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Harrison-Neugebauer-type transformations are applied starting from self-dual, axially
symmetric, Abelian backgrounds embedded in SU(2). This generalizes a previous con-
struction of multicharged monopoles starting similarly from a Higgs vacuum. For this
purpose the necessary solutions for the Harrison pseudopotential are obtained using the
spherical R gauge. Some special features for a constant background field are studied in
detail. The relevance of our results to various recent speculations concerning vacuums
with nonvanishing F,, and to studies of gauge fields in the presence of sources is pointed
out. A generalization to de Sitter space is briefly sketched. It is noted that this latter
solution can also be interpreted as instantons in a class of time-dependent backgrounds.

I. INTRODUCTION

It was shown in Ref. 1 how to construct se-
quences of instantons, having multicharged mon-
poles as static limits, by applying Harrison-
Neugebauer-type transformations. There the seed
solution at the zeroth level from which the itera-
tion starts' was a Higgs vacuum with FLO,,) =0.
(Some useful results of this formalism are recapitu-
lated in the Appendix.) There exists, however, an
exact solution>> which generalizes the well-known,
finite-action, one-instanton solution by “inserting”
it in a self-dual, Abelian background field with

g
Fﬁ%’=F8§’=B§ (eors=1) (1.1)

where B is a constant and all other components of
F ;,Ov) vanish. For B =0, one gets back the standard
one-instanton solution. For B=£40, the total action
is evidently divergent, but the difference

[ d*xTr [F,WF,W—F;}L’FL"J =0. (1.2)

Solutions of this class have been called “chro-
mons.” The search for such solutions is related to
recent speculations* by many authors concerning a
“true” QCD vacuum with nonzero F' iﬂ,’ Self-dual
constant fields of the type (1.1) are stable with
respect to small classical fluctuations.® But suit-
ably varying F Lo,,”s might also turn out to be of in-
terest.” Such models have their attractive features
as well as evident problems. We will not discuss
specific models here, but will adopt the point of
view that it is worthwhile to construct interesting
types of exact solutions with a fairly wide class of
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backgrounds. This would enable us to better
understand the content of subclasses of particular
potential interest and the effect of perturbations
when certain crucial parameters are varied.

In Secs. II and III [considering, as in Ref. 1,
only the SU(2) gauge group] we show that it is
possible to insert monopoles in the same sense as
instantons in the chromon solutions. Moreover
this is achieved for self-dual, Abelian F ;3) which is

- far more general. We give a general treatment for

self-dual, axially symmetric, Abelian backgrounds.
The particular case (1.1) is, however, paid special
attention. We provide the necessary technique for
generalizing multicharged monopoles in this
fashion, though the explicit treatment is limited to
charges 1 and 2. The terms “background” and
“monopole,” which we use throughout for simpli-
city, are to be interpreted as follows in the context
of our formalism. The background (A;,O)) is not
treated as external; we solve for the closed system.
Such backgrounds can alter the basic topological
property of monopoles—a monopole can be
“unwound” in the same sense as the instanton in
chromon solutions, due to the result (1.2). (See the
relevant remarks in Sec. V.) Throughout we will
use the term monopole in the sense that when F:,OV)
is reduced to zero [such as by setting B =0 in (1.1)]
one recovers a finite-energy solution with nonzero
topological charge. As in Ref. 1 we consider static,
self-dual, Euclidean SU(2) gauge fields. The com-
ponent 4, of the gauge potentials can be formally
replaced in the solutions by a Higgs scalar & for
Lorentz signature. This well-known equivalence in
flat space, for vanishing Higgs potential, will be
implicit in Secs. II and III.
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Our backgrounds will be sufficiently general to
include superpositions of multipole potentials, with
arbitrary coefficients, in the expression for 4, (or
the Higgs scalar ®'© in the alternative formula-
tion). Hence one can also compare our results to
those for gauge fields in the presence of sources, at
least to those for a broad class of axially sym-
metric Abelian sources expansible in multipoles.®
We show that by adding components A” which
lead to self-duality of the Abelian background,
such a “source” need no longer be treated as exter-
nal. One can solve, formally, for the closed sys-
tem. The consequences of the singularities intro-
duced through ALO) must however be examined for
each case.

In Sec. IV we briefly indicate a generalization of
our formalism to de Sitter space. It is then point-
ed out, in Sec. V, that the results of Sec. IV can
also be interpreted as a finite number of instantons
in a class of t-dependent background.

II. HARRISON-NEUGEBAUER
TRANSFORMATIONS STARTING FROM
AN AXIALLY SYMMETRIC ABELIAN
BACKGROUND

We consider a flat Euclidean space and use
spherical coordinates. The gauge group is SU(2).
The general form of our ansatz for static, axial
symmetry is [with f(7,0),¥(r,0) independent of ¢
and ¢ and f,=09,f(r,0) etc.]

gt Yo
f 2 f2
¥, o
A,=—’72,
i @.1)
\1/9 o)
0=""7"5 >
72
v
(sing)-1a, =10 %2 Yo o

AR
This is the “spherical” R gauge of Ref. 1, where its
useful and attractive features were discussed in de-
tail. The self-duality constraints are (with
etre(p: 1 )
SAf—(V 2 4(V¥)=0,
~ o (2.2)
fAY—-2(VVY-Vf)=0,
where (since d,~0 on the space of our solutions)

(2.3)

and

1 .
J(sinfdy) . 2.4
r%sind olsin6dg) @4

K:A—%a,=a,2+

As the starting point we take the seed solution

FO 2o o g (2.5)

with
AQ=0. (2.6)

Thus

g
A}°’=Qr73, A49=0, 49" =0,
2.7
g
(sine)-lA;?’=9973

with

Q=3 (g’ +br~)P(cosh) , (2.8)
1=0

where a;, b; are arbitrary constants. [One can also,
of course, include terms involving Q;(cosd). But
(2.8) is sufficient for the features we aim to dis-
cuss.] For Q=b,,

(0)
A,'=0. (2.9)
For
Q=ayr+by, (2.10)
we have the “Higgs vacuum”

(0) (0) 0
4" =ay, 4,7=4"=4=0; F)=0.

(2.11)
This was the starting point in Ref. 1.
For
Q=a,r’cos@+agr+b, , (2.12)
we have
1
F¥=_2a,cos0= o
" ! r%sing~ %
. 1
F(O) =2 0= F(O) .
to alrsnl Sin9 Qr > (2 13)

(sin6)~'F)) =0=F .

In terms of the Cartesian components
(xg,%1,X2,%3) with €;,3=1 the only nonzero com-
ponents are

FQ =—2a,=F\ . (2.14)

Setting a; = — B /2 we get the constant Abelian
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field of Ref. 3. (Our static A;,O) is related to the
gauge potential of Refs. 2 and 3 through an evi-
dent gauge transformation followed by a transfor-
mation to spherical coordinates.)

For nonzero a,’s with [ >2 we get space-
dependent F,,’s asymptotically more and more
singular. Corresponding to the b;’s (I=1,2,...)
one has multipole potentials for Q,, i.e., for 4.%
(or for the Higgs scalar in the alternative formula-
tion). This is accompanled by spherical harmonic
ccz(r)nponents in A'” which assure self-duality of
F,

We now start applying Harrison-Neugebauer
transformations on the seed solutions ALO). The
relevant formalism is summarized in the Appendix.
From (A2) and (2.5), one has

(0) _ ps(0) _ 1
Mi"=M;"=30,0,

(2.15)

NP =NP=33_0.
Hence from (A4)

d,g=7e*®=93,0. (2.16)
Setting

g =tanhQ /2 (2.17)
gives

3,Q=et@=03, 0 . (2.18)
For w=#, i.e., for ¢ =0 in (A5),

0=0-K
or

g=tanh+(Q—K), (2.19)
K being an integration constant. Now from
(A6)—(A10), with K =0,
M =BM©

=% cothT a+n+§a+ In si?G ] }
or

M{"=23, |In sinth—Si—‘r—‘Q ] . (2.20)
Similarly,

MV =23, |In cosh2%§i?—9 , (2.21)

NP =13 |In |sinn> 2 S“r‘a , (2.22)

and
NY=23_ |In coshzg—iiie— ] ] . (2.23)
It follows that
= @-smo : (2.24)
\y‘,”zs%eng , (2.25)
v = —sin6Q, . (2.26)

The integrability condition for W is just the self-
duality constraint

AQ=0. (2.27)

To construct 4, () , f () ‘I’(”, and \I/“) are sufficient.
But one can eas11y integrate for ¥, For

Q= 2 (@' 14 byr—HPy(cosh) ,

1=0
we have
e 1 d
yh= smG——PI(cose)
2 a5 M0
x |2 (alr’+1+b1r“’)l
dr
3 b p—U+1)
B § ERTESTM
X(COSGPI—-PI_l) . (2.28)

(For / =0 only the second form in well defined.)
Setting Q) =r, we get the Prasad-Sommerfield
monopole in our gauge [Eq. (2.28) of Ref. 1],
FO— sinhr sinhr 0,
(2.29)
\I/“’=cos(9 .

For
Q=r— grzcose

we get a monopole imbedded in a constant Abelian
background [see (2.14)] with

fV=r~lsinh sinf ,

F— —}zir2cos6

B (2.30)
PV =cosf+ ——2—r2sin20 i

We now go back to (2.18) and consider ¢=40.
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Then
Q,=Q,cos(w—0)—r " Qgsin(w—0) ,

(2.31)
r=1Qe=r"'Qgcos(w—0)+Q,sin(w—0) ,
where
cos(w—0)=R ~Yr—ccosh) ,
(2.32)
sin(w—80)=R ~'csind ,
and
R=(r*4+c?—2crcos6)!”? . (2.33)

We have obtained the following solutions. They
can be easily verified, using the well-known proper-
ties of Legendre functions. For

Q=0=r'+1p)(cosh) ,

we have

n

0=0"=Rc! P,(cosb) | —K ,

]
r
n§0 [ ¢
(2.34)

where K is a constant. The series involves the first
(I+1) terms of the development of R ~! for r <c.
For

Q=0=r""P(cosh) ,
we have

0=0f

n

P,(cos6)

1

n=0 |7

The term ¢~ has been separated from K to ensure
the limit (2.19) as ¢ —0 with K independent of c.
For this we note that in (2.35), for ¢ <7,

——87 +ec-K .
rc

(2.35)

n

Q(21)=—‘R7 Ry £ | P,(cosh)
C n=I r
+el-K . (2.36)
For (2.28) or
o= @0 +59), (2.37)
=0
we have
0= @0 +b0%) . (2.38)
=0

Now that we have obtained Q for arbitrary ¢ by
varying the parameters ¢ and K and using the com-
position theorem (A11)—(A14) we can iterate an
arbitrary number of H (or B) transformations. The
specific features will depend on the chosen {1 (i.e.,
on the a@’s and the b’s). The simplest nontrivial
case, when the iteration starts from (2.10), was
studied in Ref. 1. In the next section we discuss
certain aspects of another interesting case, that of
the “constant background field” [from (2.12) to
(2.14)].

Here we mention briefly that a complex gauge
transformation by [compare Egs. (2.35)—(2.37) of
Ref. 1]

U= (2.39)
where
cosf= —cothQ) ,
(2.40)
sinf=(i sinhQ)~!,
leads from (2.5) to
f'=(sinhQ)~!, ¥'=icothQ . (2.41)

Using this complex gauge, (2.24) —(2.26) are im-
mediately obtained by using simply the I transfor-
mation (A9). As in Ref. 1 we could have used a
complex Ehler’s transformation to replace (2.39).

III. STUDY OF THE CASE WITH
A CONSTANT BACKGROUND FIELD

For this case®® we take
Q=r— lz’irzcoso . 3.1)

(We fix the scale by normalizing the coefficient of
the first term to 1.) Such an Q has no singularity
in the finite region. Let us assume that we can
choose the parameters in the H (or B) transforma-
tion such that no singularities arise in the gauge-
invariant quantities due to them. (We will come
back to this point again.) Then the energy in a
sphere of radius r’ about the origin can be shown
to be given by

fA+y,?

™
E'=n [ singdo e

r,

(3.2)

Making 7' — oo, we have the total energy which, of
course, diverges due to nonzero B in (3.1). For the
background only one has
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(f(o))_z[ [f(ml 4 [\I,(rmr]___ﬂrz

=(1—Brcosf)? .
(3.3)
The corresponding value of E’ is
Eloy=+mBY»". (3.4)
We want to study the limit
hm (E E(o)) (35)
r—ow

after successive “monopole” insertions. For B =0
(E(g)=0) we get the pure monopole case. Other-
wise we study the variation with respect to the
background level.

For a single B transformation (when one has the
PS monopole for B =0) one obtains from (2.24)
and (2.25)

fA+Y,?
f2

= |Q,cothQ)— %

D=

+

1 1
sinhQ r Q,,]
(3.6)

This is regular as r—0 and for all finite values of
r. [As r—0 one has the behavior of the pure
monopole case as is evident from (3.1).] Asr— o
we have to distinguish two cases for (3.1). For
B =0,

cothQ—1 asr— o . (3.7
For B540, lim,_, ,coth{) is no longer independent
of 6. Taking B >0 for definiteness (which does not
effect the conclusion to be drawn)

lim coth

r— oo

2
r——lg—cose ——1 for6<%

—+1 for+92% .

(3.8)

(Near 8=1/2 or cosf=€e—0, we take —;—Br
> |€|~') Hence as r— oo, with Dy =r2B?cos®6,

(D —D(Q) )—'> —2Br C059+ 1 -+ -l;
r

2 Bcos()—% +0(e™") (3.9

or
r29,(D —Dg))— —2Br’cos032+ - -+ (3.10)
accordingly as 6 <7 /2 or 0> /2, respectively.

For B=0, r23,D—2 for all values of 8. The 0 in-
tegration in (3.2) or (3.5) for any finite value 7' of

cancels the first term in (3.10). Thus we see that
due to the change of sign in (3.10),

rhm (E E(o))— (311)
This is to be compared with the result that for
B=0, E{y=0, E =4, and hence finally one has a
magnetic charge 1. The result (3.11) seems to be a
general feature for successive iterations. But first
one has to verify that no additional singularities
appear in the finite region for a particular choice
of parameters. As a relatively simple nontrivial
case we discuss the case of two transformations
when for B =0 one has a monopole of charge 2.!
From (A2) and (A16), for this case

2 2
+v
D=£'?—'—=4(M1+N2)(M2+N,)
2 M(O) () ZZ NP
0, 1]
(pi*=ps?) el eif ’
4rsinf | Q,  p1p2Qs

(3.12)
where Q,Q, are given by (A15) with

p,~=R,~_’[(r—cjcos9)+icjsin0] ,

q---tanh BR j(cj+r cosf)
and
Rj=(r*+c;*—2c;r cosf)!/2 .

M? and N are given by (2.15) and (3.1). For

B =0 (Q=r) the two crucial domains where D has
to be studied carefully are 6—0 and 6—m/2. It is
found"”8 that for

C1=—02=i7T/2 N
(3.13)
K1=0, K2=iTT,

one has a nonsingular, finite-energy monopole of
charge 2 in an explicitly real gauge. For the limit
6—0 one has to develop in powers of 6 up to 6°
and the regularity constraint for 6=1/2 fixes the
value of ¢; (=—c,) as im/2. Let us now note the
effects of nonzero B (Q—r———Br 2c0s0). We will
maintain the parameters c; and K; of (3.13). One
obtains, after careful computations,
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r2+i

. B
lim D=4 (1—Br)tanh |r — —
ol_rg) ( r)tanh |r 5 4

/4

2
l (r=z for6=0) . (3.14)

Thus again there is no singularity and as B—0 one gets back smoothly the expression for a monopole of
charge 2. For 0=m/2 [r=(x?4y?)!/?], defining §=(7?/4—r?)!/2 (since we study first the domain r <7 /2)

one has

_ 2(7? /4)cosd(8 cosd —sind) _
8[8%— (72 /4)sin®8 — r *sinh®( § B7d)]

For B =0, one gets back the corresponding expres-
sion for charge-2 monopole.® There the denomi-
nator [8%— (7%/4)sin’8] <0 for 0 <r <7/2 and
~ —¢€* as r—¢€ or 8—¢ and €—0. These zeros are
compensated for by those of cosd(8 cosd—sind)
in the numerator, giving finite values. Here we
note that the presence of B does not modify this
aspect of the situation. In the denominator the ad-
ditional term { —r’sinh’[(B7/4)8]} is always neg-
ative and ~ —e? at the two limits. The numerator
of the second squared term in D also plays the
same role as cos8(5 cosd —sind) in the first term.
Thus B does not introduce any singularity for
0=1/2 as is easy to verify again for r > 7/2.
Apart from these two values of 0, cosO and siné
being both nonzero, it is not difficult to see that
the denominators in (3.12) do not vanish. Due to
the simplicity of F Lov) it is not unexpected that no
essential singularity appears (for finite r). But we
have verified the less evident fact that the particu-
lar choice of parameters (3.13) need not be modi-
fied, the regularity constraints having no B depen-
dence at all in the finite region.

There is however a crucial change in the asymp-
totic behavior. One has, as r— o,

2

Do (l—Brcose)J_r% 05T, (10

respectively. Hence (retaining only the crucial
terms),

r29,D—2Br3cos’0 14+ - - - 3.17

since an eventual 6 integration eliminates the term
proportional to cosf. Hence

r23,(D—Dyg))—> T4+ - -+ for 9§§ . (3.18)

Hence again

2
%wcosﬁ[SBrzcosh( +Bm8)—m sinh( %B'n'B)]

88> — (w2 /4)sin?8 — rsinh*( 5 Bwd)]

(3.15)

lim (E'—E{))=0. (3.19)
r—co
This is to be compared with the result that for
B=0 (D)=0=E{))

r?3,D—4 for 0<O<m, (3.20)

leading to a magnetic charge 2.

The situation should also be compared with that
for the simplest Q involving a negative power of r,
namely,

Q=r——it—cos€ . (3.21)

Here the asymptotic behavior is that due to Q=r.
But as r—0, not only D but also (D —Dg,)
remains singular. This again is a general feature
for higher negative powers of » in Q. This aspect
will, however, not be pursued further in this paper.

IV. GENERALIZATION
TO de SITTER SPACE

The technique for such a generalization was
given in Ref. 1 and is summarized in the Appen-
dix, (A17)—(A27). The scaling limit of Ref. 1,
namely, p=r/a,7=t/a (hence A,=ad;,d,=0ad,)
with a— oo gives back the static solutions of Secs.
II and III. The ¢ dependence obtained through
(A18) is discussed in the following section. The
ansatz now is [with the domains (A20) for = and p]

fp (% ‘Ilp o

A =" —4—F—,
T f 2 f 2

v o
AP=-—£~—2,

f2 @.1)

v
g o2

f 2

fo 03 Y904

. ___1 _ 2 v -1
(sinB) A"’_f 5 72
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The self-duality constraints are

FAfF—(V P+ (V¥)?2=0,

- N (4.2)
fAY—2(V¥-Vf)=0,
where now
v=la,—L 3 4.3)
P> sinhp o '
and
=924+ —— L 5.sin6d,) 4.4)
e sinh2p sin@ 0 o ’
The seed solution is
f(0)=eﬂ(p,9)’ v —q 4.5)
with
AQ=0. (4.6)
Instead of (2.8) one has now
0= 2 [ a;Q;(cothp)
1=0
+b;Py(cothp)]P;(cosB)
=3 0 say. 4.7)
1=0

The Legendre functions of the argument cothp
give
Py(cothp)=1, Qy(cothp)=p, 4.8)
P (cothp)=cothp ,
HEOTpImEoRp @.9)
Qi(cothp)=(pcothp—1),

and so on. Note that now Pj(coth p) is singular as
p—0 and not Q;(coth p). One has as before

(0) _ ag(0) _ 1
M =M;"=59,0,

(4.10)
NP=NY=73_0,
where
dy=75 lapi+a9] .
- sinhp
Harrison’s pseudopotential satisfies
3+g=e"1-¢%93.,Q, (4.11)
where v is given by (A24) and (A25). Defining
g=tanhQ/2, (4.12)

one obtains

Q, =0 cosy—(sinhp)~'Qgsiny , (4.13)
(sinhp)~'Qg=(sinhp) ~'Qgcosy + Qsiny .
(4.14)

The integrability condition is just (4.6). For ¢ =0
(y=0) once again

g=tanh5(Q—K) . (4.15)
Corresponding to (2.24) —(2.26), one has
(1)=§@_Q’_ in@ 4.16)
Y sinhp SIne (
(m_ sind o) 4.17)
P~ sinhp °’ (
vy = —sin6Q, . (4.18)
Hence
. d
(1) —Pp N
04D sm@de (cosd)
% | a;-9-0)(cothp) +b; = P (cothp)
Idp 1 o Idp 1

(4.19)

for 0=0Q". For 0= 3 0, one has only to
take the corresponding superposition for ¥, For
v=-0, the situation is less simple than that for
(2.34)—(2.38). Let us consider successively some
of the simplest cases, namely,

Q=ap, (4.20)

Q=a"'cothpcosh , (4.21)

Q=3a*(pcothp—1)cosf , 4.22)
and ’

Q=(6a?)"'(3coth’p—1)(3cos?0—1) .
4.23)

The coefficients involving a are so chosen that in
the limit p=r/a with a— « one recovers from
(4.20), (4.21), (4.22), and (4.23), respectively,

Q=r,r~cosd, ricosd
and (4.24)
r=23(3cos’y—1).

Thus, for example, (4.22) is the generalization of
the constant background-field case of Sec. II. The
“Higgs vacuum” case (4.20) is the one treated in
detail in Ref. 1. For (4.21), (4.22), and (4.23) one
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obtains from (4.13) and (4.14), respectively,

_ —t1|__ sinhp 11 K 4.25
Q=a sinhc sinhp +e ’ 4.25
inh
— (32 th __psmhm | K, (42
Q=(3a”) |5 cothc sinhe sinhp (4.26)
and
Q — _a_,z Sinh Zl
sinhc sinhp
X (cothp cosf+cothe ) + —12— ] —K .
c
4.27)
In the limit mentioned above these give Q(z”, (1”,

and Q% [(2.35) and (2.34)], respectively. Since we
have the solutions for arbitrary parameters one can
iterate H or B transformations as indicated in the
Appendix. We will not attempt here to give a
solution Q for the general form (4.7) of Q.

V. REMARKS

In the preceding section we constructed static
solutions. But it is known’ that, for example, the
static Prasad-Sommerfield (PS) monopole can be
gauge transformed into a periodic form where it
appears as a superposition of an infinite number of
instantons. In our conventions, the periodic form
is, using ’t Hooft’s 7’s,

A;La=77il,ta)av(lnA) s
_ sinhr
2r(coshr —cost)
& 1
= 2 [(t—2mm)+r?]

m=— o

(5.1

From (2.29) one can go over to the regular PS
gauge [see Eqgs. (2.28)—(2.34) of Ref. 1] by
transforming with

Uy=e —igoy/2, —i60,/2 —ino,/2 (5.2)
Then another transformation by’

U,=e —i¥r-5 /2 ,
where

tanp — — S sinhr (5.3)

coshr cost —1

gives (5.1).

Hence (2.30) can also be interpreted as the inser-
tion of an infinite, periodic sequence of instantons
in the background (2.14). [U,U; will now give a
more complicated but still, evidently, a periodic
form, which moreover will reduce to (5.1) for
B=0. A suitable B-dependent generalization of
U, and U, can possibly give a more elegant
periodic form, but U, U, is sufficient for the
present argument.]

Concerning periodic chromons it was remarked
in Ref. 3 that the result (1.2) need not hold. [See
the remarks following Eq. (10.8) of Ref. 3.] We
see that for the particular type we consider, (3.11)
and hence (1.2), continues to hold. (The term that
leads to a finite index for B =0 is indeed there but
it is accompanied by a change of sign at 0=7/2
which annihilates the contribution.)

It is noted in Ref. 1 that multiply charged
monopoles should correspond to periodic sequences
of instantons of higher Atiyah-Ward classes. It
would presumably be quite difficult to find the
gauges which make this explicit. But implicitly at
least, one can consider that through successive
Harrison-Neugebauer transformations one inserts
here periodic instanton solutions in the back-
grounds (2.8).

In Refs. 2 and 3 one had an exact solution for
one instanton in a constant, self-dual, Abelian
background. Here we have obtained monopoles or
periodic instanton sequences in a more general
background. But what about a similar insertion of
a finite number of instantons—namely, solutions
that reduce to an arbitrary but a finite index in-
stanton configuration when the background is
switched off? In Ref. 1 it was explained how the
formalism used in Sec. IV gives (for Q=ap) a fin-
ite number of instantons for integral values of a.
Here again, transforming back to (¢,r) from (r,p)
through (1.18) one can similarly interpret our solu-
tions of Sec. IV. One obtains time-dependent (Eu-
clidean time ¢ dependent) instantons in axially sym-
metric, self-dual, Abelian backgrounds. But in do-
ing so, the background itself becomes ¢ dependent
in a complicated fashion. Now one has to substi-
tute in (4.7),

2,2
cothp=ﬁ%-r— . (5.4)

Thus, in general F, LOV) becomes ¢ dependent through
(4.1) and (4.5). (For Q=ap, Fy, =0 and hence
this aspect did not arise in Ref. 1.) Such back-
grounds do not seem to have any evident interpre-
tation. For this reason we have given only a brief
treatment of these solutions. This, however, serves
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to select out backgrounds which can be rendered
“r static” and to which this technique can hence
be applied. Secondly if, say, some type of de Sitter
bag model is envisaged, the solutions of Sec. IV
might have direct significance as static solutions in
the internal region. For finite number of instan-
tons in “¢ static” backgrounds a different technique
needs to be found. This will be attempted else-
where.

The solutions obtained in this paper suggest fur-
ther study in several directions—fluctuations about
such solutions, spinors coupled to such 4,’s, and
so on. Solutions not related to instantons or mono-
poles can also be envisaged. One evident possible
generalization would be the removal of the axial-
symmetry constraint. But this would again require
a different technique.

APPENDIX

We recapitulate here the essential features of
Harrison-Neugebauer-type transformations adapted
to the spherical R gauge. For details Ref. 1 and
the sources quoted therein should be consulted. In
particular, in the papers of Forgacs, Horvath, and
Palla’? these transformations are used to construct
monopoles in a gauge different from ours. (All
these papers treat the case without background
field, namely, F}g,) =0.)

We start with the ansatz (2.1) and the self-dual-
ity constraints (2.2)—(2.4). We define

ai=§(a,¢§ao) , (A1)
1 1
M| =3, (f+i¥), My=——0,(f—i¥)
21f ff (A2)
Nl:?f_a_(f~l\l’)’ N2=5?8_(f+1\1')
The equations (2.2) are equivalent to
8_My— —M\(Ny—Ny)— (N, )
M= 1V 2= eing V2 1),
8_My= —My(Ny—Np) -~ (N, ;)
-My= 2V, V= sing M1 2)
(A3)
ie—ie
A Ni=—N{(M—M,)+ 47 Sind (M,—N,),
je 10
O, N,=—N,(M,—M)+ 4_r-s~—in0 (M{—N,) .

Harrison’s pseudopotential g satisfies

d,qg=(My—M,)g+e" M, —Mq?) ,

(A4)
d_g=(N1—Nj)g+e =N, —Nyq? ,
where o is given (for a given parameter c) by
R cosw=r cos@—c ,
R sino=rsinf ,
with
R=(r>+c?—2crcosf)!/? . (A5)

This leads to a family of solutions g(c,K) where K
is an integration constant. We will not exclude
complex values of ¢ and K.

Harrison’s transformation H adapted to our case
is now defined as follows. Let

g . ieii@
7 " 4rsing (A6)
pzei(m—e)
and
(7=_M . (A7)
1+pg
Then
HM1=%M1+ 1+% [N

HM,=3My + (149008 4

(A8)
HN =N, + |14-2 |¢
1 qq 1 pq— —
HN,=qgNo+ |1+4 |6 .

If the set My, . . ., N, satisfies (A3) and g (A4),
then the set HM |, . . . , HN, also satisfies (A3).

The Neugebauer-Kramer mapping I is, for our
case,

__sinf
If_ rf ’
v
19, /f)=—2 (A9)
f
e, rl-_2
r o/f|=— if

If and IV provide new solutions of (2.2). The
transformation
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B=IH (A10)

can now be defined. This has been used in
(2.20)—(2.26). In applying successive H transfor-
mations, the following composition theorem is of
crucial importance. Suppose one can solve (A4)
for a particular set M;,N; (j=1,2). Then for two
sets of parameters (¢;,K), (¢;,K,) we write

pj=plcj), g;=q(c;,K;), (A11)
with the corresponding g;. Then we define
. _\@ipa—aop1)
1= @i —qap2)
when (A12)
_,_ _\q1p2—qp1)

1 =7 (qp1—q07) °

The theorem states that the effect of two successive
transformations

H H'
(M;,N;) — (M} N} ) = (M]',N}") (A13)

corresponding to the parameters (¢,,K) and
(c,,K,), respectively, is given directly by [see (A8)]

1422

H'HM =%M —
1=37 1+ 7

¢, (A14)

and so on. [One does not have to integrate (A4)
with M;,Nj,p, all over again in applying H'.]
This opens the way for composing successively any
number of transformations algebraically after in-
tegrating (A4) once with a suitable seed solution
M }0),N }0’ but with arbitrary c.

Explicitly two successive H transformations give
the following result. Let

0,=(q1p1—92P2), Q2=(q1p2—q2p1)
when

0,=(31p1 —Top2), Q2=(G1p2—T2p1) . (A15)
One obtains finally

Q_Z 0, (0) (plz_"PZZ)
M= |y P e
=5 e M 0, S+
019 0 901920p1°—p2)
M='__— ——M -_— - I}
=2 |Gy sloop,
(A16)
N2 Qo 919 —ps")
! 0, | 22 ! P1P2Q> -’
_2 20 i=pd)
1= > — -
1 1 @1 P1p2Q1

Products of B (=IH) transformations can, as com-
pared to those of H, be reduced essentially to a
redefinition of the parameters involved. Compos-
ing n transformations one ends up with a remark-
able structure in terms of determinants.”® We will
not treat here explicitly the higher-order cases.

So far we have been considering the flat Euclide-
an space and the usual spherical coordinates with

ds*=dt’+dr’+r{d6*+sin’0d ¢?) (A17)
and

—wo<t<w, 0<r<w,

0<O<m, O0<@p<2r.

The transformation

(t+ir)=tan

e ] (A18)
gives

ds*=(coshp+cosr)~*[ d7*+dp*+sinh’p

X (d6*+sin’0de?)] ,
(A19)

where now

—7<T<™T, 0<p<co . (A20)
For

ds*=(coshp) [ d7*+dp?+sinh’p
X(d6?+sin’0dg?)]  (A21)

we have a de Sitter space with nonzero constant
curvature, here normalized by choice of scale. In
formally constructing gauge field solutions, as in
Sec. IV, an overall conformal factor can be ig-
nored. But the factor sinh?p before the angular
terms now plays a crucial role. Harrison-type
transformations were treated in detail for such a
line element in Ref. 1. Here we note briefly the
following modifications as compared to
(A1)—(A16). Now in (A1) and (A2) [after starting
with (4.1)—(4.4)]

1 i
dr=7 [Op & Sinbp &h) ] (A22)
and in (A3) the factors
. eti®
=+
by=2ti 4r sin0

are now replaced, respectively, by
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coshpxi cotf
sinhp
(These correspond to the notations X, of Ref. 1.)

The factor /=9 in (A4) should now be e’ and
R (c) in (AS) be 7, where

(A23)

1
Si=—7

cosy=(sinhn)~!(coshc sinhp —sinhc coshp cos6)

(A24)
and
coshn =(coshc coshp —sinhc sinhp cosf) .
Now, instead of .(A7) (A25)
p=e't, g=—L*L (A26)

1+pg °

The H transformations retain the same form using
(A23) and (A26). The mapping I is now

If= sinf
s fsinhp ’

1V, /f)=— Yo
' /f)= Fsinbp ’ (A27)

v

Yo
=—i—L

T\ Fsinhp f

The composition theorem remains formally valid
as before with the implicit changes in the defini-
tions of p; and so on. The composed two-step
transformation is thus again given by (A15) and
(A16).
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