
PHYSICAL REVIEW D VOLUME 26, NUMBER 6

Aspects of duality in chiral field theories

15 SEPTEMBER 1982

A. P. Balachandran and V. P. Nair
Physics Department, Syracuse University, Syracuse, 1Vew York 13210

B.S, Skagerstam*
Centre Europeen de Eecherches Nucleaires, Geneva, Switzerland

C. G. Trahern
Physics Department, Syracuse University, Syracuse, ¹wYork 13210

(Received 31 July 1981)

The Abelian and non-Abelian gauge potentials A „are known to describe chiral fields. Here we study their

interactions with dual extended objects. The region occupied by these objects is shown to behave like a distinct phase

of chiral fields which is nondissipative under suitable geometric conditions. A method for the realization of the 't

Hooft algebra in these systems is outlined. The concept of electric and magnetic duality in electromagnetism is

generalized to chiral fields with values in a symmetric space.

I. INTRODUCTION

It has been known for some time that phonon
modes (massless scalar fields) in theories with an
Abelian group of symmetries can be described by
antisymmetric potentials A». ' ' Such a descrip-
tion is interesting on at least two counts: (a) it is
well adapted to the description of Abrikosov' (or
Nielsen-Olesen4} vortex lines; (b) it is invariant
under the gauge transformation

which generalizes the electromagnetic gauge
transformation

It is thus a new sort of gauge theory.
Conventional phonon (or massless scalar) fields

are examples of "chiral" or "nonlinear" fields in
an Abelian theory. Deser' and Freedman and
Townsend' have also formulated non-Abelian non-
linear models in terms of (Lie-algebra valued)
antisymmetric potentials A „. They describe in-
teracting non-Abelian massless scalar fields. In
this paper, we study the interaction of dual ex-
tended objects with such A „. This paper is a gen-
eralization of an earlier work on extended objects
in interaction with Abelian A „.'

Such an investigation seems worthwhile for sev-
eral reasons.

(A) As is well known, the chiral-symmetry
phase is a broken-symmetry phase. Regions of
vortices and their condensates (like strings,
shells, and bags} on the other hand describe a
distinct phase where symmetry is restored. The
existence of this symmetric phase is of interest
in the study of chiral field theories (for example
at finite temperatures). Furthermore, these

domains of higher symmetry have features in com-
mon with the MIT bag. '

(8) These strings and extended objects are de-
scribed by dual. Lagrangians' modified by inter-
action terms with chiral fields. Both dual ex-
tended objects and chiral fields seem to describe
aspects of reality. We are therefore encouraged
to study their mutual interaction.

(C) We show that chiral models with vortices
lead to a realization of the 't Hooft commutation
relations. ' There is reason to believe that an
understanding of this algebraic structure may
clarify the phases of quantum chromodynamics
(QCD)

(D) Free electromagnetism admits mutually
dual descriptions: it can be described by intro-
ducing a potential A either for the field strength
E„„ora dual potential 8 for the dual field
strength *F „. The description of phonon modes by
Lie-algebra-valued fields is dual in a similar
sense. " 'These dua1. descriptions merit attention
in view of the rich topological features and physical
results (like the Dirac tluantization condition" and
the Feynman-Onsager relation'0) they lead to.

'The contents of this paper are as follows. Sec-
tion II recalls earlier work on the Abelian gauge
potentials A~„and their interaction with extended
objects. We emphasize that due to reparametriza-
tion invariance, the regions occupied by the ex-
tended objects behave rather like a different phase
of phonons which under suitable geometrical con-
ditions in nondissipative and hence stable (these
systems have similarities to a superconductor in
an ambient electromagnetic field). Section III be-
gins with a review of earlier work on non-Abelian
A„„. The proof of the equivalence of these models
to those nonlinear models where fields have values
in a (semisimple, compact Lie) group G is in-
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dicated. It is also slightly generalized to describe
nonlinear models where fields have values in a
homogeneous space G/H (where H is a subgroup
of G). We then discuss the gauge-invari-
ant interactions of non-Abelian A„„ to strings,
shells, and bags. As in the Abelian case, ' prop-
erties similar to superconductivity (or vortices
in a superfluid) are found as a consequence of re-
parametrization invariance. Section IV begins
with a general discussion of the manner in which
vortices can arise in a Higgs field. We then re-
mark on a suggestive resemblance between the
Deser-Freedman-Townsend (D FT) Lagrangian
and a Yang-Mills Lagrangian with Higgs fields
(see also Sugamoto, and Seo et al. '). We also
argue that the latter can exhibit vortex production;
a domain where these vortices condense then con-
stitutes a domain where symmetry is restored.
Section V presents an analysis of the DFT system
and the 't Hooft algebra. It is shown that the dyn-
amical variables of the DFT Lagrangian with vor-
tex sources can be used to realize 't Hooft's alge-
bra of A and 8 operators. Finally, in Sec. VI, we
discuss the concept of duality for the new gauge
systems. It is found that while the concept is
formulated with ease if such systems are Abelian,
it can be formulated for the non-Abelian case
only if the space G/H of chiral fields is a sym-
metric space. "

II. THE ABELIANA„,

Jab J ha

(2.6)

(2.7)

(2.8)

(We use the conventions a b» = a. .b —aP„e„„
= —c""=1.) We interpret J~ a.s the analog of a
current on E; it is a measure of the coupling be-
tween E and F„„~. For a string,

J ab

g10

(2.9)

(2.10)

When J' = 0, F „~ describes a massless scalar
field. For then, if we write

g p)L 0 vip

Eq. (2.5) gives

s M„—BpI =0,
so that

(2.11)

(2.12)

for some y. The Bianchi identity

~PvkPg F =0
V u)). p

then shows that p is a massless scalar field

8'y=e M~=0.

(2.13)

(2.14)

(2.15)

8 8 F~"~=—0
v (2.16)

Let us now consider the case J'b4 0. The identi-
ty

In this section, we briefly recall earlier work
on the interactions of 4 „ to extended objects.

The potentialA „ is antisymmetric in p, and v

and is subject to the gauge transformations

then gives the conservation law

(2.17)

which, for n=2, says that & is a constant. 'The

identity
eg„

's(s z»)

[which is due to the reparametrization invariance
of 2, («. Ref. 13)] gives

(2.1)

'The associated gauge-invariant field strength is

(2.2)

In analogy to Lorentz and Maxwell equations,
we now postulate equations for the interactions of
extended objects and F,„~. Let

(vz)=- (z'o, 'o, . . . , "o'), n~ 2 (2.3)

a 8

s„("-(x)= f d vtl (x -z(vl)v"(v). '
E

Here

describe the extended object E in Minkowski space
and let 2, be the Nambu-Goto Lagrangian density. '
Then we write

(2.18)

F,„,(z)s,z»g "~= 0. (2.19)

f2
g =Le»»»F (P)A P P»

4 wv &p (2.20)

This identity has the following remarkable con-
sequences"". (a) If the extended body is static,
that is if z(o) is time independent, it does not dis-
Sipate energy eVen if Jab 0 0; thiS behaViOr re-
sembles nondissipation of energy by a supercon-
ductor; (b) the extended object tends to be impen-
etrable to the "velocity" field M„. This behavior
resembles the Meissner effect.

The following Lagrangian density for this system
when Jab = 0 is due to Deser' and Freedman and
Townsend':
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F „(P)= B„P„—8„P„ (2.21)

1fP — g EvxP
0 pXP (2.22)

(here, f is a constant). For, variation of P shows
that A„„A„„+D„(P)A, D„—(P)A

D.(P)ii„-=s„ii„+[P„,ii„],
(3.10)

(3.11)

Note that Zz is invariant (up to surface terms) un-
der the gauge transformation

Substitution in Z„reduces it to the standard form'

Interaction of E „~ with E can be described by
the action'

(2.23)

A, (x)c G.

As a consequence of the Bianchi identity

z"""'D„(P)F„~(P)= 0,

such a transformation is analogous to (2.1).

Generalizations of (3.6)

(3.12)

(3.13)

Z, = =,'[A„„o""-Z "(e.x, —B,x.)]. (2.24)

III. THE NON-ABELIAN A„„

We consider now the case where A „and P„are
Lie-algebra valued. Let G be the internal-sym-
metry group, G its Lie algebra, and

L(o.), n = 1,2, . . . , [G] (3.1)

a (Hermitian) basis for G. Here [G] is the dimen-
sion of G, and L(o.') are normalized according to

Full variation of (d leads to the stronger result

(2.25)

rather than to (2.19). Modifications required to
obtain (2.19) are discussed in Ref. 6.

I ([H]+ i) = S(i), i = 1, 2, . . . , [G] —[H],
TrS (i)T (n ) = 0 .

Then (3.6) is replaced by

(3.15)

(3.16)

The general nonlinear model is defined on a
homogeneous space G/H where H is a subgroup of
G. We can describe these as well by modifying
(3.6) as follows (see Ref. 14 for an alternative ap-
proach).

Let the Lie algebra H of H be spanned by T(o.):
L(o) = T(n), n = 1,2, . . . , dimension of H=[H] .

(3.14)

Let the orthogonal complement of & be spanned by
S(i):

(3.2)TrI (n)L(P)=5 q.

[We assume thatG, G, and L(o. ) are given con-
cretely in terms of matrices. ] Let

P„=S(i) TrS(i)P„

-=S(i)P„'.

(3.17)

(3.18)

(3.19)

A, „=iA, „L(o.), (3.3)

(3 4)

= ——c""~'TrE (P)A + —TrP P" .F 4 us ~P 2
(3.6)

'This Lagrangian density describes group-valued
chiral fields. For, variation of A.„~ shows that

or

F„„(P)=0 (3.7)

(3.8)

for some g(x)c G. Substitution in Zz reduces it to
the nonlinear Lagrangian

2»(g 's„g)(g 's"g). (3 9)

P, = iP",L(o.),
F„„(p)= e„p„-s„P„+[p„p„] (3.5)

[the fields A„„,P, and E, are anti-Hermitian un-
like the ones in (2.20)]. The Deser-Freedman-
Townsend generalization of (2.20) is

Since (3.7) and (3.8) are still true, substitution in
(3.18) leads to

Tr[S(i)g 'a„g]Tr[S(i)g 's"g]. (3.20)

TrS(i)(gh) '8 ( gh) = Tr[hS(i)h ']g 'S„g

since h 'e„h c H and

TrS(i)h 'S„h= 0

by (3.16). Further,

(3.21)

(3.22)

hS(i)h ' = y(h)~)S( j),
where (y(h)) is some real orthogonal representa-
tion of H. (To prove this, note the following: (a)

(3.23)

We know from Ref. 15 that this describes nonlinear
models on G/H.

There is a further generalization of (3.6) and
(3.20) which will be useful in Sec. IV. First note
that the reason why (3.20) describes nonlinear
models on G/H is the following. If h(x) c H,
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f' 2

~m, ~TrS(i)g 'a„g TrS(j)g 's"g (3.25)

without spoiling gauge invariance under H. Thus
we can generalize (3.17) to

2= -~c"""'TrA„„E„(P)+ m„P„'P"~. (3.26)

Interaction with strings

A simple modification of (2.23) and (2.24) can de-
scribe the interaction of non-Abelian A „with ex-
tended objects. We write

Sl= d ger ~

Wg
(3.27)

h 'T(o])hc H and therefore TrT(o. )hS(i)h '
= Trh 'T(o])hS(i) = 0; thus there are no T(o() terms
on the right-hand side of (3.23); (b) y(h) is real
since S(i) and hS(i)h ' are Hermitian; (c) y(h) is
orthogonal since Tr[hS(i)h '][hS(j)h '] = TrS(i)S(j).
Thus g is gauge invariant under g gh, . It follows
that the physical fields are not g, but rather fields
with values in G/H=I] gH= g(h, —)„ez] .)

If (y(h)j is reducible, there are in general many
matrices m = (m, &) with the properties

y(h)my(h) = m, mkmultiple of identity. (3.24)

Then (3.20) can be replaced by

(2) The field P provides a source term for the

string:

s&n p eg
aS(8 z") i2z"e]]» TrP o

(3) The field P is conserved:

D„(P)P"= s„P"= 0.
(4) There is current conservation:

D,(P)(d= 0.

(3.34)

(3.35)

(3.36)

The following remarks can be made: (a) (3) is
fulfilled as an identity in the Abelian case due to
its expression in terms of A„„; (b) the Bianchi
identity on F„„(P)leads from (3.33) to (3.36) and

(4) also foll. ows by varying X, in (3.8); (c) as usual
the consequence of the identity (2.18) is trivial
for the string. We now derive (1), (2), and (3)
above.

Variation of A„„ leads to (3.33). It implies in
particular that on the string,

(3.37)

Variation of P„gives

f't„„,p' fE„„+i& „ f=d'v(('(x -z]a"s,z'[('„, td],

(3.38)

where
2~=+ —(TrA„„o""—TrJ'»[D, (P)X» -D»(P) X,]},

(3.28)
E~„„=D„(P)A„„+D-„(P)A»~+D„(P)A„„. (3.39)

where
o "=J B z Bz"

gab gba

Here J' and iX' are I ie-algebra valued and

Hermitian, and, for a string,

(3.29)

(3.30)

Thus from (3.38)

Variation of ~ gives

s'»A„„(z )s,z"e»z" = s'»[D, (P Q» D»(PQt, ] . -

(3.40)

(3.41)

gab ~ah~ (3.31)

Note that 2z is invariant under (3.10) if we also
change X, according to

X,+A B,z". (3.32)

In discus sing the equations of motion for this g,
we will vary + fully. This wil. l lead to the stronger
equation (2.25) rather than to (the trace of) (2.19).
(The latter can be obtained if J'" is varied only by
reparametrizations, cf. Ref. 6.) Furthermore, we

will only consider the case H=(identity] so that i'z
is of the form (3.6).

We want to show that the variational problem
leads to the following generalization of the Abelian
equations:

Variation of z" in conjunction with the previous
results leads to (3.34). Finally, we can compute
D„(P)P" from (3.38) and use (3.41), (3.33), and
(3.36) to find (3.35).

Thus the system describes non-Abelian vortices
in the sourceless 6-valued vector field P".

SheHs

The analogs for Eqs. (3.33)-(3.36) are

a 8 (3.43)

fF„,(P)+- d'v6'(x z(v))e„„~-&~'(d,s»z's, z'= 0,
(3.42)

(1) fF „(P)+ d'v6'(x -z(o))s—~„»o»(o)= 0.
g (3.33)

B P'=0
p,

z, D»(P)&u, = 0.
(3.44)

(3.45)
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Bags

'The interaction Lagrangian for the bag is

"[&..~'-~ "(D.x -D, x.)],
(3.47)

'The equations of motion for this case are

fF„„+- d'o6'(x- (z)o)C„,,C'""~., ,S~z,8'z=O,Z

(3.48)

B P'=0 (3.50)

(3.51)e "~D,(P)~,~= 0.
One can now follow the arguments used in the
Abelian case to show the following. In the interior
of the bag, Eqs. (3.47) and (3.48) imply

The derivation of these equations from (3.27) (with
n= 3) follows the same steps as in the case of the
string. The identity (2.18) implies

z'~'z„„8 Tr(Pt'(z)&o, )s,z"s~zzs„z" = 0. (3.46)

Unlike in the case of the string, this condition is
not trivial. In analogy with the Abelian case [Eqs.
(2.19) and (2.25)], on any portion of the shell which
couples to the field, those components of P„which
lie in the direction of J'~= a'"ur, (in the internal
space) are tangential to the shell. Unlike the
Abelian case, condition (3.46) does not restrict P„
to be completely tangential. Weaker conditions
of this type were also found for the interaction of
Yang-Mills fields with shells. "

IV. VORTICES, HIGGS FIELDS, AND GENERALIZED
GAUGE FIELDS

As explained in the Introduction, the point of
view which we would like to emphasize is the sim-
ilarity of these generalizations of gauge theories
to a spontaneously broken Yang-MiLls gauge the-
ory. We begin this section with a discussion of
vortices in Higgs theories.

In the simplest case which we discuss first, the
Higgs fields are sufficiently numerous to trans-
form effectively (with trivial little group) under
G/C where C is the center of G. In the region
where the Higgs potential is a minimum, G/C is
completely broken. Below we will see that in this
phase we have the term (f '/2) TrP' in the La-
grangian, and the Lagrangian describes Goldstone
modes. However, there may be regions where
the Higgs field is zero. It will be shown that
these regions can then act as sources of "vortici-
ty," and in their interior the term TrP' is absent
in the effective Lagrangian. Consequently, the
full gauge symmetry is restored in the regions of
vanishing Higgs field.

In general the Higgs field can of course break
the symmetry in a complicated pattern depending
on the little group of its vacuum value. 'Then we
find the more general Lagrangian (3.26) in the
Higgs phase. Whether or not topological vortices
are possible now depends on the properties of the
Higgs minimum under the action of G.

To begin with we assume that the Higgs field is
a real [G]x [G] matrix

C =[4, ], a, b=1, 2, . . . , [G] (4.1)

As in previous work' nondissipation theorems can
be proved for extended objects in interaction with
non-Abelian A „. They are due to the identity
(2.18) and its consequences like (3.46) and (3.55).

(3.52)

with the response

4 AdsC Ads ' (4.2)

and

(3.53)

Tr(P"F„„)= 0 (3.54)

g,„„Tr(P~J")8,z "S,zm = 0 .

where J'~=a'~~to, . Equation (3.53) follows from
(3.49) because the left-hand side vanishes in the
interior of the bag [see (6.20) in Sec. VI]. Com-
bining Eq. (3.53) with (3.52) leads to

under local gauge transformations s(x) c G. Here,
(Ads) is the adjoint representation AdG of G. The
Higgs potential is assumed to be such that at its
minimum

(4.3)

for some R(x)cAdG. Here f is a constant. In the
vacuum sector 4 has the form (4.3) for all x.

Consider now the Lagrangian

in the interior of the bag.
We notice that (3.53) tends to exclude P„ from

the interior of the bag. If the bag has a surface,
there are equations like (3.46) on the surface with

consequences which have been indicated.

g — XsPvxP TrF (P)Q

——', Tr(D„(l')4')'(D'(&)@) —&(C ),
where V„ is the Yang-Mills potential

(4.4)
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V„=iV L((x), (4.5) 0; =D;,(g)f, , (4. 10)

f is a constant, V(C') is the Higgs potential, and

D„(V}4=8,4+ [adV„, C]. (4.6)

[Here adV = V~ adL(o!), where adL(n) represents
L(n) in the adjoint representation adG of the I.ie
algebra G.] This Z is invariant under the gauge
transf ormations

V, —sV„S '+ sB,s ',
C —Ads@ Ad s -',

g,„-sa„„S '.
(4. 7)

P —R-~y R+R-~P R

=Rig R
p. V Vv

(4.4) becomes

(4.8)

In the vacuum sector we can substitute (4.3) in R.
Redefining

(4. i2)

Here P is the gauge transform of V by g, and
P is related to P, as in (3.19). The indices i,j
are associated with the S(i) [cf. (3.15)].The matrix
M is given by

M;, =ftS(i)S(j)f .

It is invariant under D(h):

D(h)M8(h) =M .

(4. iS)

where the stability group of the constant vector
f is H= fh$ [with representatives (D(h)) in I']:

D(I ),,f;=f, .

[The elements gcG label the cosets G/H. See
after (3.23).] Then the mass term of vector fields
ls

——e'"& TrE (P)A +—TrP'
4 pv Xp

(4. 9)

fs„.(~) =-'-~.„„,Ja*~a'(x-z(o))o'"(~(.
E

As we saw, this equation can be reproduced by
adding the term

d'o5'(x —z(o))Tr[A „o "—Z' (D,X —D X,)]

to the action.
We now consider a more general pattern of sym-

metry breaking by the Higgs field. Let 4
=(&t&„(t(„.. .] transform as some representation
I'=(D(g)] of G. I et the Higgs minima be located
at the configurations .

which is identical to (3.6).
Consider now an excited configuration of the

Higgs field at a given time, where f, instead of
being a constant, is a function X(x). Suppose also
that the following is true: (a) X(x) vanishes on a
string S; (b) as x traces a path 6, encircling S,
R(x) traces a path in G/C which is not homotopic
to a point.

Such a field C is not singular. For although R
is singular on S, 4 vanishes on S. We can in fact
arrange for 4 to be quite smooth on S by a suitable
choice of &. The energy associated with such a C

is thus finite.
Far from S, finiteness of energy requires that

p —f. For such a 4, far from S, 2 still formally
reduces to (4.9) after the gauge transformations
(4.8). We want, however, to exhibit the new top-
ology of P induced by that of R. This is accom-
plished if we recall from previous discussion" that

Thus the model we get is the generalized nonlinear
model of (3.26).

In this model as well there can be vortices. For
instance, let the space of the Higgs minima be
multiply connected. Let S be a string of zeros of

Let p, be a path at a given time encircling S
on which C has the form (4. 10). Then if 4 traces
a path which is not homotopic to the identity as X

traces p„ the gauge transformation from 1/' to P
induces a vortex in P.

V. THE 't HOOFT ALGEBRA

P =g'3 g, inD,

g(x) (=G.
(5. 1)

The group G acts by conjugation on P, , and
A, „:

In his work on the phases of gauge theories,
't Hooft" introduced the algebra involving a pair
of operators A. and B. In this section we indicate
how this algebra can be realized using the new
gauge fields.

Ostensibly the A and 8 operators made from
these generalized gauge fields are not similar to
those in Yang-Mills theories. The types of gauge
transformations which act on these fields are dif-
ferent. However, in view of the remarks of the
previous section, perhaps the fact that this algebra
as well can be constructed in the generalized gauge
theories shows that there is indeed a close rela-
tion between the two gauge theories.

In any domain D (at a given time) which is not
intersected by the string, E,„(P)=0 by (3.7).
Thus P is locally a pure gauge:
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P -sPS'
~-S~S ')
A. „-SA, „s ', s(=G.

(5.2)
adp, .(P)= ——e, „,.J d'e d( x—x(e))g'P x'P x adte'.

(5.7)

Here by (5.6) we find

Adg(x)=0" exp(J adP dx')Adg(x, ) .
XQ

(5.4)

The integration is along any path in D from xQ to
and W denotes antipath ordering. For a path (P

homotopic to a point, as x traces 6',

Thus the center C of G acts trivially on the P and
The effective group is G/C, that is, the ad-

joint group AdG. Thus with no loss of content,
we can write

adP. = [Adg]-'8 [Adg]. (5.3)

We recall that [Adgj is the adjoint representation
AdG of G and adG is the I ie algebra of the rep-
resentation AdG.

If C is nontrivial, then certainly AdG is multiply
connected. In general if D is multiply connected,
Adg is not globally defined by adP." However,
we will assume the analog of the flux quantization
condition in type-II superconductors. The Adg is
globally def ined.

In the presence of a string, the space D is in

general multiply connected. For instance, let S
be the (closed or infinite) string and D = H'/S.
Then a path (PQ which encircles S cannot be shrunk
to a point. Such a D is multiply connected. The
path Adg((fo) in AdG associated with such a 00 need
not be homotopic to a point.

We can integrate (5.3) in D:

]. + adjF' „dg' dx' —= exp adI' „„dx' dx"

O ..p( P..)V

XQ

(5.9)

Consider now the second-quantized version of
this theory. Let A((P, xo) be the operator

A(d', x,)-=—TxO' exP(f Pdx ). , "

Here 5' is a closed path from xQ to x„ the integral
is evaluated over 6, and N is the dimension of the
representation{L(o. )). Let B(S) be the creation
operator for a string S (at a given time, so S is
the time slice of the string). Then the previous
analysis shows that if 6' does not link S,

(5. 1O)

a((p, x,)a(S) =a(S)x(d, x„) .

But if (P is a path 6', which links S once,

(5.11)

= exp(-iad(d) = 1

since Adg(x)Adg(x, ) ' approaches identity as x
completes one cycle in 6, . Equation (5.8) is the
generalization of the familiar flux quantization
condition (m in this section differs from those in
the earlier ones by a factor I/f).

If these equations are written in the defining rep-
resentation and not in the adjoint representation,
the unity in (5.8) is replaced by a suitable central
element z of G:

Adg(x)adg(x)'=0" eap( edP dx')
XQ

(5.5) X(a, x,)a(S) =~a(S)x((P, x,) . (5. 12)

traces a path in AdG homotopic to a point. For a
path such as 6'„ this need not be the case.

Suppose it is not the case. As we shrink (PQ

towards the string S, the path in AdG changes con-
tinuously. If adP were well defined also on S,
this would mean that the path in AdG can be con-
tinuously shrunk to a point contrary to hypothesis.
Thus adP is singular on S.

It is easy to specify the nature of this singulari-
ty. For 6Q very near S,'

0* exp adP, dx'
~

=1+ adF „(P)dx0 p, dx".

(5.6)

The symbol f indicates integration on a small
circle s'0 starting at xo,a. It bounds the surface Q
(which in turn is intersected by S). Thus the sin-
gularity is in adE(P). It is a (non-Abelian) vortex
in P":

The algebra defined by (5.11) and (5.12) is due to
't Hooft.

VI. GENERALIZED GAUGE FIELDS AND DUAL
DESCRIPTIONS OF PHONONS

In this section, we discuss the new gauge fields
with regard to the notion of duality. As we have
seen in Secs. II and III the potentials A „give a
representation of field theories of spin-0 excita-
tions. These scalar excitations or "phonons" can
be regarded as the description of one phase of a
larger system. Just as electromagnetism admits
a dual description either in terms of globally de-
fined electric potentials and electric sources or
globally defined magnetic potentials and magnetic
sources, it will now be shown that an analogous
situation holds for the new gauge systems. The
non-Abelian system requires that some restriction
be placed on the possible homogeneous spaces G/H
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4' = e' p, g real. (6.1)

In analogy, for the non-Abelian case, we can say
the following: 1st C' =(C „C„.. .) transform under
the representation I' =ID(g) I of G. Following
Kibble" we can write its polar decomposition

y, =D(g)„~,, gcG. (e.2)

We call the degrees of freedom associated with g
phonon modes. (Recall that g labels G/H where H
is the stability group of the vector &.)

In electromagnetism, in the normal description,
globally defined potentials are introduced for the
field E,„:

if the duality is to be valid. We find that G/H must
by a symmetric space.

In the Ginzburg-Landau theory, the phase 8 of
the complex order parameter 4 describes the pho-
non mode. Here

In the phase where & is real and only phonon exci-
tations are present, we see from (6. 1) that this
current is, up to a constant,

P =8 8 (e. io)

[for simple Lagrangians like —~B 4 ~' —V(C)]. Be-
cause of this form, P is curl free:

(6.11)a P„-a„P =Q.

This equation is the analog now of (6.4). Since
the phonon mode can couple to sources, we also
have the anaiog of (6.5):

(6. iS)

8 P"=0 (e. is)

where p is not necessarily zero.
Thus 8 is similar to A . It is the potential which

solves the equation (6.11). In the dual approach,
we attempt to construct a potential for

E „=a g„-e„W .

As a consequence, there can be no magnetic
sources for E,„:

Pg FiI v Q
V

There can of course be electric sources J, :
8 E v=Jv

(6.s)

(e. 4)

(6.6)

Such a potential is just the antisymmetric field
A „:

P~ =—e~ ~~9 An Br' (6.14)

For this system, we have seen that P need not be
irrotational (Sec. II):

+E =BB —BB
y, v y, V V

(e. 6)

This allows magnetic, but not electric sources:

8 F~v=0, 8 ~E"v=K" . (6.7)

In the dual description, potentials are introduced
for QEgv ~

a P„-a„P =S „~Q. (6. 15)

For the field P„, 8 and A. „are thus dual poten-
tials. We now turn to the dual sources. For
brevity, let us introduce differential forms

P= P,dx',

+=d&= -', (&„&„—B„&,)dx' r dx",
The potentials A. and B, provide dual descriptions
of electromagnetism. We call the electric and
magnetic charges which create the currents J and
K„dual sources. If both are present and are point
particles, the equations

1*P=—q P~dxvAdx AdxP
3f p»p )

d*P=—~ Pe dx'A dx" Adx Adxv a
4f x gvpa

(6. 16)

9 E"v=Q B*E v =Q
v

(6.6) -=~„P"dV . (e. lv)

The Abelian case

The role of E „ is now played by the current P
associated with the global phase change

4 - e' C, n = constant. (6.9)

are valid away from the charges. We know that
as a consequence either of the potentials A or B
exists locally but not globally. Further, the topo-
logical and angular momentum properties of the
system are profoundly affected.

Let us now discuss analogous dual possibilities
for the phonon modes. We first examine the Abe-
lian case. For this case, the ideas below are in
the paper of Rasetti and Regge. '

Equation (6. 12) is thus

d*P= pdV

and Eq. (6. 15) is

(6. 12 )

dP=S= 2S dh' Ad~v.
it, V (6.16 )

We require the elementary dual sources to have
the following properties: (1) They vanish outside
a submanifold of dimension &4 in Minkowski space
5R; this requirement is suggested by the fact that
electric and magnetic charges form lines of di-
mension 1 in Minkowski space; (2) their presence
should induce a nontrivial topology (cohomology)
either in *P or P. Thus, suppose p has support in
K. Then
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d*P=O in OR~/K. (6.18)

We require then that the closed three-form *P is
not exact in OR4/K; that is, there does not exist a
global potential A~, in OR4/K such that (6.14) is
valid; similarly, if K is the support of S, we re-
quire that there does not exist a globally defined
potential (zero) form 8 in OR'/K such that (6.10) is
valid. These requirements are in analogy to elec-
tromagnetism; they determine the nature of the
sources.

Consider the source S first. In OR~/K, P is a,

closed one-form. If OR4/K is simply connected,
then by a well-known result, ' P is exact. Thus
OR /K must be multiply connected. We can achieve
this by assuming that K is a (closed or infinitely
long) string. Thus, an elementary source for
(6. 15') is a string. The form of S in this case
was discussed previously.

As regards p, note that*/ is a three-form. A
simple way to have closed but not exact ~P in
5K~K is to assume that

OR'/K= S'x R' (6.19)

For there exist closed three-forms such that

p(x) =p, 6 (x —x,), x, constant. (6.20)

In this case, the radial coordinate r (centered at
xp fulfills the identity

z&0 (6.21)

in OR'/K and spans an R'. The angular coordinates
span S'.

We note that with such sources, P and *P in fact
fail to be exact. For P, we saw this earlier: let
6 p be a closed curve encircling the string . Then
since

*P~O.
S

This means, by Stokes's theorem, that A~ does
not exist. (An example of such a *P is the stan-
dard volume form on h~. ) Now the topology Sax R'

can be achieved if p is given by

P. = p,-6'" (x x,-)e(f t,-)n, +P. ,

n = (0,0, 0, 1),
where P is a solution of the homogeneous equa-
tion. Thus the density pp is augmented at Q Qp,

perhaps by an external agency. If P can be suit-
ably interpreted as the mass current of superfluid
helium, the source p describes the injection of
helium atoms into the system.

Some such interpretation is suggested by the
work of Basetti and Begge. In the nonrelativistic
analog of this system, they have interpreted p in
the preceding fashion and derived the Feynman-
Onsater relation. The latter is the analog of the
Dirac quantization condition on the product of
electric and magnetic charges.

The implications of the existence of dual sources
for P, (even in the Abelian case) have not been
systematically investigated in the literature. The
work of Basetti and Begge' is an exception.

The non-Abelian case

The existence of dual sources can be shown for
the non-Abelian case as well when G/H is a sym-
metric space.

The role of the field strength is played now by
the current J, associated with the internal sym-
metry of the theory. In the Abelian case I„=P„;
but in the non-Abelian case [cf. (3.20)], they dif-
fer from each other. The description of the theory
using the group element g corresponds to the de-
scription which uses 8 in the preceding subsection.
The dual description uses the non-Abelian A „.

We first consider the description which uses g.
The Lagrangian (3.20) is invariant under the glo-
bal transformation

(6.26)

(e constant). The associated conserved current
is I™where (up to a constant)

I L(a) =I„= gS(i)g ' T-rS(i)g 'O, g=-gP g '.
(6.26)

Pfx:~ 10 (6.22) If we can show that this can be written in the form

P cannot have the form (6. 10) globally. A similar
argument works for ~ P since

(6.23)

S =~U'a U,

U(=G, c = constant,

then

(6.27)

Here S3 is any three-sphere encircling xp.
We have already interpreted the string as a vor-

tex line in the field P, . It remains to interpret p.
For this we can follow Rasetti and Regge. 2 Note
that (6.12) has the solution

F „(I/c) =0 (6.28)

and we have the analog of the Abelian equation
(6.11).

To prove this, we require the additional assump-
tion
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[S(i),S(j)]~If . (e.28) then

(In such cases, 6/H is said to be symmetric. ) We
may also note the commutation relations

[T(n), T(P)] L&,

[r(n), s(i)] = d. . 5(j),
which are always valid [the last follows from
(3.23)]. Such an algebra allows the automorphism
7 where

g, 'e,g, = T(n) Tr T(n)g '8 g

—S(i) Tr[S(i)g 'e„gl

I„=-U 8 U,

U=g,g ' .

(e.34)

(8.38)

(e.31)

(Elsewhere" it is shown that many physically in-
teresting models allow the automorphism 7.) Let
us use the same symbol 7 to denote the induced
automorphism on the group:

g= exp[i[],r(n) + q; S(i)]}
—, g, =exp[i[( T(n)-q, &(i)]] .

Now if

(8.32)

g 8 g=r(n)Tr[T(n)g '8 g]+S(i)Tr[S(i)g '8 g],
(e.33)

We have thus shown (e. 27). In this description,
in the presence of external sources, there is no
reason for 8,I' to vanish. But E,„(2I) is zero
so long as it is globally defined.

For the dual description, we go to the Lagran-
gian (3.17) with the interaction (3.28). The rep-
resentation of I' in that Lagrangian allows for
vortices in P [Eq. (3.33)] while 8 P' =0 [Eq.
(3.38)].
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