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Quantum states can be understood as either (i) describing quantum systems or (ii)

representing observers' knowledge about quantum systems. These different meanings are
shown to imply different transformation properties in relativistic field theories. The rules

for the reduction of quantum states and the transformation properties of quantum states
under Lorentz transformations are derived for case (ii). The results obtained are applied
to a quantum system recently presented and analyzed by Aharonov and Albert. It is

shown that the present results, combined with Aharonov and Albert's, amount to a proof
of Bohr's view that quantum states represent observers' knowledge about quantum sys-

tems.

I. INTRODUCTION

In recent Phys. Rev. articles' Aharonov and
Albert presented a new and poignant analysis of
the measurement process in relativistic quantum
mechanics. The reduction of the wave function
was one of the issues discussed. Aharonov and Al-
bert have proved that quantum states do not
transform covariantly because the reduction of a
quantum state occurs in each frame of reference on
a constant-time hypersurface of the frame.

The noncovariance of quantum states is a
surprising result, if one believes that quantum
states describe quantum systems. In the present
paper we explore the alternative to this assump-
tion: the view apparently adhered to by Niels
Bohr, that states represent not quantum systems,
but observers' knowledge of them.

The distinction between describing systems and
representing observers' knowledge may seem to be
merely a philosophical subtlety. We show in Secs.
II and III, however, that this distinction has im-
mediate mathematical implications in regards to
the formalism of relativistic quantum field
theories.

The results of Secs. II and III can be summa-
rized as follows. (i} For each observer, the reduc-
tion of a quantum state which corresponds to a
given measurement occurs when the information
about the measurement can become available to
him, i.e., at a time t+t', where t is the time of
measurement and t' is the time it takes a light sig-
nal to reach him. The reduction occurs for each
observer on his constant-time hyperplane. (ii)
When the information about a system which is
available to two observers is identical, their quan-
tum states of the system, i.e., the wave functions of

the system in their respective coordinate systems,
are covariantly related in that region of space-time
which is future for both. No covariant relation-

ship is expected in general in other regions of
space-time.

Section IV is devoted to an application of these
results to the case of a scalar boson in an infinitely

deep double-well potential, presented in Ref. l.
We explicitly prove that whenever there is a
discrepancy between describing the state and
describing observers' knowledge of it, the quantum
state contains the latter information.

Section V is devoted to a comparison of these re-
sults with Aharonov and Albert's analysis. We fi-
nally conclude that the combined results of Ref. 2
and the present paper amount to a proof that
within the conventional framework of quantum
mechanics the only meaning of quantum states
which is free of inconsistencies is Bohr s—viewing
them as representing observers' knowledge of quan-
tum systems.

II. THE DEPENDENCE OF QUANTUM STATES
ON OBSERVERS' POSITION

AND VELOCITIES

Consider the following statements:
(I) "A quantum state describes a system. "
(II) "A quantum state represents an observer's

knowledge of a system. " What precisely is the
difference between them?

If we consider as a simple example of a system a
scalar boson field, then statement (I} implies that
at each point of space-time the value of the wave
function is independent of the coordinate system.
Statement (II) carries no such implication. Dif-
ferent observers' information about the scalar bo-
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son field may well be different, with corresponding
differences in the values of the wave functions.
The implications which statement (II) does carry
are the subject of the present section and of Sec.
III.

The phrase "an observer's knowledge of a system
at time t" is taken to mean "the information about
the system which can be available at the spatial
origin of a given frame of reference at the time t
by appropriate lightlike signals. "

Consider a case in which a measurement which
causes the quantum state of a given system to col-
lapse has taken place at the spatial origin of an

(x,y,z, t) system at time t =0. Consider another
observer, located at x =d, y =z =0 and let his
coordinate system (x',y', z', t') be defined by
x'=x —d, y'=y, z'=z, t =t.

The information about the measurement will be-
come available to the primed observer at t'=d/c
If we accept that for this primed observer the
quantum state describes his knowledge about the
system, then the collapse occurs for him at
t'=d/c.

This example demonstrates that if a collapse oc-
curs for a given observer when the information
about a measurement becomes available to him,
then quantum states depend, in an essential way,
on the position of the observer. Furthermore, be-
cause the collapse occurs for each observer on his

hyperplane t =const, the quantum state depends,
in an essential way, on the observers' velocity as
well.

Even when one does not consider collapse, quan-
tum states have observers' dependence. This has
been routinely taken into account by standard
mathematical procedures, e.g., the spinor transfor-
nations for Dirac wave functions. Such pro-
cedures represent the different mathematical ex
pressions of the same set of statistical predictions
about a given system. %hen collapses are taken
into account, however, different observers' quantum
states may well represent different probabilistic pre
dictions about the system. In the case discussed at
the beginning of this section, for example, during
the time interval 0&t &d/c, P(x,y, z, t) is collapsed,
and a position measurement is predicted with cer-
tainly to result in a value close to xi', f(x',y', z', t')
is uncollapsed. The corresponding prediction is
that there are equal probabilities for the measure™
ment to result in a value close to x& and in a value
close to x2.

To summarize, for a given measurement of a
given system and for a given observer it follows
from statement (II) that the collapse of the quan-

turn state occurs on the observer's constant-time
hyperplane at time t' after the time of measure-
ment in his frame of reference, where t' is the time
it takes a lightlike signal carrying the information
about the measurement to reach the spatial origin
of his frame.

III. TRANSFORMATION PROPERTIES
OF RELATIVISTIC WAVE FUNCTIONS

The present section is devoted to an analysis of
the implications of Bohr's view about the meaning
of quantum states as far as transformation proper-
ties are concerned.

Consider the simple example discussed in Sec. II,
or, more dramatically, Aharonov and Albert's' par-
ticle in a double-well potential (to be fully analyzed
in Sec. IV). These examples show that if a reduc-
tion of a given observer's wave function occurs on
his t =const hyperplane at the instant t when in-

formation about a measurement can reach his spa-
tial origin, then the histories of two observers'

wave functions are not related by covariant
I.orentz transforrnations.

To appreciate the origin of this result consider
Wheeler's statement "No phenomenon is a
phenomenon until it is observed as a
phenomenon" together with the fact that the
reduction of a wave function is not, in itself, a
phenomenon. The measurement which caused the
reduction is a phenomenon —a physical event. The
reduction is not. Away from the measuring ap-
paratus which caused the reduction, there can be
no measuring device which merely registers that a
reduction has occurred. Such a hypothetical device
cannot exist, because any interaction between a
measuring instrument and the system is, in general,
a cause for a new reduction.

Classically, Lorentz transformations relate the
same event as viewed by different observers.
Quantum mechanically Lorentz-covariant transfor-
mations among quantum states relate different ob-
servers proabability distributions for the same sys-
tem if the same information about the system is
available to them. They do not and need not refer
to the relationship between the histories of different
observers' knowledge of a given system. It follows
that if states represent observers' knowledge about
systems, their past values will not be, in general,
covariantly related.

On the other hand, when the same information
about a system is available to two observers we do
expect their statistical predictions for results of all
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measurements to be the same. Consequently, if the
information available at the origin of an unprimed
coordinate system at t =tz is the same as the infor-
mation available at the origin of a primed coordi-
nate at t'=tz, then the wave functions describing
the two observers' knowledge of a given system
should transform couariantly in that region of
space-time which is common to both regions t y tz
and t'yt~.

To summarize, if quantum states represent ob-
servers' knowledge of quantum systems rather than
the systems themselves, then different observers'
states of the same system will be covariantly relat-
ed in their common future, provided the same in-
formation is available to them. Regardless of
whether or not the same information is available to
different observers, their wave-function histories
will not be, in general, covariantly related.

IV. AHARONOV AND ALBERT'S PARTICLE IS
A DOUBLE-Vf ELL POTENTIAL

In the present section we re-examine a particular
case, presented and analyzed in Ref. 1. %e will
show (i) that the noncovariance of quantum state
rules out their interpretation as describing quantum
systems and (ii) that the information contained in
the quantum state is the observer's knowledge
about the system. The term "observer's
knowledge" is used as defined in Sec. II.

Consider the case of a charged spin-0 particle in
the space of a double-well time-independent poten-
tial (Fig. 1). Its state is given in an unprimed
coordinate frame as

CO

]pic

FIG. 2. The collapse of
~
P) to x =x&.

The current density in this frame is

j"(x,t)=(g ~%'*Vt'4 %V"4*—
~
V)e

and the charge density is, therefore,

p(x, t)=(%
~

4 4—%%
~
%)e,

where g is the scalar field operator. It was shown
in Ref. 1 that if this

~
g) is covariantly trans-

formed to another (primed) frame,

x'~=AI'„x (4)

where A& is the Lorentz transformation matrix,
then the corresponding charge density p'(x'", t')
has unphysical properties, such as its integral over
all space being less than e at certain times t'.

Applying the results of Ref. 2 to this case one
concludes that the source of the apparent paradox
is in the assumption that the states transform co-
variantly. In fact, the reduction of the state occurs
for each observer on his equal-time hypersurface.

Let us analyze this system using the results of
Secs. II and III.

FIG. 1. An infinite double-mell potential (Ref. 1).
FIG. 3. The history of Fig. 2 as seen in the primed

frame.
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t=0 forx&x),
t =t& for x &x&

(6)

ensures that when the values of the wave functions
on the hypersurface (6) are taken as initial values
both observers will derive the same sets of proba-
bilities for measurements in region I.

The significance of these results in relation to
the meaning of quantum states will be apparent if
we consider the following. I.et the event P (Figs. 2
and 3) indicate the location and time of a measure-
ment designed to answer the question "Is the parti-
cle at the location x2?" Let P be at a spacelike
separation from the event A (the coordinate of A

are x =x&, t =0 in the unprimed frame). As we
see from Fig. 2, the probability to find the particle
at P is zero. This fact is known in both frames at
x =x~, t &0 and x'=x&, t'&tj, respectively.
Nevertheless, as Fig. 3 shows, the quantum state of
the primed frame at P indicates a probability of —,

to find the particle at x2.

Figures 2 and 3 represent, respectively, the his-
tories of the states from the {unprimed) frame in
which the potential wells are at rest, and from a
(primed) frame which is related to the unprimed
frame by Eq. (4). I.et us look at space-time as di-

vided into 4 regions:

I. t&0 and t'&tI,

II. t &0 and t'&t),
III. t &0 and t'&t&,

IV. t &0 and t'&t& .

The reduction of the unprimed observer's quantum
state occurs on his hyperplane t =0. The reduc-
tion of the primed observer's quantum states oc-
curs on his hyperplane t'=t~. Comparing Figs. 2
and 3, the two wave functions are related covari-
antly in regions I and III, and not related covari-
antly in regions II and IV.

Region I is that part of space-time which is the
common future for both frames after reduction has
occurred in both. In region I the quantum states
are covariantly related, as expected (Sec. III). Non-
covariant relationship is confined to regions II and
IV, which are past for one of the observers. If
past history of a wave function is to represent the
history of an observer's knowledge, no covariant
relationship need exist between two past histories,
or between past history of the knowledge of one
observer and future predictions of another.

The covariant relationship on the hypersurface

The quantum state at P in the primed frame de-
scribes neither the state of the system nor the
knowledge which the primed observer has about it
at later times, such as t'=t~+e. It describes, rath-
er, the knowledge which the primed obseruer has
about the system at the time of the euent P.

V. DISCUSSION

How do the present results compare with the re-
sults of Ref. 2'? There is no question, in the view
of the present author, that Aharonov and Albert
have proved that the instantaneity of state reduc-
tion does not restrict the set of observables to pure-

ly local ones. Clearly, they have also proved that
state reduction is instantaneous in each frame and
that in general states do not transform covariantly.
The points of a possible discrepancy between their
views and the views expressed in the present paper
are the following.

(1) The dependence of quantum states on the lo-
cation of the observer (the location of the origin of
the frame of reference) is not discussed in Refs. 1

and 2. In discussing nonlocal simultaneous mea-
surements, the reduction is apparently taken to oc-
cur at the time of these measurements. According
to the view presented here the reduction will take
place, for a given observer, at the time at which
the results of such measurements can reach him by
lightlike signals, e.g., in the case of the measure-
ments of nonlocal observables which take place by
two simultaneous local interactions at x& and x2,
the reductions referred to in Ref. 2, Sec. II apply
to an observer located at (x ~+x2)/2 at a time
t=to+

~
x~ —xz

~
l2c, where to is the time of in-

teraction. For other observers the reduction will
occur when lightlike signals from both x~ and xz
can reach them, following the measurement at to.

Let us point out that this view of the reduction
makes operational sense. It takes into account the
dependence of the information about systems on
the location of the observers. This kind of ob-
server dependence of states clearly entails the pos-
sibility of differences among observers concerning
probabilistic predictions.

(2) There is another point of possible discrepancy
concerning the statement "covariance of relativistic
quantum states reside exclusively in experimental
probabilities, " which is unrelated to the depen-
dence of the reduction on the location of observers.
If the term "probability" indicates a reference to
future measurements, it is in accord with the re-
sults of Sec. III. If, however, it may refer to mea-
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surements which are in the future for one observer
and in the past for another, there may be a
discrepancy. The analysis of Sec. IV provides an
example in which if the quantum state is interpret-
ed as providing the probability for the result of a
past experiment at spacelike separation, the proba-
bility is wrong, and not a covariant transform. In
our view past quantum states do not provide pro-
babilities of past measurements on the basis of
present knowledge. They provide, rather, probabil-
ities of these measurements as calculated from the
information about the systems available at the time
of these measurements.

%'hile the present view on these points seems to
be different from Aharonov and Albert's, it is in
no way contradictory to their main new results.
The changes in Ref. 2 which the present view calls
for are fairly obvious.

Having shown, then, on the basis of the results
of Ref. 2, that quantum states do not describe
quantum systems, we can conclude that the com-
bined results of Ref. 2 and the present paper
amount to a proof that within the conventional
framework of quantum mechanics the only mean-

ing of quantum states which is free of inconsisten-
cies is Bohr s—viewing them as representing ob-
servers' knowledge of quantum systems.
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