr —,A,,—,A,b
——(1/2N)5, b Tr1:

E:,= S~g'(G'),

where (G ) is related to (TrG&„) by

g G„'„(0)G;p(0))= (5„,5.p —5„,5„p)( G' &,
a

(7.1)

(7.2)

(7.3)

This gives

[=0.003 (GeV) bo for SU(3)] . (7.4)

Here ho. is the area over which fluctuations are
correlated. We might guess that Ao. is the inverse
of the areal vortex density e /U, in which case
(5.34) gives Kz-(m. /9)m . For E~-0.16 GeV2,

we find m -670 MeV.
Finally, we have looked at the behavior of ad-

joint Wilson loops, which show a perimeter law
(because an adjoint string always breaks by pop-
ping gluon pairs out of the vacuum). The expecta-
tion value of the Wilson loop is estimated by fil-
ling it with tangled vortices, in just the same way
as done earlier for quark Wilson loops (2nd paper
of Ref. 6). The vortices have only short-ranged in-

teractions with an adjoint Wilson loop, and for
very large loops one can do the continuum analog
of Bernard's lattice calculation. In this way we
find m=600 MeV with errors impossible to assess,
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but large. Details of this work will be published
elsewhere.

These estimates are useful not only for the light
they shed on the value of m, but to indicate how
one relates a mass which cannot be directly mea-
sured by an experimentalist to physical quantities
like the string tension. The most fundamental re-
lation, perhaps, is that between E~ and m, and it is
one of the most poorly determined, unfortunately.
There are other relationships which have hardly
been explored at all, which we now list.

Gluon masses should affect the transverse-
momentum structure of gluon jets, and (both
through phase-space effects and infrared stabiliza-
tion of the running charge} quarkonium decays.
This last point has been made by Parisi and
Petronzio, who guessed at a gluon mass of 800
MeV. The most recent study of three-gluon quar-
konium decay, however, is based on massless

gluons, and points to a rather small value for A

(AMs ( 100 MeV). But including gluon-mass ef-

fects will raise A, and it is most important to redo
this calculation with massive gluons.

Each hadron made of qq or qqq will be the
lowest member of a series in which the next
member is qqg or qqqg (g for gluon). The next-
lowest members of the series should have opposite
parity to the ground state and lie about 600 MeV
higher; their angular momentum may or may not
change. This sort of series should be distinguish-
able from Regge trajectories and from radial exci-
tations (for which there is no parity change). If
the gluon is allowed to have orbital angular
momentum, there will also be states acting very
much like radial excitations; indeed, they may not
even differ in principle, since a radial string excita-

tion must be coupled strongly to virtual gluons
(vacuum polarization). Similar properties of qqg
and qqqg states are expected in the bag model (J.
Kuti, private communication}.

Finally, there are some implications of gluon
mass of a more theoretical nature. We have al-
ready pointed out (second paper of Ref. 6) that the
massive theory has screened instantons, whose size
cannot exceed m '; an alternative study of the
vacuum using such screened instantons in place of
vortices might shed some light on what the QCD
vacuum really looks like. As mentioned in the In-
troduction, massive gluons lead to terms in the
operator-product expansion of the sort usually as-
sociated with nonperturbative effects'2 (i.e., inverse

powers of q rather than powers of lnq ). A sim-

ple example is the electromagnetic vacuum-
polarization tensor (or photon self-energy). If this
is computed with massless quarks and gluons to
O(g ), only powers of lnq emerge, but with mas-
sive gluons there are powers of m /q . In particu-
lar, the m /q term may be identified with the

(TrG&„)q term of Ref. 12, giving yet another
determination of the value of this expectation value
in terms of m . Calculations are in progress on
this point.
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