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Nonlocal conservation laws for strings
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A finite number of nonlocal conservation laws are found in the Nambu-Goto string
model. An infinite number of conserved currents may be obtained by embedding the
string in more than 3+ 1 space-time dimensions. These currents resemble the nonlocal
currents found in two-dimensional chiral models.

I. INTRODUCTION

Recently, there has been much interest in two-
dimensional field theories which possess an infinite
number of nonlocal conservation laws. ' At the
quantized level of the theory, these conservation
laws are known to give rise to new sets of Ward
identities. Further, in the case of the nonlinear 0.

model, they have been shown to lead to the absence
of particle production and the factorization of the
multiparticle S matrix.

Several different criteria have been proposed to
ensure the existence of nonlocal conservation laws.
In Refs. 4 and 5 they correspond to zero-curvature
conditions on a set of locally defined currents J,.
The currents J, take values in a Lie algebra associ-
ated with some Lie group G. The nonlocal con-
served currents are then constructed via repeated
integrals which involve J, .

In this paper we show that the above zero-

curvature conditions are satisfied for the case of
the Nambu-Goto string model. Here, the currents

J, are associated with the momentum and angular

momentum densities along the string. Unlike all

the previous cases, there exists only a
finite number of linearly independent nonlocal

currents which can be constructed from J, . This
occurs because the group G is a nilpotent group for
the string.

The new conservation laws tend to indicate the
existence of certain hidden symmetries for the

string model. There appear to be problems, how-

ever, associated with implementing these sym-

metries within the context of a Hamiltonian
description. This follows since we find that the

charges associated with the new currents are either
not constants of the motion or are not expressible
in terms of local functions of a time variable. In
the case of open strings, the new conserved
currents and their associated charges are expressi-
ble as local functions of time. However, due to the
fact that the end points of the string are not fixed,
the associated charges are not constants of the mo-
tion. Alternatively, for closed strings, we find that
the new conserved currents are not expressible as
local functions in time, whereas their associated
charges are always constants of the motion.

We also consider the case of strings embedded in
more than 3+ 1 space-time dimensions, i.e.,
Kaluza-Klein strings. Such theories and their su-

persymmetric extensions have been of considerable
interest in the literature. ' For us the additional
space dimensions are associated with a compact
group manifold. This system is shown to contain
an infinite number of nonlocal conserved currents
in addition to those found previously for the
Nambu-Goto string. Here too there are problems
associated with defining charges which are both lo-
cal function of time and constants of the motion.

In Sec. II we give the criteria for generating the
nonlocal conserved currents, as well as review some
of their properties. In Sec. II we also examine the
conditions necessary for the new charges to be (a)
local functions of time and (b) constants of the
motion. These considerations are applied to the re-
lativistic string in Sec. III and its higher-
dimensional generalizations in Sec. IV. In the Ap-
pendix we show in general how the nonlocal
currents can be constructed in a manner which is
independent of the particular group representation
for G.
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II. GENERATING NONLOCAL CURRENTS
AND CHARGES

A. Conditions for the existence
of nonlocal conserved currents

(2.1)

Here the Csc's are constants (not all zero) which

are antisymmetric in the lower indices. We also

require that

CBC CAD +~CD CAB +CDB CA C
A E A E A E (2.2)

It follows that the Csc's can be identified as the
structure constants associated with some X-
dimensional Lie group G. For convenience we de-

fine

Let J,"(o ), A = 1,2,... ,N correspond to a set of N
conserved currents. Here o = (cr,cr') parametrizes
space-time and a=0, 1 is a space-time index. Non-
local conserved currents can be generated provided
that the following condition is satisfied ':

~ Jb —~bJ = —2CBCJ Jb .

where o is some fixed point in space-time. It fol-
lows that the currents J(;), i & 1 are nonlocal func-
tions of (r.

In the treatments given in Refs. 4 and 5, a ma-
trix representation is required for the group genera-
tors T(A). In the Appendix, we give an algorithm
for constructing J(;) in a manner which is indepen-
dent of a particular group representation. The re-
sults for the first two sets of nonlocal currents J(i)
and J(2) are

J(i) =D'&i

J(2) D X2 6 [[J Xl] X)1

(2.9)

(2.10)

Our currents J(;) take values in the Lie algebra as-
socated with G. Thus we may write J(;)=J(,")T(A),
and the components J(,") are determined from equa-
tions like (2.9) and (2.10). Although an infinite
number of currents J(;) may be generated, it is pos-
sible that for some 6 only a finite number of
linearly independent J(;) exist. This will be demon-
strated in Sec. III.

J, =J,"T(A), (2.3)
B. Condition for J(;) to be local in time

DgJy —DbJg =0
~

D. =d. +[J., ].
Since J, is conserved, we also have

(2.4)

where T(A)'s are the group generators. The condi-

tion (2.1) can then be written Note that the currents defined in (2.9) and (2.10)
are nonlocal in the time parameter o. as well as
the space parameter o'. In order that J(&) be de-

finable on any single time slice, we must impose
the additional requirement that there exists a curve
C, given by o'=f(o ), such that

(),(&—g J')=0, (2.S) (2.11)

E dbX„=v —g J( )) ~

Here

(2.6)

where we assume in general that space-time is not
flat and g=det[g, b], g,b being the components of a
2X 2 metric tensor.

The proof that new conserved currents J(;)
(i=1,2,...) can be generated from currents J' satis-

fying (2 4) and (2.S) is given in Refs. 4 and S (also

see the Appendix). The currents J(;) are found to
be functions of the variables X),X2,... ,X;. The
variable g„ in turn is defined in terms 0 J(„
according to

which is local in the time parameter o- .
In order to express all the currents J(;) as local

functions of time, we must in general replace (2.11)
by the stronger condition

J'I c—O, o =O, l . (2.13)

If we define o to lie along the curve C, then Eq.
(2.8) can be replaced by

~1
X)(o)= 2f —der' [ g(rr, (—r')]'r

f(oo)

(2.12)

J(0) = —2J' (2.7)

(2.8)

and e' is the usual antisymmetric tensor density,
with e '=1. From (2.6), X„ is a nonlocal function
of o.. For instance,

X)(o)=2f do'V'"[ g(o')]'i J (o'), —

C. Conditions for the existence
of conserved charges

(2.14)

The charges associated with the currents J(;) are

Q(»= fsd& v gJ(»—1 0
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where the integration is performed over an entire
time slice S. In order that they be constants of the
motion, we must require that J', a=O, IL vanishes
at the boundaries BS (if there are boundaries).
Note that it automatically follows that J(;) and Q(;)
are expressible as local functions in cr since we can
set C in (2.13}equal to one of the boundaries.
Tlllls BpQ( )

=0 implies for us that Q(;) can be lo-

cally defined in time, although the converse is not
in general true. The latter will be illustrated in
Sec. III B.

The above is not valid if S has no boundaries,
i.e., all time-slice surfaces are closed. In this case

Q(;) is always a constant of the motion. However,
if there exists no curve C for which (2.13) holds,
then it is in general not possible to define Q(;) on a
single time slice. Alternatively, it may be possible
to define a related quantity Q(;) which is a local
function of o, but whose time derivative is not
zero. Instead, BoQI;) is a function of the fields
along some curve O'. This will be illustrated in
Sec. III C.

8, H~g, —Bb &I,'=0,
d.mib" dbms— "."=2(xi'eb W—.'eib)

(3.5)

If we define X„and X»(= —X„&) to be the associ-
ated group generators, then

[X»,Xp ]= [X»,Xp] =0,
[Xp,X ]=2X p .

(3.7)

Commutation relations (3.7) define a nilpotent Lie
algebra N and due to this property we can gen-
erate only a finite number of linearly independent
nonlocal currents J,(;)——H", (;) X& + M~(()X».

Because repeated commutators vanish, i.e.,

[[' 'I '1=0 (3.8)

the expressions for J(;) [cf., e.g. , (2.9), (2.10)] may
be simplified to

Upon identifying {9'",~","I with the set of
currents IJ, j of Sec. II, we note that condition
(2.1) is satisfied. Here all structure constants Ci)c
vanish except

(3.6)

III. CONSERVATION I.A%'S FOR
THE FREE STRING J~[;]——D~X;, (3.9)

A. Generating nonloca1 conserved currents

%e now apply the preceding formalism to a free
relativistic string. Again o and o' (0&a'&2')
correspond to time and space parameter, respec-
tively. The dynamical fields in this case are the
string coordinates z&(o ), out of which the induced
metric tensor can be formed,

Again X; are computed by integrating (2.6). The
proof of (3.9} follows by induction and is similar to
that of Ref. 4. From Eq. (2.9} it is valid for i =1.
Assuming the conservation of the ith current and
computing the divergence of the (i + 1}th current,
we find

Ii, (v' —gJ(;+i))=D, (&—g &'X;+i)

+ Da Jb(i)
b

tab =~az ~be, (3.1)

(3.2)

Equations of motion resulting from variations in
z" are given by

The free-string dynamics is determined from the
action

=d' D,DbX;,
where we have used the identity

i3,v' gD'=D, v'
g—il' . —

Using (2.4), (3.10) reduces to

r).« gJ('+(—) )= ~'[V. Jb 1» 1 .

(3.10)

(3.11)

(3.12)

d. (& gg"~4, )=O, ~—~=a,z&.

It follows that

(3.3)

The right-hand side of (3.12) vanishes from (3.8),
thus completing the proof.

To compute the first set of currents we write
X( ——X)X& +X)"X». Substituting into (3.9) yields

(),(v' —g g' mob") =0,
~~ =—z~a.z —z O.z&.

Computing the curl of H," and M", , we find

(3.4)
~a(1) ~a+1 ~

P

Applying (2.6) and (2.7)

(3.13}
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H~ f)(o ) =—2e'"9'g(o }/[—g ((r)]'r

M( f)"(o')= —2e sag"(o)/[ —g (o )]]r2
(3.14)

+(])((r)=& &b((-])«)/[ —g((r)]' ',
M(/)'"(o ) =e' Mg"(o )/[ —g (o )]'r

+f do&cgb[ g(ol)]l/2

(3.15)

—2 cT —g 0'

X [+'"(&)& "(cr') (—]univ)] .

Similarly, the ith currents can be given in terms of
the (i —1)th currents:

X[&'"((r)+(;" ])((r')—(p~v)] .

We now show that only twenty two of the
currents generated from (3.14}and (3.15) are
linearly independent. Applying (3.15) twice, we
find

H(/)(o) =—9'(/' z)(o },
M(/)'"(o)= —M(/'"z)((r)+2 I d(r"[9"&(o)P,"(; 2)(o') —(pmv)]

+f do"e' [—g (o')]'~ [H~ f')(o )9'(;" 2)(o') —(]Mmv)] . (3.16}

2( 1)N +]~a]]
(3.17)

M(g") ———A/(p" 2)+(—1)"+'( 2.W'&"—+M(f)") .

Upon setting i =2n, where n is an integer, we find
the recursion relations

[

linear combinations of P( f'), M( f)", and M(g". We
thus conclude that from the initial conserved
currents 9""and M'"' only a finite number of
linearly independent currents can be generated,
namely, P~ f) and M(/)", i=1,2,3.

It follows that all currents with i equal to an even

integer are linear combinations of P'", M'"', and
For i =2n + 1,

+(~+])=( 1}+(]) (3.18)

~(r+i)= —~(g ])+(—1)"+' M(f)"+M(])"

Thus all currents with i equal to an odd integer are

8. Open strings

Upon specializing the above to open strings we
must supplement Eq. (3.3) and (3.4) with the boun-

dary conditions

v —g + "=&—gM'""=0 at (r'=0, 2m. .

(3.19)

In view of Sec. II B, these conditions will permit us
to write M~ f)" on a single time slice:

M( f')"(o') =—2e'sag"(o')/[ —g (o' )]'r'

~1
+2I d(r'[ —g((r')]' '[&'"((r')+ (o') —(]Mmv)] .

Using the definition of H„we can express the remaining currents, as well, as local functions in time:

(3.20)

(3.21)

(3.22)

(3.23)

0')

~(g"(o')=2J do"[—g(o")]' '[&(f)((r')& ((r') —(]]]mv)],
~1

Mtg"((r')= —M(f)"(o')+2 do"[R'"(o')H](])(o")—(pmv)] .

The charges Q~(;) and Q~(]) associated with the currents M(/)'" and 9'( f') may be written
2m' 2m 2s'

Q~(]") ———2J d(r]M") "(o')+4I I do'do"e(o' o")[—g(cr—')]'r [—g(o")]'r H "((r')H~(o"),

Q~(z) M&"+P"z'
~ ]

——P'z"~— (3.24)
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Q(3) =z
I ( —2~z I ) —()

z
I ) —o

(3.25)

(3.26)

er, the open-string boundary conditions (3.19) were
assumed in the derivation of (3.27). A straightfor-
ward calculation shows that for closed strings

where P" and M"" are the conserved momenta and
angular momenta for the string and

r

(3.29)

Consistent with the discussion in Sec. II C, the evo-

lution of Q~~~'~ is determined by the motion of one

point zi'(o, O) on the string (and I'").

From the definition of H", it was possible to
reduce all the charges except Q~~&"~ to functions of
M&, P&, and the coordinates of the boundary. Be-
cause all components of the currents 9'", and M","
do not vanish at the boundaries, the charges
(3.23)—(3.26) are not constants of the motion. In-

stead, their evolution is determined by the motion
of the boundaries. This is obvious for
(3.24) —(3.26). For (3.23), we find

—2BoQ(i")=~o"
I (, —~o"

I ), (3.27)

C. Closed strings

IV. KALUZA-KLEIN STRINGS

[L (a),L (/3)] =iCrpL (y),

TrL (a)L (P)=5 I) .

(4.1)

(4.2)

We now replace the induced metric tensor (3.1)

We now consider relativistic strings in the con-

text of a Kaluza-laein theory, ' i.e., we extend

Minkowski space-time M to M &(H, where we

take H to be a compact group manifold. We shall

also assume that H is a semisimple group. Let
I'= Iu] be a faithful unitary representation of H.
The associated Lie algebra I has a basis L (a),
a=1,2,... ,k with L (a)t=L (a) and

In the case of closed strings the boundary condi-
tions (3.19) are replaced by periodic ones, i.e., g,b

—Bz& BzbN+ATrB, u , Bbu, (4 3)

Z ] O
—Z

~P ) ~Pa '0 =o a a =2g '
(3.28)

It follows that the conserved currents M(/)" given

by (3.14) and (3.15) can no longer be reduced to
. (3.20) —(3.22); i.e., M(/)" will always contain terms
which are nonlocal in both 0. and o'. Since there
are infinitely many homotopically inequivalent

paths connecting o. and u, infinitely many con-
served currents M(/)'" can be constructed for a sin-

gle value of i [Cf. Eqs. .(3.14) and (3.15).] How-

ever, it can be shown that all such currents are
equivalent up to integral multiples of trivially con-
served quantities.

Because the closed string has no boundaries the
charges associated with the conserved currents
M",~;~ are constants of the motion. On the other
hand, they cannot be expressed as local functions
of time. Conversely, it may be possible to define

new quantities associated with M",~;~ which are lo-

cal functions of o. but are not constants of the
motion. An example of such a quantity would be

Q~~~'~, given in (3.23). From (3.27) it appears that
Q~~&"~ may be conserved for closed strings. Howev-

5u =ipu, p=p L(a) .

Consequently,

5g,b i A, Tr(B,u——Bbp u uB,pB—bu)

and

5P'=

iaaf&

g—g' .Tr(Bb—uu B,p)d o .

(4 4)

(4.5)

(4 6)

Upon minimizing the action we thus find a new

set of conserved currents I':
Ia —

2 ~auu

Taking the curl of I, we find

BgIb —BbI~ =
2 (BguBbu —BbuB u )

2[I„Ib], —

(4.7)

(4.8)

where we have used uB, u = —B,uu . Equation

where u=u(o)EI' and A, is a constant. For the
action we once again take (3.2). By varying z„ in

(4.3) we find as usual that H'" and M'"" are con-
served currents. Variations of u are of the form
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I(,)(o )= —2e Ib(o )/[ —g(o )]'

2—f do"e'b[ —g(o')]'/'

X[I'(o),I (o')] . (4.9)

Upon setting g,b g,b
——(rl,b being the usual flat-

metric tensor) and requiring (2.13), all the nonlocal
currents reduce to the nonlocal conserved currents
found for two-dimensional chiral models. Howev-

er, condition (2.13) appears to be too restrictive for
our dynamical model. In specializing to open
strings, we have the weaker condition

gI
~

)
———0. (4.10)

I

(4.8) agrees with condition (2.4). Thus in addition
to the nonlocal currents of Sec. III, ' we can gen-
erate a new set of nonlocal currents from I'. In
fact, an infinite number of such currents I(;) exists.
The first set of generated currents are

From Sec. II8, (4.10) implies that, in general, only
the currents I~ &~ are expressible as local functions
in 0 . Furthermore, none of the charges associated
with the nonlocal currents It;~ are conserved. In-
stead, their evolution is determined by the motion
of the boundaries of the string within the group
manifold H.

For the case of closed strings, we must replace
(4.10) by

O'=O o''=2m ' (4.11)

Now none of the generated currents I~;~ are expres-
sible as local functions in (r . On the other hand,
all the charges associated with these currents are
constants of the motion. As before it is possible to
replace these charges by related quantities which
are local functions of o, but are not constants of
the motion. Instead, their evolution is determined
by the values of I' along some timelike curve on
the string. An example of such a quantity is Q())..

Q' f d&)I f do) f do )[ g( ()])/2[ ( 1)]1/2[IO( 1) ID( I)] (4.12)

which may be thought of as the charge associated
with I[&] minus terms which are nonlocal in o .
Using (4.8), we find

From (2.4) we may write"

, B,ff— (Al)

(4.13)

where Q is the conserved charge associated with
the primary current I'.
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APPENDIX

Here we show in general how the nonlocal
currents J(;) may be generated from a set of
currents J' satisfying (2.4) and (2.5). Unlike in
previous treatments we require no particular ma-
trix representation for G. This is evident since for
us J~;~ takes values in the Lie algebra associated
with G.

Here A, is a real parameter. Equation (A3) serves
as the integrability condition for the linear equa-
tion

q(k) +g (&)y()(, ) () (A4)

where P' ' is a A, -dependent function of space-time
taking values in G.

We now show that upon expanding Eq. (A4) in
powers of A, , recursion relations can be found
which lead to an infinite set of conservation laws.
We expand g( ' as follows:

[()'j( )((7)] '=h' '((T)f((T),

h' )(cr) =exp g A,"X„(o)
(A5)

where f is a function which takes values in G.
Following Ref. 5 we introduce a one-parameter set
of potentials A,' ',

f (gbf—
(A2)

which are curvature free, i.e.,

(A3)
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Here both h' ' and f take values in the group G.
Unlike the analogous expansion in Ref. 5, all the
coefficients X„(o) take values in the Lie algebra as-

sociated with G.
Using (AS), Eq. (A4) may be written

can be expanded to

b+g2J +g3 ab Jb. . .
v' —g v' —g

(A9)
h' ' 'B,h' '= d,f—f '+fA,' 'f

From (AS)

(A6)
Upon equating coefficients in (AS) and (A9), we

find the following recursion relations for X„:

A,
2

h' '=1+AX, + (Xi+ 2X, )
2

BXi=—2
" J', (A10)

3+ [Xi+3(XiX2+X2Xi)
1

B,X2———2J, ——,[B,Xi,Xi], (Al 1)

—6X,]+ (A7) J ——,[a,X],Xp] ——,[a,X2,Xi]

It follows that the left-hand side of (A6) can be ex-

panded to
——,

' [[a.X,,X,],X,] . (A12)

+ —,[[B,Xi,Xi],Xi])+ ' ' '
(A8)

Using (Al) and (A2), the right-hand side of (A6)

Xa.X,+Z'(a.X,+ -,
' [a.X„X,])

+) '(a.X,+-,'[a,X„X,]+-,'[B.X„X,]

We can now define a new set of conserved currents

Ji„ ii according to Eq. (26). The explicit form
for the first three currents Jism, Jiii, and Ji2i can be
determined after repeated substitutions of
(A10)—(A12). For them we find Eqs. (2.7), (2.9),
and (2.10).
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