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For an arbitrary number of particles an explicit construction is given for direct interac-
tions satisfying cluster separability (macrolocality). The Hamiltonian is in many ways
similar to the nonrelativistic many-body Hamiltonian. Under conditions of physical in-

terest the strength of the N-body interaction decreases rapidly with increasing N.

I. INTRODUCTION

In canonical quantum theories space-time sym-
metries are implemented by unitary transforma-
tions of the Hilbert space of states, and the genera-
tor of time evolution (Hamiltonian) governs the
dynamics of the system. For relativistic systems
we have unitary representations of the Poincaré
group; the Hamiltonian is among its generators
and the commutation relations require that other
generators depend on the dynamics. It is a com-
mon practice to assume that the generators of the
Euclidean subgroup (translations and rotations) are
independent of the dynamics. It follows that the
Lorentz boosts must depend on the interactions.
This is the so-called “instant form” dynamics.!
The instant hyperplanes, ¢ =const, of the Min-
kowski space are invariant under the Euclidean
group. Other forms of dynamics are possible and
may have physical significance. There are five
families of three-dimensional hypersurfaces that
are invariant under subgroups of the Poincaré
group and intersect every particle world line once.’
The choice of the invariant hypersurface, on which
initial conditions can be specified, specifies the
form of the dynamics. Dirac' considered the in-
stant, point, and front forms for which the invari-
ant hypersurfaces are respectively ¢ =const;
t>—X*=const>0, t >0; and i-X +¢=const. The
instant and point forms have four dynamical gen-
erators while the front form has only three. The
remaining cases are similar to the point form but
require six dynamical generators. They do not ap-
pear to be of special interest.

The problem is then to introduce interactions
into the dynamical generators consistent with the
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commutation relations.’ Canonical field theories
solve this problem by constructing the generators
in terms of the energy-momentum tensor.*>
Bakamjian and Thomas® have shown that the
problem can be solved by introducing interactions
in the mass operator. Any such theory is causal in
the sense that the states at ¢ > ¢ are uniquely
determined by those at #,. Realizing the Lie alge-
bra is, however, not sufficient for an acceptable
theory. If a system consists of two parts that are
respectively localized in two space-time regions
that are completely spacelike with respect to each
other then the two subsystems should be dynami-
cally independent. This postulate applied to arbi-
trarily small regions leads to the locality properties
of local field theories.” The algebraic approach to
quantum field theory® suggests the possibility of
accepting the weaker requirement that two states
localized in the regions & and #, are completely
uncoupled only in the limit of infinite spacelike
separation. We will refer to this property as ma-
crolocality or cluster separability.

Except for two particles,’ the Bakamjian-
Thomas (BT) construction does not satisfy this ma-
crolocality requirement.!® For three particles clus-
ter separability of the S matrix can be achieved by
a BT construction'! but the Hamiltonian does not
become additive for separated subsystems.'> 3
This failure precludes a consistent generalization to
more than three particles. Sokolov'*!> has shown
that, for any number of particles, cluster separabil-
ity can be achieved by a unitary transformation of
the BT generators, which we will call the Sokolov
tranformation.

The key to the BT construction is always the ob-
servation that the Poincaré generators can be writ-
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ten as functions of the mass operator and of other
operators that may be chosen to be interaction in-
dependent. The kinematic generators are then in-
dependent of the mass. A BT construction exists
in any of Dirac’s! three forms of dynamics. The
instant form is most widely used and is most con-
venient for the transition to the nonrelativistic lim-
it. The front form"?>3 is particularly convenient
when a particle beam designates a preferred axis in
space. Sokolov’s work!* was done mainly in the
point form; to get results in other forms he exploit-
ed the unitary equivalence of the different
forms.!®'* We will construct the Sokolov transfor-
mations directly in the instant form. The same
procedures could be used in any of the forms. It
seems, however, that there are no physical condi-
tions under which the point form is especially con-
venient.

Functions (or functionals) representing vectors in
the Hilbert space of states are covariant only under
the kinematic subgroup. In the instant form they
cannot be Lorentz covariant; in the point form
they are Lorentz covariant but they cannot be co-
variant under translations.!” On the other hand,
Poincaré-covariant state representatives exist in the
constraint dynamics of Todorov and Komar,!8—20
where all Poincaré generators are kinematic and
the dynamics is introduced in the mass-shell con-
straints.

The purpose of this paper is to find an explicit
construction of Poincaré generators for particles
with direct interactions, which have the cluster-
separability property, and to find approximations
that will be useful for applications. Our construc-
tion is presented in Secs. V and VI. In Sec. V we
consider the case of three particles and discuss use-
ful approximations to the three-body force. Sec-
tion VI contains the general recursive construction
for arbitrary numbers of particles. We note that
N =3 is a special case; the full complexity of the
problem does not appear until N >4, so Sec. VI is
not simply a generalization of Sec. V to N > 3.
Our construction combines Sokolov’s ideas with
the two-Hilbert-space theory of multichannel
scattering (Sec. III). The key result in Sec. III is
theorem 3.4. We will show that this result allows
us to obtain the Sokolov transformations explicitly
in terms of wave operators of subsystems. The
wave operators can be eliminated from the result,
and good approximations are easily obtained. The
relevant formal properties of the Poincaré genera-
tors will be reviewed in Sec. II. In the Appendix
we also give the point- and front-form BT con-
struction in order to indicate that the construction
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described in detail in Secs. V and VI could also be
carried out in these forms. Section IV deals with
the combinatorics of particle partitions. It pro-
vides a useful notation for the construction in Sec.
VI. The treatment of particle creation is sketched
in Sec. VII. Our construction retains many fami-
liar features of nonrelativistic many-body quantum
mechanics. Thus the obvious applications are in
the area of intermediate-energy nuclear physics.’!
We postpone a detailed discussion of the relation
of our theory to the covariant constraint dynamics.

II. PROPERTIES OF THE POINCARE
GENERATORS

Let 57 be the Hilbert space of states. The gen-
erators of the Poincaré transformations are self-
adjoint operators H ,B for time and space transla-
tions, J for rotations, and K for Lorentz boosts.
They satisfy the commutation relations

[P,',Pj]=0, [PirH]ZO’ (2.1)
[JpsJg]=i > €pgrdr 5 2.2)
[/,,H]=0, [Jp,P,,]=izepq,P, s (2.3)
[Jp.K,1=i Eepq,K, R (2.4)
[K,,Kg]=—i > €pgrdy » (2.5)
[K,, P 1=i8p H , (2.6)
and
[K,H]=iP . 2.7

The operators H, P, and T have the physical
significance of energy, momentum, and angular
momentum. The operators {H,P}={P#}
transform as a four-vector under Lorentz transfor-
mations, and the generators J ,I_{ form an antisym-
metric tensor J*”. The components of J*¥ are re-
lated to K and J by

JPO= _J¥—J, =K, 2.8
T=3 T - (2.9)
r
The Pauli-Lubanski’>? vector W, is defined as a

covariant function of P¥ and J*°,

W=7 3 JPP%,, - (2.10)

vpo
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It follows from Egs. (2.8), (2.9), and (2.10) that
=P-J, W=HT +PxK. 2.11)
The mass operator M is defined by
M*=_g, P*P'=H?_P*. (2.12)

We will assume in the following that the operator
M is positive and has a bounded inverse.

For each of Dirac’s three forms we show that
the dynamical generators can be expressed as func-
tions of the mass operator, the generators of the
kinematic subgroup, and other operators that need
not involve the interactions. In each case the
operators in question can be defined as functions
of the generators.

For the instant form we define the Newton-
Wigner?* posxtlon operator X as a function of the
generators by*’

by 1

X=5(H 'K+KH)—PXW[MH(M +H)]~".
2.13)

The operator so defined is self-adjoint. It follows

from the definition (2.13) and the commutation re-
lations (2.1)—(2.7) that the components of X com-
mute with each other, and that X and P are canon-

ically conjugate,
[X,,X,1=0, [X,,P,]=i8,, . (2.14)

The operators X and P commute with the canoni-
cal spin j defined by

7=T-XxP (2.15)

and with the mass operator M.
The spin operator j is related to the Pauli-
Lubanski vector W by a Lorentz transformation

LQW={0O,M]}, (2.16)

where 6:?/M and L(a) is the inverse boost de-
fined by

LQ{(1+Q»)'2,Q} ={1,0,0,0} . (2.17)
Explicit expressions for L (Q) are given by
= = Qi Ok
LQu=L Q=84 +——=3 7 >
Q)ik Q)ix lk+1+(Q2+1)1/2

(2.18)
L(Qpo=—L""Q)po=—(1+QH"2, (2.19)
and

L@)y0=—L " Q)yo=—L(Ql=—0, .
(2.20)

From Eq. (2.16) is follows that
WEW,=M*j7. (2.21)

It follows from Egs. (2.12), (2.13), and (2.15)
that the generators H and K can be expressed as
functions of the operators P, X, T, and M defined
to satisfy the commutation relations (2.14) and

[7,M]=[X,M]=[P,M]=0. (2.22)
These expression are

H=(P*+M")'" (2.23)
and

K=5(HX+XH)— ] xXB(M+H)~', (224)

where ] is defined by Eq. (2.15).

In this representation the generators of the Eu-
clidean group, P and J are independent of the
mass operator. The instant hyperplane ¢t =const is
invariant under the Euclidean group. The genera-
tors H and K are the dynamlcal generators in this
form. The position operator X defined by (2.13)
depends, in general, on the dynamics.

If all the vectors in #° are eigenvectors of the
Casimir operators M and _] 2 then we have an ir-
reducible representation; that is, physically we have
the description of a simple particle. Let %!
denote a one-particle Hilbert space; the space of
states of an N-particle system is then

F=xVYeoxr, Ve - @yV. (225

Let g;(m,j) denote the set of generators of an ir-
reducible Poincaré representation as operators on
;Y and I/ be the identity on the remaining fac-
tors. The description of N noninteracting particles
is then given by the generators

N
G(): 2 gi(m,-,j,-) ®Ii’ (2.26)
i=1
acting on the tensor product (2.25). The mass _
operator M, and the Newton-Wigner operator X,
are defined as functions of G according to (2.12)
and (2.13).

The precedent of nonrelativistic quantum
mechanics suggests the introduction of an interac-
tion by modifying the Hamiltonian Hy—H =H,

+ V._The commutation rules (2.6) require that ei-
ther P or K, or both, must also be interaction
dependent.

According to (2.13) the operator X will in gen-
eral depend on the interaction. However Bakam-
jian and Thomas® have pointed out that all com-
mutation relations can be satisfied by
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X=X, P=B, T=7,, 2.27)
M=My+v, H=(FP*+M?>'?, (2.28)
and
K =L (HBX g+ XoH)— § xPO+H)~!
(2.29)

provided the interaction operator v commutes with
X, P, and T. The operator M is, of course,
Lorentz invariant, but M, and v are not. In the
same spirit we may generate a point-form?®?’ or
front-form dynamics. Details are given in the Ap-
pendix. In the front form the dynamical genera-
tors are P_=H —%'P and F=K—%X7J. If we
wish to construct a front-form dynamics by adding
an interaction term to P_ then the commutation
rules (A26) require that F also be interaction
dependent.

We still need a mathematical formulation of the
cluster-separability requirement. Let a denote a
partition of the N particles into clusters a;,
i=1,...,n,. The states of the cluster a; are vec-
tors in a Hilbert space and it follows from (2.25)
that

g

H=® ¥y (2.30)
i=

for every partition. Let U,;(d,A) be a unitary rep-
resentation of the Poincaré group for the cluster q;
on the space 57,;. The four-vector d specifies a
translation and A labels a Lorentz tranformation.
We will also use the notation U;(d,A) for the
operator U, (d,A) ® I'(a;) on 77,

U,i(d,A)®I'(a;)—>Uy(d,A), (2.31)

where I'(a;) is the identity on the space ® j;#%;.
The representation U,(d,A) describing the nonin-
teracting clusters of the partition a is then

a
U,(d,A)=[] Uuld,A) . (2.32)
i=1
For operators & that are functions of single-
particle Poincaré generators and interaction opera-
tors we use the notation &, to denote the values of
these functions when the interactions between par-
ticles in different clusters of a are set to zero. Let
G denote the set of Poincaré generators. We say
the generators G for N particles satisfy the cluster
condition (C1) if for every partition a with at least
two clusters

G.= 3 Glay), 1

i=l1

where G (a;) are the generators of the representa-
tion U, (d,A).

Intuitively the cluster separability is the property
that disjoint subsystems behave independently
when they are separated beyond the range of the
interactions. However, condition (C1) is an alge-
braic condition on the operators which does not in-
volve the range of interactions. The physical re-
quirement that spatial separation of the clusters
implies vanishing interaction between them is real-
ized by

s-lim [U(d,A)—U,(d,A)]

min | 5 —5 | =

XTy(8)" -+ §,)=0, (C2)

where T, is the product of simple cluster transla-
tion operators,

nd
To(8y - 8, )=T1 Ua(8;,1) . (2.33)
i=1
Our task is to construct explicitly a representa-
tion such that (C1) and (C2) are satisfied and that
multichannel scattering operators exist.

III. MULTIPARTICLE SCATTERING THEORY?

A scattering state |(¢)) is a solution of the
time-dependent Schrodinger equation,

[ P(2)) =e ~H | (0)) , 3.1)

which becomes equal to a state | #(¢)) of nonin-
teracting particles (or bound fragments) in the re-
mote past,

im []]9() = | $(0)]]=0. (3.2)

In order to formulate this asymptotic condition in
more detail we need the mass eigenfunction of the
fragments appearing in the initial and final states.
Let a be a partition of the N particles such that for
each cluster a; the mass operator M,; has at least
one point eigenvalue. The corresponding eigenvec-
tors I ¢ai ) ’

M, l¢ai>= |¢ai>mai >
j'ai2 ' ¢ai>= l¢ai >sai(sai+ 1,

define a channel a. Any eigenvector |dg;) is a
superposition,

|6ai)= [ d°P 3 Sz Xai (Bott)
I3

(3.3)

(_saigﬂ Ssai) s (34)
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of improper eigenvectors @+,

Pai¢ai$ﬂ=¢ai3’#—§ >
Jaibaigu=Paipult -

If the mass operator M,; of at least one cluster has
more than one point eigenvalue, then there is more
than one channel associated with the partition a.
The square-integrable functions X ;(P,u) span a
Hilbert space #f,; which is the representation
space of the irreducible representation g (m 4;,54:).
Equation (3.4) can be written more abstractly as an
operator equation

| $ai ) =Pai | Xai ) » (3.6)

where | X,;) EHsqi. The operator ®,; so defined
maps ¥ sq; into Ky, Poi ¥ pai CH i By con-
struction it has the intertwining property

G(ai )‘Dai:<l>aiga,~(mai,sa,~) ) (3.7)

(3.5)

If we define

g

H fa= ®]%far ’ (3.8)
i=
Gfa= 2 gai(mai’sai) ’ (3.9)
i=1
nﬂ
<I>a=,®1 Dy (3.10)
i=

it follows from (C1) and (3.7) that
G, P,=D,Gy, - (3.11)

Let s be the direct sum of the channel spaces
K fas

K= Hpa, (3.12)

and define
QK f=PoH fa » (3.13)
G =G fq » (3.14)
Gr= Gpy, (3.15)

a

o=y, . (3.16)

P

The asymptotic condition (3.2) can now be writ-
ten in the form'!

lim ||| (1) —de 1
t——o

IX)|=0, (.17

where |X)E# . If a scattering state | (z))
satisfying (3.17) exists for every |X), then there
exists a wave operator {)_ that maps the initial

state | X ) € into the scattering state
| ¥(0)) ESZ at the time ¢ =0,

|9(0))=Q_|X) . (3.18)
Wave operators . (H,®,Hy) are defined by
Q. (H,®,Hy)=s-lim e™'de Hyt

t—>+ow

(3.19)

The scattering matrix S,g is
Spa={Xp|S [Xo)= lim CATEC AN

(3.20)
and the scattering operator is thus
s=ala_. (3.21)

The wave operators . and ) _ are said to be
asymptotically complete if they have the same
range,

o,0l=0_0of . (3.22)

It is convenient to include the one-particle chan-
nels, n,=1, in the set of all channels. We can
then expect that the wave operators (), are unitary
maps of 5y onto %,

o,0l=0_0f =1. (3.23)

The Hllbert spaces %y and J are direct in-
tegrals?® over the total momentum,

#y= [ d°P54(P) (3.24)
and
w=[ dPFP). (3.25)

Any vector |X)€E . Jf is represented by a vector-
valued function |X(P)) €% such that

I110O112= [d*P||| X(B))| 2. (3.26)

Any translationally invariant operator with domain
and range in %, & €EL(%,5¢), has the representa-
tion

(P'| ¢ |P)=8(F'=P)o(P), 3.27)
where & (—I;)EL(J'?”‘,Z\”). Similarly for a transla-
tionally invariant injection operator, e.g.,
QEL(Hy,5), we have

(P|®|P;)=8(P—F,)®(P), (3.28)
where @(i’))EL(Wf(?),?f(ﬁ)) It follows that for
7 €L (5, defined by

7 =Ho—OH;, (3.29)
we have
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7(P)=H(P)®(P)—D(F)H/(P) . (3.30)

Euclidean- mvarlant unitary transformatlons of 7
may change the P dependence of 2” (P) and hence
the P dependence of the operator &(P) associated
with the translationally invariant operator.
Sufficient conditions for the existence of the
wave operators (1, (H,®,Hy) are well known.’° In
the following we will always assume that the in-
teractions are “short-range.” Short-range interac-

tions can be defined by the condition that
|

||[e+1H(P)tq)(P) +l

lim £32||7°(P)e gt

t— o0

|X)||=0 (3.31)

for all vectors If ) in a suitable dense set. For
short-range interactions so defined the wave opera-
tors Q+(H(P) d(P) Hf(P)) exist. In the following
we will always assume that the short- t-range condi-
tion (3.31) is satisfied for almost all P.

Since ®(P) is by definition bounded uniformly in
P there exists for any |X YE ' a constant C,
independent of ¢ and P, such that

——Q+(P)] IX®)|2<C|||X®)| 2. (3.32)

It follows therefore from the dominated convergence theorem?! that

lim fd3PH[e’H(?"</I\>(§)e —HAEY

t—>+tow

and hence

(P| Q. (H,®,H,) | P;)=8FB—P,)Q.(P) .

(3.34)

We have thus established the existence of
Q4 (H,®,Hy). The wave operators (. satisfy the
intertwining relations

HQ,=Q.Hf (3.35)
and

PQ,=0,P;. (3.36)
It follows that

MQ,=Q,M;. (3.37)

Intuitively it seems reasonable to expect

O, (H,®,Hp)=Q (M, ®,My). If either H and ¢
or M and & satisfy the short-range condltlon
(3.31), then the wave operators Q+(H >,0 f) and
Q+(M ®,M;) both exist and they are equal,

Q.(H,8,H,)=0,(M,5,M;)=0, . (3.38)

It follows that Q. (H,P,Hy) and Q. (M, D,My) ex-
ist and that

QL (H,®,H)) =0, (M,0,M;)=0, .  (3.39)

Equation (3.39) provides the justification for in-
cluding interactions in the mass operator in the BT
construction. A similar relation holds between M
and P_ [see (A35)].

The injection operator ® is used only to formu-
late the initial and final asymptotic conditions
(3.17) and the definition of the wave operators
(3.19). It is therefore not necessary to construct ®

«(®][]*=0,

(3.33)

exactly as was done above. Any other operator @’
with the same asymptotic form would be equiva-
lent.
Lemma 3.1. The relation
s-lim (®—@")e 7

t—>+tow

=0 (3.40)

is necessary and sufficient for the identity of the
wave operators

Q. (H,®,Hp)=Q,(H,®'"Hy) . (3.4

Lemma 3.2. Let AE€L(5,57) be any unitary
operator. Then

0, (4HA ‘1,A<I>,Hf)=A Q. (H,®,Hf) (3.42)

and

S(AHA™',A®,H;)=S(H,®,Hy) . (3.43)
The proof of these two lemmas follows immediate-
ly from the definitions (3.19) and (3.21).

Lemma 3.3. Let Q. (H,®,H;) and Q.(H,® ,Hp)
be two sets of wave operators satisfying the com-
pleteness relation (3.23), such that the S operators
are identical,

t alo —¢
S=0,0_=0.,0_=§, (3.44)
then
o_ol=g,al . (3.45)

Equation (3.45) is an obvious consequence of (3.44)
and (3.23). It follows from lemma 3.3 and Eq.
(3.35) that

Q.(H,8,H;)=BQ . (H,®,H,)
=Q.(H,B0,H,), (3.46)
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where
B=0.0 . (3.47)

Hence by lemma 3.1
s-lim(Bd—d)e =1

t— o0

=0. (3.48)

The injection operator @ constructed from the
mass eigenfunctions (3.3) is Euclidean invariant,

PO=0P;, JO=0J,. (3.49)
The Euclidean invariance of the wave operators,
PQ,=0,F;, J0,=0.7; (3.50)

follows from (3.49) and the definition (3.19), but
the Lorentz invariance

KQ,=0.K; (3.51)
or
[K/,8]1=0 (3.52)

does not follow’ and requires further investigation.

Theorem 3.1. The wave operators (), are
Lorentz invariant if and only if ® is asymptotical-
ly Lorentz invariant, i.e.,

lim ||(K®—®K e ™" | x)||=0 (3.53)
t— o

for all |X) in a dense set D C.77.

The proof follows easily from
eH'Ke—H'—K + Pt (3.54)

and the definition (3.19).

Theorem 3.2. If the wave operators exist and are
complete then the S operator is Lorentz invariant
if and only if

o,K0l=a_K,af . (3.55)

Equation (3.52) follows from (3.21), (3.23), and
(3.55). Equation (3.55) follows from (3.52), (3.21),
and (3.23). From

K=0,KQf (3.56)

and (3.23) follows (3.51).
Theorem 3.3. The intertwining relation

Xo'=0'X; (3.57)
for some @’ satisfying
Q. (H,®,Hf)=Q,(H,®',Hy) (3.58)

is necessary and sufficient for the Lorentz invari-
ance of the wave operators.

Proof: From Egs. (3.57), (3.58), and (3.39) it fol-
lows that

X0, =0,X, . (3.59)

From (3.59), (3.37), (3.50), and (2.13) follows (3.51).
The Hilbert spaces #(P) are related by unitary
transformations which are subject to some arbi-
trary choice. If we choose

FP+q) =e X TP,

then M (P) is independent of B, and Q+ is indepen-
dent of P if the wave operators are Lorentz invari-
ant. Therefore @' defined by

(B| @' | P;)=8(P—PF,)®(0) (3.60)

satisfies both (3.57) and (3.58).

If the wave operators are Lorentz invariant and
complete, then it is always possible to construct a
scattering-equivalent Bakamjian-Thomas represen-
tation.

Theorem 34. If KQ+—Q+Kf and ) Q+
=0_of =1, then there exists a Euclidean-
invariant unitary operator B such that

X,B=BX . (3.61)

Proof: The proof is by construction. Choose a
representation in which

B+ =e I F(B) (3.62)
and .
FB+G)=e XTI FP) . (3.63)

From the Lorentz _gnvariance of S it follows that §
is independent of P,

-

SE=8'®a_®)
=S=at0a_0)=S, (3.64)

—

but for i(——,éio ﬁi(P) is not independent of P. De-
fine Qi by

(P'| Q4 | B)=8(F'—P)0,(0) . (3.65)
It follows from lemma 3.3 and (3.64) that

.0l =0 _of . (3.66)
The unitary operator

B=0,0'=0_of (3.67)

satisfies (3.61).
It follows from (3.65) that

Qi=ﬂi(A7,<I—>,Mf) (3.68)
with
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(P|®|B,)=5(P—F,)®(0), (3.69)
and .

(P|M |Ps)=06(P—Ps)M(0) . (3.70)
From (3.67) we get

M=BMB~! (3.71)
and from lemma 3.2

Q. (M, O,Mf)=Q0,(M,BO,My) . (3.72)

In this section we worked in a representation in
which the injection operator ® is Euclidean invari-
ant. In the front- and point-form the improper
eigenfunctions used to construct ® will be covari-
ant under different kinematic subgroups. Poincaré
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invariance of the wave operators is equivalent to
the asymptotic covariance of ® with respect to the
remaining dynamical generators. In each case the
existence of the wave operators guarantees asymp-
totic covariance of ® with respect to one dynami-
cal generator, H in the point form and P_ in the
front form. The asymptotic covariance with
respect to the remaining dynamical generators
must be proved.

In order to formulate the clustering properties of
the scattering operators we need several definitions.
A partition b is said to be compatible with the
channel « if b does not divide any of the bound
fragments in channel a. In analogy to (2.70) we
define the cluster-separation operator T, by

(3.73)

(3.74)

nb N
Up (8;,0)¢4, if b is compatible with a ,
Ty pq= II;[‘ ASY fa
0 otherwise ,
s, if b is compatible with a ,
D7 fa= .
0 otherwise .

The cluster-separability requirements for the
wave operators and for the S operator can be writ-
ten in the form

s-lim (Qi_ﬂai)Tfa(gi e gna)zo

min| 8~ 58| —>o
(C3)
and

Slim
min | 6i—ﬁj|—>w

(S —S,)T7y(8) "+ 8, )=0.

(C4)

The condition (C4) follows from (C3), but the con-
verse is not true. From (C2) it follows that

S:_l'im_’ (eth_eiHat)Ta(gl N gn )=0.
min| §;~ 3| ‘

(3.75)

If this limit converges uniformly in ¢, then (C3) is
a consequence of (3.75). On the other hand the va-
lidity of (C2) follows from (C3).

Our main task is to construct representations of
the Poincaré-Lie algebra for an arbitrary number
of particles such that invariant wave operators ex-
ist and the cluster conditions (C1) and (C3) are

I

satisfied. We will do this recursively. For two
particles the Bakamjian-Thomas construction satis-
fies all requirements,”!! but X=X, is not neces-
sary; any other construction of Poincaré-invariant
two-body wave operators can serve as a starting
point of the recursion. For three particles a BT
construction satisfying (C4) has been given,'! but it
is not possible to satisfy (C3) in this fashion.!>!3
Following Sokolov’s ideas we can find a unitary
transformation which transforms the BT represen-
tation into a representation satisfying (C1). For
short-range interactions the conditions (C2) and
(C3) are then also satisfied. The details of the con-
struction for three particles will be given in Sec. V.
The general inductive construction for N particles
is described in Sec. VI.

IV. THE LATTICE STRUCTURE
OF CLUSTER PARTITIONS

In this section we introduce the lattice struc-
ture®~3 of the set # of partitions of N particles.
This structure will provide a useful bookkeeping
device for constructing Poincaré generators con-
sistent with (C1). We introduce the following par-
tial ordering, D, on Z:
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aDb if and only if each pair of particles
in the same cluster of b is in
the same cluster of a . 4.1)

Unions and intersections of two partitions a and b,
written @ Ub and a N b, respectively, are the unique
least upper and greatest lower bound with respect
to D.3¢3” We use the notation N and O to denote
the upper and lower bounds of Z with respect to
D. The following examples for N =5 serve as an
illustration:

N=(12345),

0=(1)(2)(3)(4)(5),

(12)(345)D(12)(3)(45) , (4.2)
(1)(2)(345)U(1)(23)(45)=(1)(2345) ,
(1)(2)(345)N(1)(23)(45)=(1)(2)(3)(45) .

In this paper the clusters of a partition corre-
spond to mutually noninteracting subsystems. If
the clusters of the partition a denote noninteracting
subsystems and we turn off all interactions between
particles in different clusters of b, then the parti-
cles that remain mutually interacting are those in
the same clusters of a Nb.

The £ and Mébius functions®>37 for the partition
lattice are integer-valued functions on 2 X & de-
fined by

1 ifaDb,
Ala.b)=1g otherwise , (4.3)
'la n
_Ya Y1)
A~ Ya,b)= (=) il;[l( )P (np—1) 1fa~:)b,

0 otherwise , @.4)
where n, is the number of clusters of a and n,; is
the number of clusters of b in the ith cluster of a

when a Db. These functions have the proper-
36,37

ties
S Alg,0)A"Heb)= 3T A~Ya,c)Alc,b)
cE? ceE?
=8, » 4.5)
A(a Nb,c)=A(a,c)A(b,c) , (4.6)
A(a,bUc)=A(a,b)A(a,c) , 4.7)

Co=—A"N,a)8y, =(—)"(n, — 18y, ,
Sna=1—8y, , (4.8)

S C,Ala,b) =5y, . 4.9)

Let 2’ denote the set
P'={aE€EP|a#£N] . (4.10)

The fully linked part [ ]y, of an operator ¢ is de-
fined by

[0ly=0-3 C,0,
=0+ 85,07 (N,a), . 4.11)

[Z]x is the part of the operator that vanishes
when all of the interactions involving any one par-
ticle vanish. This definition is consistent with
more standard notions of linked operators.’?

V. THREE-BODY SYSTEMS

We assume that for each two-body subsystem
the Poincaré generators are known. We have for
every partition a

"a
Gla)= 3 Gla;). (5.1)
i=1
For each partition a the generator G(a) is simply
the sum of the generators for the mutually nonin-
teracting clusters of a, which are known from the
BT construction for N =2. The generators G(a)
satisfy the cluster requirement

(G(a))y,=G(anb) . (5.2)

If a designates an interacting pair plus a spectator
and the interaction is turned off, then G (a) be-
comes the sum of three single-particle generators
since (C1) is satisfied for N =2. The equation is
trivial for @ =0. The wave operators

Qg+ =Q.(H(a),P,,Hy) (5.3)
exist, and satisfy the completeness relation

Q.00 =1 (5.4)
and Poincaré invariance

G(a)Q,+=Q,.G, (5.5)

provided the subsystem operators satisfy the same
conditions.

The first step toward a fully interacting three-
body system is a BT construction for an interact-
ing pair with a noninteracting spectator. To this
end we must find a mass operator M(a) that com-
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mutes with X,. According to the proof of theorem
3.4 there exists a unitary operator B(a), given by
(3.67), satisfying

B(a)X(a)=X,B(a) , (5.6)

and a mass operator M(a), given by (3.70), which
satisfies

B(a)M (a)=M(a)B(a) (5.7)
and

MO)=M, .
It is clear that

(B(a))y=B(aNb) (5.8)

holds as a special feature of the three-body prob-
lem since B(a)—1 if the interaction is turned off.
Obviously

B(0)=1. (5.9)

It is now easy to define a BT mass operator M for
the fully interacting system,

H=2 Caﬂ(a)+[17]3

=M(12,3)+M(23,1)+M(31,2)

—2M,+[M];
=Mo+Vi+Vyu+ V3 +V1, (5.10)
where
KJEM_(I‘],I()-—M(), 171235[]_‘-4_]3 s (5.11)

The fully linked part, V123 must commute with

J, P, and X, but is otherwise arbitrary; it can be
set to zero. Since M manifestly commutes with X,
we can now construct the BT representations

F(a)=[§02+M_(a)2]1/2 ’
K(a)= +[XeH (@) + H(a)X,]
ixP

-_, (5.12)
M(a)+H(a)
A= )7,
and
= - —e TP
K =+ (XoH + Xy — 32 | (5.13)
2 OH 0 M+H

It follows from these definitions and Egs. (5.2),
-(5.6), (5.7), (5.10), (5.12), and (5.13) that

H,=H(a)=B(a)H(a)B(a)", (5.14)

K.,=K(a)=B@K(@B()' . (5.15)

These equations express the failure of the genera-
tors H and K to satisfy the cluster condition (C1).
A unitary transformation of the generators
preserves their commutation relations. Therefore,
if we can construct a unitary operator B such that

B,=B(a), (5.16)
then

H=B'HB (5.17)

K=B'KB (5.18)

satisfies (C1).
Such an operator B can be constructed as fol-
lows. Let B(a) be the Cayley transform of B (a),

. __Bla)—1

lB(a)__—B(a)+l , (5.19)
and define 3 and B by

B=3 C.Ba)+[Bly

=p(12,3)+B(23,1)+B(31,2)+[Bly
(5.20)

and

p—1tiB (5.21)

T 1-iB’
where [B]y is an arbitrary Euclidean-invariant
self-adjoint operator and [B]y =0 is a possible
choice. Clearly the unitary operator B so defined
satisfies (5.16) since B(ij,k)—0 as V;;—0 and the
generators H, K, P, and J define a representation
of the Poincaré group consistent with the cluster-
ing condition (C1).

In order to verify the Lorentz invariance of
Q4 (H,®,Hy) note that

KQ.(H,®,H,)=B~'RQ,(H,BO,H,) .

The Lorentz invariance of Q. (H,®,H r) is there-
fore assured if

Q.(H,BO,H;)=Q.(H,®,Hy), (5.22)

By lemma 3.1 the condition (5.22) is equivalent to

s-lim (Bd—®)e !

t—+oo

=0. (5.23)

For any partition a~N the corresponding relation

s-lim [B(a)®, —&,]e "'=0 (5.24)

t—+ o0
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follows from the definition of B(a). Since the def-
inition (3.74) of ®, can be expressed in the form

D, = > Alb,ala))®,, (5.25)

it is easy to verify using (4.9), (4.11), and (5.16)
that

o= C, P, +[Ply ,
Y (5.26)
=3 C, 0, +[Ply ,

and

B®—&= 3 C,[B(a)d, —D,]+[BO—D]y .

Thus, since (5.24) is already satisfied we need only

s-lim [BO—B]ye =0 (5.27)
t—>+to
in order to satisfy (5.23). Equation (5.27) holds
under rather weak assumptions which are related
to the sufficient conditions (3.31) for the existence
|

of the three-body wave operators.
The Hamiltonian (5.17) has the form

H=B|3 C,B(a)'H(a)B(a) |BT
a

=3 C,H(a)+[H]y . (5.28)

It is clear by comparing these expressions that the
entire effect of the B(a)’s and B is to contribute a
three-body force [H]y. With our construction this
force vanishes in the three-body rest frame, §=0,
since, by construction, B(a)=1 for P=0.

For the explicit construction of B(a),

B(a)=0,(a) .(), +(a), (5.29)

we take the partition (12,3) as an illustration. In
the notation of Sec. III we have the subsystem

wave oper ators
(Pia| Qups | B)=8(B,— P18y, ,  (5.30)

and hence

(f;:;,PIQi(a)IP' 33)—6(})3-—1’3) P12l912+ |P12)—8(P P)S(p:;—-" )Q]z+ . (5.31)

The wave operator § Q. (a), on the other hand, can
be defined in a G, P representation by

(§s,P | Qy(a) | P,<_]'3)

=8(q3—q3)8(P—P)0yp,, , (5.32)
where

—

g3=L ps3 . (5.33)

Mo

L(Q) is given by (2.16)—(2.20) and p3 is the four-
vector {P3,(p32+m;%)1/?}. Note that

M, Z(HOZ__i)’Z)l/Z

=[as2+(M(1)2)2]1/2+( 2)1/2 .

qs2+mj
(5.34)

It follows from the definitions that ©,(a) does not
commute with g3, and that O, (a) does not com-
mute with Ps.

In order to obtain a representation of B(a) from
(5.29) we must transform Q,(a) given by (5.32) to
the standard p 3,P representation. According to
(5.33) we have

Bi=d;+Po(MY,,G5,F) , (5.35)

where

I
1 is'aa
¢(M12’ Q3,P)

(@ my )
Mo Mo+H, qd3 3

(5.36)

It follows that the _unitary matrix F (M ,) that
transforms the g 3,P representation into the p 3,P
representation is given by

(B3P | F(MY,) | P'd3)=8(B3—q;—Pg) £172,

(5.37)
where the Jacobian ¢ is
3¢(M,,G3,P)
/=det Sik+Pi*‘¢—a~lg_qg‘_
93k
=1+ 3rt 9 (5.38)
a q3i

It follows from (5.31), (5.32), and (5.37) that
(33,P|B(a) | P, B})
=(P3,P| F(M1z)912+F (Mf12 Q12+ | P, B3)
=(B3,P|F(MP)F'(M,,) | P,BY) . (5.39)

The last step follows from the intertwining proper-
ties and the completeness of Q,,. The operator
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M 12 is the two-body mass operator including the
interaction. It is important that wave operators
need not be calculated to obtain B(a). Clearly
B(a)—1 vanishes if the interaction vanishes.

From (5.39) we may expect that ||B(a)—1|| << 1 if
[|572Mo~!|| << 1. Let f and f, be the Cayley
transforms of F(M,) and F(M$,),

f=—ilF(Mp)-1][F(M)+117",  (5.40)
and
fo=—ilF(MYH)—1][F(M%)+1]71.  (5.41)

It seems reasonable to approximate B(a) by expan-
sion in powers of f —f,. From

1 +if, —
B(a)= +.O ‘1-—11
1—if o 1+ if
2i 1
=1— —
l—ifo(f f°)1+if
2i 1
~1— — 42
l—ifo(f FITT i, (5.42)
|
1|z 1 1 1 |= =
—fom = IBY3, T~ |+= [P-V,,Pq
f=fo 4{ Y3M0 27, +8 Y3PQ3[
1 [ [« 1 1 | Pds [ 1
+ 16 {P)’s,wsMo vleO ’, M, |
1 -, 03 [, 1 _ 1
ez P Y 2 g 9P s -,
+16 [ Y3 Mo] q;3 MovuMo
where
oh=[q3+M%)1]"?, (5.47)
and
w3=(g3>+m3})'"*. (5.48)

In that approximation the three-body interaction in
the Hamiltonian is

[H]y=~2i{[B(12,3),(Vy3+V31)]

+[B(23,1),(V31+V1,)]
+[B(31,2),(Vip+V3)l} (5.49)
where
V=Hl(ijk)—H, . (5.50)

The three-body interaction constructed in this sec-

it follows that the lowest-order term of B(a) in this
expansion is given by
Bla)=5[F(M)+11(f —fo) s [FI(M%)+1] .
(5.43)
From the definition (5.37) we can derive an

operator form by expansion in powers of ¢. To
second order in ¢ we find

f=5(P754)
+]%{[i§‘?37¢],[§'?37¢}] ) (5.44)
with
y=i _6%3 . (5.45)

To first order in ||7;,M,~"|| and P? we find

_ 1
Mo’Movleo H

1 1 1 1
—_ | ——— T , (5.46)
60(1)2 M, 60(1)2 w(l)z ]

I —
tion vanishes for P=0. It is, of course, easy to

add an arbitrary three-body interaction by
M>M+8M , (5.51)

where 8M commutes with 3, ﬁ, and 5’(0, and van-
ishes sufficiently rapidly if any one particle is re-
moved.

VI.CONSTRUCTION OF POINCARE GENERATORS
FOR AN ARBITRARY FIXED NUMBER
OF PARTICLES

In this section we present the general recursive
construction of the generators H and K for N par-
ticles. The steps are similar to those of Sec. V ex-
cept that the operators B (a) constructed as before
do not satisfy Eq. (5.8). Additional transforma-
tions are needed to construct Euclidean-invariant
operators A (a) that satisfy
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A(a),=A(anb), (6.1)
as well as
A(@)X(a)=Xod (a) . (6.2)

We assume that for each subsystem of k <N
particles the Poincaré generators are known and
that complete invariant wave operators exist. For
every a € Z' we can construct the set of generators
G (a) in the form

na
Gla)= 3, Gla;) . (6.3)
i=1
They satisfy Eq. (5.2) by assumption. Wave opera-
tors

Qi(a)-:ﬂi.(H(a),q)a,Hf) (6-4)

exist. They are complete, (5.4), and invariant, (5.5).
As in the three-body case the proof of theorem 3.4
gives a mass operator M(a) and a unitary operator
B(a) that satisfies Eqgs. (5.6) and (5.7) for every
a€2’'. If the operators B (a) also satisfied Eq.
(5.8), then we could now repeat the steps used in
the three-body construction. Since this is not the
case we construct Euclidean-invariant unitary
operators D (a) such that the operators 4 (a),

A(a)=D(a)B(a), (6.5)

satisfy Egs. (6.1) and (6.2).

We construct 4 (a) by induction in the number
of clusters of a, starting from n, =N — 1, proceed-
ing to n,=2. For n,=N —1 we take

A(a)=B(a), (6.6)
D(a)=1. 6.7)

Equation (6.1) is satisfied in this case because only
one pair of particles interacts in the partition a.
When the interaction is turned off
B(a)—>B(0)=A4(0)=1.

For the purpose of induction, we assume that we
have constructed the operators 4 (a) consistent
with (6.1) and (6.2) for all a with n, >m. For
ng=m we define

D(a)=}—ijﬁ% , (6.8)
where
pa)=— 38, ,A" a,b)ula,b) (6.9)
and b
1—A(b)B(a)]
u(a,b)=zm(a—)z . (6.10)

It follows from Eq. (4.4) and the relations
adb =>n,<ny, (6.11)
aDb, n,=n, =>a=>b (6.12)

that 8, ,A~'(a,b) vanishes for n, <n,. Therefore
the operator u(a,b) is needed for the definition of
pla) only for ny >n,. For n, > n, all the operators
A (b) on the right-hand side of (6.10) are known by
assumption. Thus the operators 4 (a) can be deter-
mined recursively for all partitions a € #'. The
unitarity and the Euclidean invariance of the
operators A (a) so defined follow from the corre-
sponding properties of the operators B(a).

For n,=N —1, Eq. (6.2) follows from (5.6); for
all other values of n, we establish (6.2) recursively.
From Eq. (5.6) it follows that

B(a)yX(aNb)B(a)] =X, . (6.13)

Assume that (6.2) is satisfied for all partitions b
for which ny >n,. For a Db with nj, > n, it fol-
lows that

[4(b)B(a)},X,]=0, (6.14)
and therefore
[D(a),Xo]=0, (6.15)

by (6.8)—(6.10). Equation (6.2) follows from (5.6)
and (6.5).

It remains to verify (6.1). Evidently Eq. (6.1)
holds for n,=N —1. For smaller values of n, we
proceed again by induction. Assume (6.1) is satis-
fied for all partitions b for which n, >m. It will
be sufficient to show that for n,=m

D(a)y=A(aNb)Bla)] (6.16)

for any a ¢ b. (The case b Da is trivial.) From the
definitions (6.8) and (6.9) it follows that

D(a)y=[14ip(a)y][1—ip(a)y]~" (6.17)
with
wla@y=— 378, A" a,c)ula,c), (6.18)
and
1—A(cNb)B(a)ny
O = BB (@), @D
(6.19)

In (6.19) we used the assumption that for n, >m
A(c)y=A(cNb). The operator can be explicitly
evaluated using Egs. (4.4)—(4.8):
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pa)y=— 38,07 a,c)ula,cNb)=— 3 §,.A"a,c)AlcNb,d)A~!(d,e)ula,e)

c,d,e

=— 3 5,.A"a,c)Alc,d)A(b,d)A\(d,e)ula,e)

c,d,e
=3 (85— 1A~ a,c)Alc,d)A(b,d)A!(d,e)ula,e)
c,d,e
=Y AlaNb,d)A~!(d,e)ula,e) (adb)
d,e
1—A4(@aNb)B@iny  1—A(aNb)Bla)]
=pla,aNb)=i =i F - (6.20)
1+A4(aNb)B(a)gns 14+A4(anNb)B(a)y
v T
Equation (6.16) follows from (6.20) and the proper- [Xo,M(a)]=[Xo,M]=0. (6.23)
ties of the Cayley transforms. Equation (6.1) im- .
mediately follows for n, —m and hence for all We have therefore the BT representations
values of n, by induction. This completes the con- H(a)=[P*+M(a)*]'?, (6.24)
struction of the operators A4 (a). N
To carry out the N-body BT construction we de- ﬁ =X oH + ﬁj*(o) _ _~_J_><_li__ , (6.25)
fine : M(a)+H(a)
M(a)=4(a)M(a)4 (a)' 621  and
and A=+, (6.26)
M= C,M(a)+[M]ly . (6.22) 2 g s e TP
2 [M]v R = L (ol + By — L XE 6.27)
M+H
The term [M ]y must commute with f(o, P,and T
but is otherwise arbitrary. A possible choice is Using Egs. (4.5), (4.6), and (4.8) we can easily
[M]y=0. It follows from (6.2) that verify that M, =M/(a),
|
M,=3 Cy(M(b),=3Co(A(BIM(B)A (D)), = 3 Cobd(@aNbIM(anb)4 (anb)t
b b b
=—3 SypAT(N,b)A(a Nb,c)A~(c,d)M(d)
b,c,d
=— 3 Sy sATHN,b)A(a,c)A(b,c)A™ (c,d)M(d)
b,c,d
=3 (85— 1)ATYN,b)Ala,c)A(b,c) A~ (c,d) M (d)
b,c,d
=Y Ala,c)A™ c,d)M(d)=M(a) . (6.28)
cd
|
It follows from Egs. (6.26), (6.27), (6.28), (6.21), A,=A(a), (6.31)
and (6.2) that
o then (6.29) and (6.30) imply that the generators H
A,=A@=A@H @A, 629)  and K defined by &
and H=A"Ha , (6.32)
K,=K(a)=A(@)K(a)4(a) . (6.30) L e
K=4"K4 (6.33)

If we can construct a unitary, Euclidean-invariant
A satisfying will satisfy (C1). Such an operator 4 is given by
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_1tia (6.34)
l1—ia
where
a= Y C,ala)+[aly (6.35)
and
.1—A(a)
= 6.36
a(a)=1 1+A4(a) (6.36

The fully linked term [a]y is an arbitrary self-
adjoint operator. If [a]y is not Euclidean invari-
ant, then we must also transform P and J ie.,

P=4"Pu ,
T=4"Toa .

This takes us out of the instant form, but we still
have a Poincaré representation consistent with the
clustering requirements. It can be verified by a
calculation similar to (6.28) that

a,=ala) . (6.37)

Equation (6.31) follows from (6.34) and (6.37).
As in the case of N =3 we can prove that the
wave operators are Lorentz invariant provided

s—lim(AD—B)ye

t—>+tow

=0. (6.38)

The proof is identical to the proof in the three-
body case if we replace all B’s by A’s.
We have now for arbitrary N the result

. (6.39)
K= zcaK(a)+[K]N .

This means that the entire effect of the construc-
tion is the introduction of a suitable N-body force
required to maintain the Poincaré commutation re-
lations.

An approximate construction of a(a) can be car-
ried out in the same manner as in Sec. V. To first
order in the two-body interaction a(a) vanishes for
n, <N —1 and hence [H]y vanishes in that ap-
proximation. The leading term of the N-body in-
teraction is of the order ||, M, ~!||"Y ~2 relative to
the two-body interaction.

VII. PARTICLE CREATION

The construction of the previous section can be
extended to models that do not conserve particle

number.*®> For that purpose it is simplest to treat
all particles as distinguishable. The resulting
operators will have the desired symmetry for ident-
ical particles. The number of degrees of freedom
of a finite system is given by the maximum num-
ber N of particles that may be present. The Hil-
bert space will be a direct sum of n-particle Hilbert
spaces associated with all proper subsystems. The
restriction to finite N is unphysical unless N is lim-
ited by a conservation law such as baryon-number
conservation. For real systems it is necessary to
consider the limits N— . We will see that while
local field theories describe systems with infinitely
many degrees of freedom, relativistic systems with
infinitely many degrees of freedom are not neces-
sarily local field theories. As an illustration we
have for N =3

H=H,BK,0 K8 (H QI ® (H,QK),)
®(H3QH) ® (K, RH) . (7.1)

Let Sy denote the set of all subsets of the set of
N particles, excluding the empty subset. The Hil-
bert space of states is then

H= @ X, (7.2)
SESy
where
Hy=Q I . (7.3)
i€s

Vectors in the space (7.2) are (2V— 1)-component
objects,*

|¢>=S§BSN [¥s), (7.4)

where (¥ | ¥ ) is the probability that the state
|¥) has elementary-particle content associated
with the subset s. The operators on & will be
(2¥—1)x (2¥—1) matrices of operators from
to ;. Interactions that do not conserve particle
number necessarily have off-diagonal matrix ele-
ments, $'=£s.

Partitions of our system can be defined unambi-
guously in terms of partitions of the N-body sec-
tor. Every particle is assigned to a cluster a; of
the partition a. For each partition a € 2’ the Hil-
bert space S naturally factors into a product of n,
terms, with each term a sum of 2" —1 com-
ponents. Here n,; is the number of particles in the
ith cluster of a. In the three-body example we
have for the partition a =(12,3)

H=K,8 (% H,® (¥ ®F)))
=3 X (12) . (1.5)
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The general case is

n

yfzéma,.) , (7.6)
where
Z”(a,—): D (®%,) (7.7
SES, ;. iEs

ai

and S,; is the set of all nonempty subsets of parti-
cles in the ith cluster of a. The space #7a;) in-
cludes all subsets of particles from the ith cluster
of a.

If an operator & €L (%,) is a function of
single-particle Poincaré generators and of the in-
teractions, then we can define &, as the result of
turning off all interactions involving particles in
different clusters of a. With this definition all the
combinatorial results of Sec. IV hold, and Poincaré
generators satisfying the separability requirement
(C1) are constructed by the recursive procedure
developed in Secs. V and VL

If M,; is the mass operator of the cluster ¢; and
each M,; fori =1, ...,n, has a nonempty point
spectrum, then there is at least one scattering chan-
nel associated with the partition a. An asymptotic
Hilbert space 7y and an injection operator
PEL(X5,) can be constructed as in Sec. III in
terms of the eigenstates of the | ¢,;) of M,;. The
only difference is that the states | ¢,; ) are not
eigenstates of the number operator. The construc-
tion of wave operators and Poincaré generators
proceeds as before. Equation (3.31) provides suffi-
cient conditions for the existence of wave opera-
tors. The main conceptual difficulty with variable
particle numbers stems from the fact that the trun-
cation of the interactions required to limit the par-
ticle numbers produces macroscopic nonlocal ef-
fects which are quite unphysical. These trunca-
tions are needed for the recursive construction of
Poincaré generators that satisfy (C1). We expect
that the construction converges as the number of
degrees of freedom increases and that (C2) can be
satisfied in the limit of infinitely many degrees of
freedom. A detailed investigation of this limit is
beyond the scope of this paper. We confine our-
selves to a discussion of the main features of three
examples. :

A. The relativistic Lee model

We have three different elementary particles (la-
beled N, ¥, and 8 following Lee*!) with a vertex

interaction N6«V. The Hilbert space of states is

= & ((® HN)®(Q Fy)®( ® %gk)).
JEsy kEsg

sySySg iEsy
(7.8)

The interaction conserves the numbers
N=Ny+Ny and K=Ngy+ N, where N, is the
number of particles of type x. With these conser-
vation laws the Hilbert space breaks up into a
direct sum of invariant sectors indexed by N and
K. Any independent subsystem which can be ob-
tained by spatial isolation can be characterized by
values of N and K. As an example consider a sys-
tem with at most three particles, one N, one V, and
one O: the state space is

=Z/N$%V®%6®%NV@%VGEB%NVG~
(7.9

All interactions with ranges outside this space are
turned off. The values of the conserved quantities
N and K associated with each subspace are given
in Table I. The subspaces in which no interactions
are artificially deleted are (N,K)=(1,0), (0,1), and
(1,1), that is #°y, Xy, and ¥y ® H ng. In this
truncation all other subspaces, N +K > 3, are trivi-
al; that is, there are no interactions. The recursive
construction proceeds by successively increasing
the number of degrees of freedom. Irrelevant sub-
spaces can be avoided by projecting always on a
specific N,K sector. For finite values of N and K
the recursion converges in a finite number of steps.
The (1,1) sector has been treated in great detail by
Dormale.*?

The nucleon (N), the A isobar, and the pion
form systems of the same type as long as the N-N
interaction is disregarded and only the N7-A ver-
tex interaction is considered.’! The fact that the
isobar is unstable presents no difficulties.

TABLE 1. Particle content of invariant sections of
the Lee model.

Subspace N K
N 1 0
6 0 1
4 1 1
NV 2 1
N6 1 1
v 1 2
NV 2 2




1364 F. COESTER AND W. N. POLYZOU 26

B. The nuclear isobar model

It has been proposed to treat A isobars as expli-
cit degrees of freedom in nuclei and to introduce
transition potentials connecting NN states with NA
and AA states.** The baryon number is conserved;
the space

N
H = .®] (yNi @%Ai) (7.10)
i=

is invariant. Because of the N-A mass difference
of this type nonrelativistic models are not Galilean
invariant. As a consequence the multinucleon S
matrix does not satisfy cluster separability. How-
ever, assuming stable A’s these models can obvi-
ously be designed to satisfy both Poincaré invari-
ance and cluster separability following the methods
of Secs. V and VL.

A new complication arises when the decay mode
A— N is added.?! The case of baryon number 1
is already covered by subsection A. For larger
baryon numbers the combination of interactions
can produce an infinite number of pions by the
production mechanism

NN ->NA—-NNr7—-NAr—NNwrm— - *
(7.11)

For the recursive construction we must restrict the
number N, of possible pions. For any finite value
of N, the pion interactions depend on the presence
or absence of other pions which may be at macro-
scopic distances. It is possible to satisfy (C1) but
macrolocality (C2) can only be achieved approxi-
mately. A detailed investigation of the conver-
gence for N, — oo is beyond the scope of this pa-
per.

C. Extended nucleons coupled to pions*

Similar features occur in models which couple
extended bare nucleons N, to pions by a vertex in-
teraction Ny«>N,m which may be introduced in
the mass operator of the BT construction. For the
recursive construction it is again necessary to limit
the number of possible pions. As long as the num-
ber of possible pions is finite there remains a diff-
erence between an absent pion and a pion removed
to a large distance. This difference should disap-
pear as the number of possible pions increases to
infinity. The convergence needs further investiga-
tion. In the limit such models have infinitely
many pion degrees of freedom and they are fully

relativistic. They are, however, not local field
theories as is evident from the fact that no antinu-
cleons are required and from the absence of the
divergences associated with point sources.

VIII. DISCUSSION

The principal result of this paper is the explicit
construction of relativistic direct interactions for
an arbitrary fixed number of particles. A compar-
ison with the nonrelativistic many-body theory
serves to put this result in perspective. Nucleons
are a concrete illustration.

The nonrelativistic theory is invariant under
translations, rotations, and Galilei boosts. The
generators of these transformations are indepen-
dent of the interactions and the Hamiltonian is

1
H=27¥+%2Vu‘+§2 Vi
i ij * gk
1

T

2 Vklmn+ ) 8.1

kimn

where T; is the kinetic energy of the ith particle
and each of the interaction terms is invariant
under space translations, rotations, and Galilei
boosts. The short-range character of the interac-
tions guarantees the existence of scattering opera-
tors and the dynamical independence of systems
with macroscopic separation (macrolocality).
There are no general consistency requirements that
relate different many-body interactions to each
other. For a physically interesting theory we re-
quire that the N-body interactions for N >2 are
relatively small.

In the relativistic theory we have again a Hamil-
tonian of the form (8.1). In the instant form each
term is invariant under translations and rotations.
The Lie algebra of the P_Qincaré group requires
that the Lorentz boosts K depend on the interac-
tions,

L,

- - — 1 —
K:zK,—{-';‘zKlj—}“é_' Kijk+.‘. .
i 0Lj ° k

(8.2)

The commutation relations imply relations between
all the interaction terms of H and K. The short-
range character of the interactions again guarantees
macrolocality and the existence of scattering opera-
tors. The arbitrariness of acceptable two-body in-
teractions is the same as in the nonrelativistic
theory. Lorentz invariance require the presence of
many-body interactions but a large amount of arbi-
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trary choice remains. Arbitrary N-body interac-
tions [M ]y can be added to the BT mass operator
M for each N at the N-body level of the recursive
construction. The operators [a]y occurring in the
construction of the Sokolov transformation are also
arbitrary.

The predictive power of such models depends
strongly on the assumption that arbitrary N-body
interactions become small with increasing N.
Under the assumption [a]y =[M]y =0 we have
shown that the three-body force is small if the
strength of the two-body interaction is small com-
pared to the rest of the two-body cluster. The
latter assumption is reasonable for baryon-baryon
and baryon-meson interactions. Under the same
conditions the N-body force was shown to decrease
rapidly with N. The explicit construction in Secs.
V and VI was done in the instant form. A similar
construction could be performed in any of Dirac’s
three forms.

Nothing in the general theory described here ei-
ther requires or prohibits particle creation. How-
ever, the macrolocality condition requires in gen-
eral infinitely many degrees of freedom. In order
to illustrate the features peculiar to particle
creation we have sketched the treatment of several
models. The subsystems needed for the recursive
construction are obtained by turning off part of the
interactions. They are not necessarily realizable by
spatial separation and may thus be quite artificial.
A full treatment of particle-creating models is
beyond the scope of the present paper.

This work was supported in part by the U.S.
Department of Energy under Contract No. W-31-
109-ENG-38.

APPENDIX

For the point-form construction we may define
Q and R by scaling Pand X by M,

Q=PM~!, R=MX. (A1)

The operators 6 and R so defined are canonically
conjugate and the generators of the homogeneous
Lorentz group, 7 and K, expressed as functions of

Q, R and j,

T=RxQ+7, (A2)
K=5(ER+RE)— 7 xQ(1+E)!,
E=(1+Q%)12 (A3)

are independent of the mass operator. The point-

form dynamical generators are then
H=M and P=MQ. (A4)
The BT dynamics is then specified by
Q=Q,, K=K, T=T, M=My+v
(A5)
and
H=M(1+Q»"?, P=MQ. (A6)

In this case v must be Lorentz invariant and com-
mute with Q but it is not invariant under transla-
tions.

Similar relations obtain in the front-form
dynamics. The invariant hyperplane is in this case
the null plane i-X +¢=const, where T is a unit
vector usually taken in the direction of the 3 axis,
1=(0,0,1). The kinematic generators are those
generators that leave the null plane invariant, i.e.,
g K J

P, =H+%-P, P=P—R(H-P) (A7)

E=K +ix7. (A8)

where K is the projection of K into the plane per-
pendicular to i. These generators satisfy the Lie
algebra

[&-K,&-J]=[5-J,P,]=0, (A9)
[E,P, ]=[E,E,]=0, (A10)
[5-K,P,]=iP, , (A11)
[8-K,E]=iE, (A12)
[%-T,E]l=—i(ixE), (A13)
[E,, P, ]=i(8,s—n,n,)P, , (A14)
[5-K,P,]=0, [P,,P,]=0, (A15)
[&-T,B]=—i(FxP)). (A16)
The dynamical generators
P_=H—-%P (A17)
and
F=K,—1ix7 (A18)

commute with each other,

[F,P_]1=[F,F,]1=0. (A19)

The remaining commutation relations are
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[R-K,P_]=iP_, (A20)
[8-K,F]=—iF, (A21)
[7-J,Fl=—i(xF), (A22)
[E,,F,]=—2i | (8,s —n,ny)&-K

+3 €pnpti-J |, (A23)

p

(E,P_]=2iP, [P,,F]=—2iP, (A24)
[P.,P_]=0, [P,P_]=0, (A25)
[P, Fs]1=—i(8,, —n,n,)P_ . (A26)

The Pauli-Lubanski vector W has the following
form as a function of the “front-form” generators:

W,=W'+R-W=8-TP, —(ExP)&,
(A27)

— 1 —

W, =< [(EXF)P, —P_(iXE)]
—ixPAK. (A28)
A spin vector § defined by
$8=1-J—(EXP)rn/P, =W, /P, , (A29)
=MW, —P,W_/P.) (A30)
satisfies the commutation relations

[spsSg1=1 2 €pqusic » (A31)
k

and

=M AW W)= . (A32)

The spin vectors S and Y differ from each other
by a rotation._The mass operator M is related to
P,,P_,and P, by

M?=p P_—PB>. (A33)
The dynamical F and P_ can be written as func-

tions of M, §, and the generators that leave the
null plane invariant:

- E E I e |
=Ltlp. =4+=p |+P|—uK+aK—
=3 |P- Py * Py - Py nRre Py
TXP
_2M s -2 P (A34)
Py +
P_= P—1—<M2+T’f) . (A35)

+

In the corresponding front-form construction the
dynamical generators F and P_ are given by (A34)
and (A35) with

M—>My+v, 3,=(3)) (A36)
and
(EP,P, 5K & T)=(EP,P, K5 T}.
(A37)

In this case v must commute with § and with the
kinematic generators.
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