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We derive the class of restricted local gauge transformations of Yang-Mills fields that

leave the four-divergence of these fields invariant. They form a symmetry of the Yang-

Mills equations combined with the Lorentz condition and lead, in Euclidean space-time,

to the Gribov ambiguity. We make use of this symmetry in order to check possible in-

consistencies arising from the supposition of asymptotic convergence of classical Yang-

Mills fields, obeying the Lorentz condition, to free fields. Inconsistencies would support

the common conjecture of color confinement. We show that residual gauge transforma-

tions of the interpolating fields induce Abelian gauge transformations and global SU„ro-
tations on the hypothetical asymptotic fields thereby revealing no inconsistency of the hy-

pothetical asymptotic convergence.

I. INTRODUCTION

The set of solutions of a classical Abelian gauge
theory obeying the Lorentz condition decomposes
into gauge equivalence classes induced by the in-

variance transformations A„~A„+B„Awith A

obeying the equation UA=O in order to preserve
the Lorentz condition. An analogous feature, how-

ever much more complicated, has been pointed out
and discussed by Gribov' for the case of Yang-
Mills fields obeying the Lorentz condition. In this
work, by showing that the field equations and the
Lorentz condition exhibit some residual local gauge
invariance, he argued' that the Lorentz condition
does not single out a unique element in each gauge
class of solutions of the Yang-Mills equations. In
Ref. 1 the non-Abelian analog to OA=O was stud-
ied in Euclidean space-time in order to find its
consequences for the path-integral formulation of
the quantized Yang-Mills field. In this way, the
implication of the residual local gauge invariance
for the classical field theory defined by the Yang-
Mills equations remained unexplored. It is the aim
of our work to study aspects of this residual gauge
invariance as a feature of the classical Yang-Mills
theory.

Since the Yang-Mills equations supplemented by
the Lorentz condition are known to pose, at least
locally, a well-defined initial-value problem, the
possibility for asymptotic convergence of the
Yang-Mills field to a free, and therefore Abelian,
vector field for

~

t
~

~ ao exists. No rigorous re-
sults, however, concerning the asymptotic conver-
gence in the sense of classical nonlinear scattering

theory seem to exist for the case of the Yang-
Mills field. If asymptotic convergence actually oc-
curs, one can ask for the transformations induced
on the symptotic fields by the residual local non-
Abelian gauge transformations of the interpolating
field. They can only be global SU„rotations
and/or Abelian local gauge transformations since
these are the maximal internal symmetries of the
linear (Abelian) gauge fields with values in the SU„
Lie algebra. It is, however, not obvious that the
asymptotic fields do indeed transform in this way.
Since lack of asymptotic convergence of the color
charge carrying a Yang-Mills field is crucial, at
least on the quantum level, for the widely suspect-
ed occurrence of color confinement in non-Abelian
gauge theories, it seems interesting to see whether
the assumption of asymptotic convergence leads to
any inconsistencies, thereby disproving asymptotic
convergence and supporting color confinement. It
is a check of this kind, at the classical level, that
we intend to present with this work. %e examine
the consistency of asymptotic convergence with the
existence of the residual local gauge transforma-
tions by investigating the transformations that
these induce on the tentatively defined asymptotic
fields. By proving a lemma concerning decay
properties of smooth wave-packet solutions of the
free massless wave equation we can derive the
transformation law of the asymptotic fields. It
turns out to be an Abelian gauge transformation,
so that no inconsistency of the assumed asymptotic
convergence can be seen. Clearly this lack of in-
consistency does not prove asymptotic convergence.

The paper is organized as follows. In Sec. II the
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residual non-Abelian gauge invariance is derived in
a version slightly different from the one given by
Gribov. ' Section III contains the discussion of the
transformation behavior of the asymptotic fields.
In Sec. IV a summary of our findings and the con-
clusions we draw from them are given.

II. THE RESIDUAL GAUGE INVARIANCE

First, we state which class of models we consid-
er. The fundamental dynamical variables of the
SU„Yang-Mills theory are n —1 real vector fields

A& (with a = I, . . . , n I ) an—d a fundamental
SU„multiplet of.matter fields P coupled minimal-

ly to A& and, for our purposes, demanding no fur-
ther specification. The generators of the funda-
mental representation of SU„are called T'. In
terms of the Hermitian matrix field A& =A&T' the
local SU„-covariant derivatives and field strengths
are defined by

Dq(A) =Bq ig [Aq, .—],
Epv —Avdp Ap iv

—ig[A~,A„], A„~,="d,A& .

The Yang-Mills field equations then read

D,(A)Ii""=8"(A,$ ) .

The source S"which is due to the presence of
matter fields has, as a consequence of minimal

coupling, vanishing gauge-covariant divergence,

D„(A)S"(A,P ) =0 .

(2.l)

(2.2)

Local non-Abelian gauge transformations read as
given in Eq. (2.3):

(2.3)

The SU„element

U(x):exp[ —i—ge(x)], E(x)=e'(x) T'

has arbitrary space-time-dependent group parame-
ters. It is known that each of the gauge equiva-
lence classes, generated by the transformation (2.3),
contains at least one element (modulo global SU„
rotations) obeying the Lorentz condition. 2 The
question to be considered now is whether there ex-
ists more than one such element in each gauge
class. (The trivial case of global SU„rotations is
excluded from now on. )

To investigate this question we consider the

Aq~Aq= U A~+ —U
~q

'U U ', P +P = UP . —
g'

change of BA under (2.3). Calling

Ip(U) Ul p-1U

D"(A)lq( U) =0,
or equivalently

~U-'+ U -'U ~~U-'
lw

(2.4)

ig [—A", U~p 'U]U '=0 . (2.5)

Since l„(U) as well as D"(A)lz(U) are Hermitian
for U = U ', Eqs. (2.4) and (2.5) are compatible
with the subsidiary condition U~U = UU~= I. For
infinitesimal group parameters e' one obtains the
following linear wave equation with A& as an

external field:

Qe ig [A",e—~„]=0 . (2.6)

Equations (2.4) to (2.6) are different versions of the
non-Abelian analog to the Abelian equation
CIA=0. For given initial data (U(0, x), U~o(0, x))
the solution U(x;A) obviously depends on A„ in a
complicated way. For each given field A& the ma-

trices U(x;A), solving Eq. (2.4) and corresponding
to variable initial data ( U, U ~0) ~, 0, induce local

non-Abelian gauge transformations of A& under

which BA transforms covariantly. In particular, all

these transformations preserve the Lorentz condi-
tion. We will call these transformations "restricted
local gauge transformations. "

%'e conclude this section with a remark concern-

ing a possible implication of the restricted local
gauge transformations for the quantized Yang-
Mills field. Obviously these transformations con-
stitute an invariance of the Lagrangian

W= ——, Tr[F~ I'""+2u(dA) ]+M,«„,
which provides the forrnal starting point for the
covariant canonical quantization of the Yang-Mills
fields. It is subject to further investigation whether
these transformations imply some sort of %'ard-

Takahashi identities which might open an alterna-

one obtains

8"A„B"[U(A„—l„)U ']

= U [D"(l)(Ap lq)]—U
= U [BA D"—(A)i„(U)] U

This shows that BA transforms covariantly —and,

as a special case, remains zero—for transformation
matrices U obeying the scalar second-order non-

linear partial differential equation for U (e) given

by
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tive to the usual quantization procedure consisting
in the introduction of ghost fields in order to "re-
store" part of the gauge invariance in form of the
crucial Becchi-Rouet-Stora (BRS) transformation
invariance, which then allows us to derive the
Slavnov-Taylor identities leading to a unitary S
matrix.

with sufficiently small and smooth initial data ex-
hibit asymptotic convergence to the free fields de-
fined through the Yang-Feldman equation

A'"'""(x)=—A (x)

—f d y rV"' "'(x —y)Cl~A&(y) (3.2)

III. THE TRANSFORMATION LA%" OF THE
ASYMPTOTIC FIELDS

D„(A)F'"=S"(A,P), ()A =0, (3 1)

Writing Eq. (2.1) explicitly in terms of A& one
realizes that the Lorentz condition BA =0 allows
one to express (A„IOO) ~, in terms of the Cauchy
data (A&,A&

I
o) ~, at any time t. This makes it

possible that Eq. (2.1) together with the Lorentz
condition poses a well-defined global initial-value
problem. For the case of scalar matter fields, in
fact, rigorous results in one and two space dimen-
sions support this conjecture. Concerning the
classical nonlinear scattering theory of the Yang-
Mills field no rigorous results seem to exist as they
do, e.g., for the scalar (t theory.

In what follows we assume that the solutions of
the system

It is easy to check that A&'"" solves the linear-
ized version of (3.1), namely,

U(B{OUt)( )
igd"—"' (x) (3.4)

with

Pn(out)(x) &(x) f d4y t) re((adv)(x y)P p(y)

Starting from these assumptions, which ulti-
mately must be proven or disproven, we investigate
the transformation behavior of 3&' under a restrict-
ed local gauge transformation of A„. To this end
we perform the substitution (2.3) in definition (3.2)
and expand U in its power series in e. This leads
to the substitution

(3.3)

Furthermore, we assume that the solutions of Eq.
(2.4) converge asymptotically:

A„"~A„"=(1 5"g CI)—IA„d„e+ig—[A„,e] ig [eI—„,e]+o (g)] . (3.5)

(3.6)

The term o (g) is due to products containing three or more factors of e,
E I&, and A&.

Our aim is to show that due to the assumed asymptotic convergence of the fields A„and e the quadratic
and higher-order terms in Eq. (3.5) do not contribute to A&' so that one obtains the Abelian transformation
behavior for 3„"as given by

A„"~A„"=(1 LV'g Cl)(A„—B„e)=A„"——B„e".
R

To this end we partially integrate the differential operator Cl in Eq. (3.5) to apply it on i))" and keep the sur-
face terms to obtain

with

A„'"'""(t,x)=+(—) lim f d'y[b, ""'"'(t t', x y)B, A„(t', y)—]-t'~ —(+ ) oo
(3 7)

Using

~"""")(xo,x)=—(+)~(xo,x)e(+x')

and

6(x,x)= — [5( P ~

—x ) —5(
~

x
~
+x )],

4mfx/

one gets (treating only the case A&"')
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A„'"'(t,x)= lim J d y
t ~+oo

A„(t', y)
, 5(

I
x —y I

+t t—')
4~Ix —y I

5(
I

x —y I
+t t'—) 5

4'(t' t)— r3t',
A (t', y)

A„(t',y), B,.A„(t', y)= lim —I d'y5(
I

x —y I
+t —t') ", —I d'y5(

I

x —y I+t —t')
t'~e Bt 4~(t' t)— 4~(t' t)— (3.8)

Since the integral in (3.8) is taken at t'~+ oo and
due to the assumed asymptotic convergence we

may replace A& and e in the expansion

A„=A„—d„e+ g[A„, ] g[e—l„, ]+o(g),
(3 9)

which enters Eq. (3.8) by A&"' and e'"'. In this
way Eq. (3.8) contains only free fields, and the in-

tegrals can be estimated with the help of an
asymptotic estimate on the decay of A p"' and e'"'
which we prove in the last part of this section.

sup fe'"'(t, x)1 &c It I

' for It I
~oo,

X

sup IA„'"'(t, x)1 &c'
f
t

I

' for
I
t

f

(3.10)

The same hold for Bte'"' and BtA&"' since these
functions also obey the free wave equation.

The integrals entering Eq. (3.8) can then be es-
timated as follows:

This estimate for sufficiently smooth solutions of
the free wave equation reads as follows:

(t' t)—
sup IP t'y

I

I d'y5(
I
x —y I

+t t') ~, 'y-
(t' t)— I d'y5(

I
x —y I

+t t')—
~ sup

I
@(t',y) f

t' .t'~ Oo y

This estimate shows that any field P(t', y ) drop-
ping off faster than I/t' for t' &oo ca—nnot contri-
bute to the integrals. And this is indeed the case
for all the quadratic and higher-order terms of the
expansion (3.9) inserted into Eq. (3.8) as a conse-
quence of the estimate (3.10).

To finish our proof of the Abelian transforma-
tion law (3.6) we finally have to derive the estimate
(3.10). We do this following closely the ideas used

by Ruelle in proving the asymptotic decay proper-
ties of smooth solutions of the Klein-Gordon equa-
tion for m@0. As we will see, the decay of a solu-
tion for m =0 is slower than in the case m+0.
We first state the estimate in a more precise form
for the general case of r & 2 space dimensions and
then prove it.

Lemma: Let f:M'+'~C be a positive-
frequency solution of Clf =0 with initial data

f(0, x) EP'(R') (C" function of fast decrease) such
that the Fourier transform off(0, x),

—!P X f(~)I d'x f(O, x)—=
(2m')" 2ir21 p I

is an element of &(R'), i.e., C" and compact sup-
port. Let EuMp' w+itrh u &@0and t ER, then
for r & 2 the following asymptotic estimate holds:

I

If(t u)1&cIt
f

'" ""
for

I
t

I
oo for u„ui'=0,

and f(t.u)EP'(R) for u&u "+0
Proof: The positive-frequency solutions are

given by

f(x) =(2n) "r' I d"p e 'p"5(p')&(p') f(p)

)
—n/2 drp e

—sPx f Pf( )

R 21p I

with n=l+r and p"=(
I p f, p).

The Fourier transform off(t u) =f„(t) reads

F„(s)=(2w)-'~' J dt e"'f„(t)

=(2m) "i I d"p5(s —pu)5(p )

x()(p )f(p) .

The behavior of f„(t) for
I
t

I
~oo is determined

by the smoothness properties of F„(s). To discuss
these we have to distinguish the cases (a) u„u" & 0,
(b) u&u"=0, (c) u„u" &0.

(a) By virtue of the Lorentz invariance we may
choose u"=(1,0 ) so that F„(s) takes the form
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F„(s)=(2') " ' f d p 5(s' —p')8(s)f(p)

8(s) f d
f f /

["-' ~ p ~ f dn"-' f(-)
P . [~~ nr 1—

2
8(s)s" g(s) .

%'ith

g(lp I)—= f, ,
«" 'f(P),

0" is an n-dimensional unit sphere. Now f(p)/
~ p ~

E&(R") implies that f and all its derivatives of arbi-
trary order vanish at p —+0, a property which carries over to the function g(

~ p ~
). This again implies

8(s)s" g(s) E&(R) and f„(t)CP'(R) .

. (b) Let u =(1,u), u =1, p u =
~ p ~

cos8, so that F„(s) takes the form

f, dipl lpl" ' f d8(»n8)'-'& cos8 — 1— g( ( p (,cos8)

with

g(
i p i,cos8)—:f,dQ" 2f(p) .

Again

g( I p l,cos8) Eu(R+g[ —1, 1]) .
lpl

Now f(p)/
/ p /

E&(R') implies that there exists a E such that f(p) =0 for all p with
f p f

)E. This im-
plies F„(s)=0 for all s 6 [0,2E]. Since F„(s) is of compact support we need only investigate its smoothness
properties. By changing the integration variable to x =2

~ p ~

—s and performing the d8 integration F„(s)
becomes

F (s)
(2~) 8(s)s(r —3)/2 dx x (r —3)/2 +

2

For s+0 the function F„(s) and all of his higher
derivatives exist. Only the point s =0 needs a
more careful analysis.

(i) r =2: The integrand of the dx integration
has an integrable singularity at x =0 so that F„(s)
behaves as

F„(s)=O(1/v s ) for s~0+

due to the factor s'" '/ in front. The long-range
behavior of the Fourier transform can be estimated
by "extracting" the singularity from F„(s) and
dF„(s)/ds at s =0:

F„(s)= 8(s) t I (s)—I(0)e '—[I(0)+I'(0)]se '] + II (0)—[I(0)+I'(0)]J e
(2n) ' 1 . . . 1

2 2 2

with

I(s):f dx g-
x 2 x+s

The first term is of the order s / for s ~0+ and

therefore of type C'(R+) which implies by apply-
ing partial integration that its Fourier transform
f„(t) decreases faster than 1/~ t

~

for
~

t
~

~ao.
The Fourier transform of the second term which
carries the singularity at s~0+ can be calculated
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explicitly, thereby showing that

for
[
t

f
~ a) .

d T —3F„(s)=0(s'" )~ ") for n &
2

(ii) A similar analysis for r & 3 shows for s~0+ where [x]—:integer part of x, and

d tl

E„(s)= '

ds"

0(1) for odd r and n &
f —3

2

p —30(s'" ' ") for even r and n &
2

The effect of this behavior at s —+0+ on the
Fourier transform f„(t) is the following: For odd
r one applies the method of partial integration im-

mediately to show
T

for f t /

~ oo .

For even r one extracts, after a [(r —3)/2]-fold
partial integration, the same singularity structure
as in the case r =2 and obtains

f„(t)=0, „ for
~

t
~

1

(c) We skip the case of spacelike u" which is
similar to the case treated in (a).

A final comment should be made concerning a
comparison with the analogous lemma of the mas-
sive Klein-Gordon equation. The decay is given in
that case by

f„(t)=0 1
for /tf~m.

IV. CONCLUSION

We have examined the consequences of assuming
that classical Yang-Mills fields obeying the
Lorentz condition converge asymptotically to free
fields, in the hope that an inconsistency would be
found. Such an inconsistency would have been a
strong indication of color confinement at the clas-
sical level. Unfortunately, no inconsistency was
found. This does not prove that classical Yang-
Mills fields do not confine and it certainly says
even less about the confinement of quantized
Yang-Mills fields.

Should such asymptotic convergence, as we have
assumed, indeed occur, then certain conclusions
follow. Namely, if the Lorentz condition were to
single out a unique representative A& in every
gauge class of Yang-Mills fields, the object A&
would provide us with an unambiguous and unique
characterization of each gauge class. A& would

play the role of a fundamental observable and any
other observable could be expressed as a function
of A&. As we have argued in Sec. II, this is not
the case. This leaves open the question as to
which other gauge-invariant object allows a unique
characterization of each gauge class. The field-
strength tensor F&„ is not a candidate since it is
gauge covariant. If, however, asymptotic conver-
gence of the Yang-Mills fields obeying the Lorentz
condition were to take place, the asymptotic fields
A&'" would experience, as has been shown in Sec.
III, an Abelian gauge transformation under a re-
stricted local gauge transformation of A&. This
would imply that the Abelian field strengths of the
asymptotic fields Gp'=—A'i'p ApL'I" are o—bse~
able up to a global SU„rotation. Since knowledge
of Gz' would allow us to infer the Abelian gauge
class of A„"', and since A„"' has a one-to-one
correspondence with A„, the object G„'" (or G„'"„')

would give a gauge-invariant unambiguous charac-
terization of the Yang-Mills gauge classes. 6„",
could therefore be seen as the physical part of the
Yang-Mills field. There seems to be no known ob-
ject, local in terms of Az, that could serve this pur-
pose.
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