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It is well known that gravitational fields may be locally the same but globally distinct due to differences in the
topology of their underlying manifolds. Globally stationary but locally static gravitational fields provide an example
of gravitational fields which are locally the same but globally distinct in spite of the homeomorphism of their
underlying manifolds. Any static metric on a space-time manifold with nonvanishing first Betti number R , is shown
to generate an R ;-parameter family of such solutions. These fields are seen to provide a gravitational analog of the
electromagnetic Aharonov-Bohm effect. The exterior field of a rotating infinite cylinder of matter is discussed as an

exactly soluble example.

I. INTRODUCTION AND
MATHEMATICAL PRELIMINARIES

The Aharonov-Bohm effect’ has been extensively
studied,? and numerous gravitational analogies
have been discussed.® In both cases nonlocal top-
ological features of space-time come into play, so
I shall begin by a brief discussion of the relevant
mathematical material. After that, one of the
original examples given by Aharonov and Bohm!
will be somewhat generalized by a discussion of
locally electrostatic, but globally magnetostatic
fields. The external electromagnetic field of a
rotating charged cylinder will be given as an ex-
ample. Then the gravitational analog will be in-
troduced: locally static, but globally stationary
space-times. With the aid of this concept, the
exterior field of a rotating cylinder of matter®* will
be analyzed. The apparently paradoxical feature
that this field is locally static® is then seen to be
just the gravitational analog of the previous elec-
tromagnetic example.

The use of a beam of quantum-mechanically
described charged particles to verify the existence
of the electromagnetic effect, and of a classically
described light beam to verify the gravitational ef-
fect will be considered. It will be argued that both
effects are basically classical in nature.

The rest of this section is devoted to the ele-
ments of the de Rham cohomology theory of dif-
ferential forms.® The next section takes up the
electromagnetic case, and the final section the
gravitational case. [The basic results of Secs.

II and III were presented in a talk to the American
Physical Society in 1969. See Bull. Am. Phys.
Soc. 14, 16 (1969).]

In general relativity space-time is represented
by a four-dimensional orientable differentiable
manifold M provided with a pseudo-Riemannian

metric g, ,, of Minkowski signature (I take the
signature to be +---, so the norm of a timelike
vector is positive). There are a number of ways
of studying the global topological structure of
such a differentiable manifold. Since it is a topo-
logical manifold, one may use the traditional me-
thods of algebraic or combinatorial topology. One
can use some form of cohomology theory, or the
dual homology theory.

However, it is possible to take advantage of the
differentiable structure and use methods peculiar
to differential topology: Morse theory, for exam-
ple, studies the critical points of C* scalar fields
on the manifold.

Since differential forms play a major role in the
work, it seems best for present purposes to use
the de Rham cohomology theory of exterior differ-
ential forms,® which involves a study of the rela-
tionship between closed and exact differential
forms. Fortunately, I shall need very little of
this theory. )

For the purposes of this paper, it will suffice
to think of such a form w as a totally antisymme-
tric differentiable tensor field on M, with com-
ponents w., ..., , with respect to some local co-
ordinate chart. The number of indices p defines
the rank of the form, often called a p-form. (An
n-dimensional differentiable manifold cannot have
nonvanishing forms of rank higher than n.) A
form is exact if it is the exterior derivative or
curl of some form of one rank lower,

w=dnaw[u1,_,up]=a[upn“1_“up_1] . (1.1)
A form is closed if its curl vanishes,

[ppymyevenpl

According to Poincaré’s lemma, every exact form
is closed,

1281 © 1982 The American Physical Society



1282 JOHN STACHEL 26

dznzd(dn)z()@a =0. (1.3)

[“mza“puw“l' cenpl
(This is just an application of the commutativity of
ordinary derivatives to forms.) In physics one of-
ten proceeds as if the converse of the Poincaré
lemma were always true: that is, as if every
closed form were exact. In terms of the tensor
components, this would imply that any totally anti-
symmetric tensor field whose curl vanished could
always be written as the curl (“divergence” being
just a special case of curl for forms) of some
antisymmetric tensor field of one rank lower. Lo-
cally, this result is always true in a finite neigh-
borhood of any point of the manifold. However, its
global validity for fields defined over the entire
manifold M depends on topological properties of
that manifold. Since in this paper I shall primar-
ily need to consider the case of one-forms (covar-
iant vector fields), I shall illustrate this point
with the example of one-forms. If the manifold
in question is such that any simple closed curve
within it can be continuously shrunk to a point,
then the inverse of Poincaré’s lemma is true for
one-forms. But suppose that this is not the case.
Think of the surface of a cylinder, for example.
There, simple closed curves fall into two classes:
those that can be continuously shrunk to a point
and those that cannot be shrunk to a point because
they encircle the entire cylinder. A closed curve
that can be continuously shrunk to a point will be
called trivial and one that cannot will be called
nontrivial. On a manifold with nontrivial closed
curves, the converse of Poincaré’s lemma does
not hold for one-forms.

Let A be a closed one-form,

dA=0e5, A, =0. (1.4)

Then the integral of A around any closed curve C,

chmiAudxu , (1.5)

will have the same value for any curve C’ which
can be obtained from C by its continuous deform-
ation. (This follows from the application of
Stokes’s theorem.) Any two such curves will be
called equivalent. If the curve can be continu-
ously shrunk to a point, it follows that this inte-
gral must vanish. However, if the curve cannot
be so shrunk, then it by no means follows. In-
deed, it follows from one of two de Rham theor-
ems’ that this integral may have any arbitrary
value. The value of such an integral around an
arbitrary closed curve is called a period of the
one-form A (these definitions and results actually
can be extended to p-forms, although we shall not
need to do so in this paper except for one refer-
ence to two-forms). The only requirement on the

periods of a closed form is that they be consis-
tent: In case several distinct nonequivalent fami-
lies of simple closed curves exist on a surface
(for example, on a torus, or a sphere with more
than one handle), the periods with respect to ar-
bitrary closed curves must be consistently related
(see the last paragraph of this section). Another
theorem of de Rham’ states that it is not enough
for a form to be closed for it to be exact; in ad-
dition, all of its periods must vanish. In the case
of interest here, this means integrals of the
form (1.5) must vanish for nontrival closed cur-
ves C in the manifold. So if there are no nontri-
vial closed curves on a manifold, the converse of
the Poincaré lemma must hold. However, if there
are such curves, then a closed one-form with ar-
bitrary (consistent) periods will exist, and unless
all these periods vanish, it will not be exact.
These results apply as well to a manifold with a
boundary as to one which is open. To take an ex-
ample closely related to the later discussion,
consider a plane with a hole cut out. We may con-
sider the boundary of the hole to be attached to
the rest of the plane, which thus forms a manifold
with a boundary. Then any closed curve enclosing
the hole cannot be continuously shrunk to a point,
so we must expect that closed one-forms exist
which have an arbitrary period about the hole. In-
deed, this is easy to demonstrate by constructing
such forms using polar coordinates in the plane
with the hole. (Since polar coordinates are singu-
lar at the origin of the plane, they can only be
used globally if the origin of the plane is not part
of the manifold. Putting the origin of the polar co-
ordinate system anywhere inside the hole allows
their use for the entire manifold with boundary.)
If we now choose the two polar components of A
as

A, =0, A, =c/r (r+0), (1.6)

for example, then A is closed, while the period of
A about any closed curve enclosing the origin is
given by

fA:ch. @.m

Unless ¢ =0, this form is not exact.

Returning to the general theory, consider the
set of all closed p-forms on M. Since the sum of
two closed p-forms is a closed p-form, this set
constitutes an Abelian group with addition as the
group operation. Similarly, the set of exact p-
forms constitutes an Abelian group under addition,
Since every exact p-form is a closed p-form, the
group of exact p-forms is a subgroup of the group
of closed p-forms. The quotient group of these
two groups is called the p-dimensional de Rham



cohomology group, which de Rham proved isomor-
phic to the cohomology groups as ordinarily de-
fined in topology. If it vanishes for a particular p,
this means that every closed p-form is exact, so
that the converse of the Poincaré lemma holds for
p-forms. Its nonvanishing for some p is therefore
an index of the degree to which the converse fails
to hold for p-forms. The dimension of the group
is equal to the pth Betti number R, of the manifold.
If the manifold is compact, this number must be
finite. Two p-forms are called cohomologous if
they differ by an exact form. Clearly, cohomology
of p-forms is an equivalence relation (it is reflex-
ive, symmetric, and transitive), so it divides the
set of p-forms into equivalence classes, called
cohomology classes. One of these classes is
trivial: i.e., it consists of those p-forms which
are themselves exact. R, is the number of non-
trivial cohomology classes of closed p-forms.

De Rham’s two theorems then state that a closed
p-form with arbitrary values for R, independent
periods exist on a manifold with pth Betti number
R,, and that a closed p-form will be exact if and
only if all these periods vanish.

II. THE ELECTROMAGNETIC CASE

I shall now apply the concepts of the previous
section to the global analysis of an electromagnetic
field on a space-time manifold M8. This field is
defined by two two-forms f and k. In the (linear)
Maxwell theory % is the dual of f, defined by the
star operator,

h:*fa *fuv=%"_g€uvklfna (21)

where € is the four-dimensional Levi-Civita ten-
sor density of weight —1, and g is the determinant
of the metric tensor g,, of the manifold. How-
ever, for generalized nonlinear electrodynamic
theories® (2.1) need not hold; indeed, for the gen-
eral discussion, one need not specify the exact
relationship between f and ., but only consider f,
which is assumed to be closed and exact,

df=0, f=dA. (2.2)

By de Rham’s theorems, this implies that the
periods of f vanish over all closed two-surfaces
of the manifold M. Physically it is just the con-
dition for no magnetic monopoles to exist. The
existence of a (single-valued) vector potential is
thus equivalent to the assumption that there are no
magnetic monopoles.

The vector potential, however, is not unique.
Suppose there are two such potentials for some
given field f,

f:dA:dA'a‘qu:a A :a[uA’,,]. (2-3)

e vl
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It follows that their difference A is closed,
A=A-A", dA=0 9, ,A,=0. (2.4)

By de Rham’s theorems, there exist solutions to
(2.4) with arbitrary periods over all R, indepen-
dent nontrivial closed curves of M. First, sup-
pose these periods all vanish. Then by the other
clause of de Rham’s theorems, A is exact,

A=dyeA, =0, . 2.5)

So A and A’ belong to the same cohomology class.
We say that A and A’ differ only by a gauge trans-
formation generated by x.

But if some periods of A are nonvanishing, then
A and A’ differ by more than a gauge transforma-
tion, i.e., belong to different cohomology classes.
Indeed,

ch;ach', (2.6)

for any closed curve C with respect to which the
period of A does not vanish. The integral ch
around such a curve is gauge invariant, and also
independent of any continuous deformation of C
(by Stokes’s theorem).

Thus, in order to fully (globally) characterize
an electromagnetic field on a manifold M, it is not
sufficient to give the field fover M. We must also
give the periods of A over all R, independent clas-
ses of nontrivial closed curves which exist in M.

The well-known Aharonov-Bohm effect! follows
at once from this observation. Generalizing one
of their examples, I shall discuss globally mag-
netostatic (electrostationary) but locally electro-
static fields. These provide a close analogy to
the gravitational fields to be considered in the
next section.

Suppose the electromagnetic field is time inde-
pendent in some stationary space-time. This
means that there exists a globally timelike (Kill-
ing) vector field with respect to which the Lie de-
rivatives of the metric and the electromagnetic
fields vanish. One could actually carry out the
analysis of the electromagnetic case at this level
of generality. But since we have not yet discussed
time-like Killing vector fields for space-times
(which will be done in the next section), as well as
for the sake of easy comparison with standard
discussions of the Aharonov-Bohm effect, I shall
restrict myself here to the case of a local Minkow ski
space-time, where the timelike Killing vector field
defines an inertial frame. In that case one may
make the usual (3 +1) decomposition of the field
and potential. That is, we may break up f into
three-dimensional electric and magnetic vector
fields E and B and decompose A into scalar and
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vector potentials ¢ and K. Then

A=¢ A dx= fopdt—- §K-dF
[A=f e = goa-g

:—fA’-df. @.7)

Since the fields are time independent, the poten-
tials may also be so chosen, which implies that
$pdt=¢$dt=0. So the (four-dimensional) per-
iods of A are equivalent to the (three-dimen-
sional) periods of A. Aharoqgv and Bohm choose
A curl-free. Since B=curl A, this implies that
there is no magnetic field in the region under con-
sideration. In their example, to make the effect
more striking, the electric'field is also chosen to
vanish. But there is no need to make that choice.
E=-v¢-08A/d¢, so the second term vanishes
with the time-independent assumption. But the
first term need not. That is, we consider fields
which are locally purely electric [E=—v¢(¥),
B=0], but for which there are nevertheless global
effects of the nonvanishing vector potential [sﬁx(f)
-dT +#0 over some closed curves|. We shall call
such a field globally magnetostatic, but locally
electrostatic. Since magnetostatic fields are due
to the effects of stationary electric currents, we
may also say globally electrostationary fields,
bringing our terminology into closer line with
that which is natural for the gravitational case.

To demonstrate that the magnetostatic potential
in such a field does indeed produce physical ef-
fects, we use a quantum-mechanical ensemble of
particles passing through the region in which such
a field exists. Sakurai,'® in his discussion of the
Aharonov-Bohm effect, proves the following the-
orem: Let y(T) be a solution to the nonrelativistic,
time-independent Schrodinger equation for spinless
charged particles of charge ¢ in a region charac-
terized by a time-independent electrostatic poten-
tial ¢(f). Then the corresponding solution to
Schrodinger’s equation when a vector potential
A(T) with vanishing curl is added is given by

v @ =@ eXp[;—i fz\’(a - d;] . 2.8)

The line integral may be taken between any two
points in the region where B=0. By Stokes’s the-
orem, it will be independent of the exact path for
any two equivalent paths (i.e., continuously de-
formable into each other).

Two conclusions follow from this theorem. First
of all, suppose a coherent ensemble is separated
into parts which then travel along two inequivalent
paths, which form a closed path between the point
of separation and the point of reunion. Then the
wave functions of the two subensembles will suf-

fer a relative phase shift proportional to the period
of A around the closed path in question. Second,
the physical effects produced by this phase shift
only depend on the phase factor exp[(ie/%ic)$ & -d F].
As Wu and Yang put it, “The field strength f,, un-
derdescribes electromagnetism.... The phase
[(e/7c)$A dx*] overdescribes electromagneti-
sm.... What provides a complete description
that is neither too much nor too little is the phase
factor...”?

These results have often been taken to imply that
the Aharonov-Bohm effect is basically quantum
mechanical in nature. However, it should be noted
that the crucial point—that the phase factor is of
physical significance—would be true for any wave
field, whether that field is classical or quantum
mechanical. For example, if there were a classi-
cal charged scalar field, classical interference
experiments would suffice to demonstrate physical
effects of the periods of A (see the Appendix). In
the gravitational case, as we shall see in the next
section, since everything couples to gravitation in-
cluding light waves, classical optical interference
experiments could in principle be used to verify
the gravitational analog of the Aharonov-Bohm ef-
fect. Therefore, the effect in both cases should be
regarded as basically classical, even though quan-
tum-mechanical experiments may be needed to
verify its existence in the electromagnetic case.

In order to illustrate the effect, some nontrivial
topological configuration must be adopted for
the region of space-time with a locally electro-
static but globally electrostationary field. The re-
gion outside a toroidally wound solenoid provides
such a nontrivial example. K a current flows in
such a solenoid, there is a nonvanishing magnetic
flux inside the solenoid. This implies that, even
though there is no magnetic field outside the sole-
noid, the line integral of the vector potential
around any closed curve encircling the solenoid
cannot vanish. Since this toroidal field cannot be
solved exactly, Aharonov and Bohm,! followed by
many others® have considered an exactly soluble
model: the field of an infinite cylindrical solenoid.
The field near such a cylindrical solenoid also pro-
vides a good approximation in some ways to the
field near a toroidal solenoid.

In order to have a closer analogy with the gravi-
tational example to be discussed in the next sec-
tion, the original Aharonov-Bohm example may be
generalized to the case of an infinite charged cy-
lindrical solenoid. Even more generally, we con-
sider an infinite charged rotating cylinder. The
cylinder may be rotating rigidly, or be made of
charged cylindrical shells rotating at different
rates, so that the angular velocity w is a function
of the radial cylindrical coordinate p:w=w(p).
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The current density vector J then has only a ¢ -
component J, =0pw, where o(p) is the charge
density of the cylinder, of radius p,. The field
produced by this source has only the following non-
vanishing components (we assume the linear Max-
well equations to hold here),

. 47 L)
H;’“:—C— f owpdp (0Sp<p,),
(-

. 41 e
D =7fp0dp (0<psp,),
0

4 (%o
E:"‘=?f podp (p=>p,).
0

The exterior field produced by the cylinder is
purely electrostatic, even though it is rotating.
So no local exterior experiment could detect the
rotation. A nonlocal Aharonov-Bohm type of ex-
periment is needed to demonstrate the nonlocal
external effects of the rotation.! The experiment
has actually been performed, with a finite cylinder
of course. A magnetized iron whisker,'? as well
as a solenoid,'® have been used. Appropriate
shielding at the ends to contain the magnetic field
must be used, or a correction made for the field
leakage.

III. THE GRAVITATIONAL CASE

A four-dimensional connected, oriented manifold
with a pseudo-Riemannian metric of Minkowski
signature, with respect to which it is time ori-
ented, is called a space-time.* It follows from
the de Rham theorems that two space-times on
homeomorphic manifolds M and M’, assumed to
have nonvanishing first Betti number R,, may have
(contravariant) vector fields v and v' which map
onto each other one-one under a (global) diffeomor-
phism of the two manifolds; yet the corresponding
one-forms w and w’,

’ ’ _ (T !
V= w, Ve W=l =0, Vi =0,

(3.1)

will only map onto each other one-one locally.

They will not so map globally because their periods
differ for some nontrivial closed curves which cor-
respond to each other in the global diffeomorphism
between M and M’. It follows that while the two
metrics g and g’ may also map onto each other
one-one locally, they cannot be globally so mapped.
If they do correspond locally, the two manifolds
may be called locally isometric. Thus, locally but
not globally isometric space-times will exist; and
the nonglobal nature of the mapping will not be due
to any topological difference between the manifolds
M and M’, A gravitational field corresponds to an
equivalence class of space-times which can be

mapped onto each other.’®* We have thus shown
that globally distinct but locally indistinguishable
gravitational fields are possible on homeomorphic
manifolds with nonvanishing R,. Indeed, since the
two metric tensors are locally isometric, the Rie-
mann tensor and all invariants built from it and its
covariant derivatives will also agree locally. So
no local feature of such space-times could distin-
guish between them. The only way to exhibit their
global difference is by means of the differing per-
iods of the locally corresponding but globally dif-
fering one-forms.

As an illustration, and a close analog of the
generalized Aharonov-Bohm effect discussed in
the last section, I shall consider the case of a
locally static but globally stationary gravitational
field. A gravitational field is called globally sta-
tionary in some region of space-time if there ex-
ists a global vector field £ in that region which is
a timelike Killing vector with respect to the space-
time metric. This may also be expressed by say-
ing that the Lie derivative of the metric with re-
spect to the vector field £ vanishes;

LtguVE gkaugu.v*' gnvaugn + guxav‘gk
=V, £, +9,£,=0. (3.2)

In terms of local coordinates this implies that loc-
al charts exist such that £“=6.*, and all g, are
thus independent of x°. K the one-form corre-
sponding to £ is hypersurface orthogonal;

£,=29,9, (3.3)

where A and § are two scalar fields, then the grav-
itational field is called static. This implies, in
terms of local coordinates, that local charts exist
in which g,, vanish, while all other £,, remain in-
dependent of x°.

Now the possibility arises that, while the vector
field £ may be globally stationary in some region
of space-time, it satisfies Eq. (3.3) only locally.
That is, in any subregion of the entire region in
question, £, is hypersurface orthogonal, but there
exists no global (single-valued) function ¥ for the
entire region which satisfies (3.3). Such a region
of space-time will be called globally stationary
but locally static.

I shall now show that the study of such space-
times is closely related to that of closed but non-
exact one-forms in the region in question. First
of all, I recall some results previously established
elsewhere.’® If v is any timelike vector field, and
V is the one-form inverse to v, i.e.,

V,=/pv,, v*V, =1, v,o*=p?, (3.4)

then one may generalize the well-known hydrody-
namical decomposition of a unit timelike (velocity)
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vector field,
v,V,=H,+Q,,+(L, V)V, ~L,(Inp)V,V,
- Vv'au(lnp) - V“’Bv(lnp) . (3.5)

Here 2,,= (1/p)w,,, where w,, is the usual rota-
tion tensor of the congruence, whose vanishing in
some region is the necessary and sufficient condi-
tion for the congruence to be (locally) hypersurface
orthogonal; H,,=(1/p)k,,, where k,, is the usual
rate of expansion tensor (the trace of which is the
expansion scalar and the traceless part of which is
the shear tensor), and 9, is the projection of the
gradient orthogonal to the congruence ['d,=(5,”
-£V,)9,]. L,V, is a generalization of the accel-
eration vector of the congruence, to which it re-
duces if p=1. It follows that the exterior deriva-
tive of the one-form V, i.e., the curl of V, is giv-
en by

AV=Q+L,VAVed V,1=9,,+ L,V )V,;.
(3.8)

So that, if L, V=0, and the congruence is (locally)
hypersurface orthogonal (§,,=0), the exterior
derivative of V vanishes.

Now suppose we take a timelike Killing vector
field £ for v. It is easily shown that Killing’s
equations (3.2) reduce to

L,V,=0, L,p=0, H,=0. 3.7)

124

So, for a Killing vector field
AV=Qe8, ,V,=9,,. (3.8)

Thus, the closure of V is a necessary and suffi-
cient condition for a Killing vector field to be
(locally) hypersurface orthogonal. (Naturally, this
could also be proved directly, without use of the
results from'® quoted here.) Incidentally, the con-
dition for £ to be a Killing vector may also be writ-
ten entirely in terms of V. Inserting (3.7) into
(3.5), one sees that a necessary and sufficient con-
dition for £ to be a Killing vector is

VV,==V,'9,,Inp), g»V, V,=1/p*. (3.9)

The question of whether a globally stationary
Killing vector field is globally or only locally stat-
ic thus is equivalent to whether the closed form V
is or is not exact.

In local coordinates adapted to the Killing vector
field (i.e., for which £*=0" ) p®=g,, and the com-
ponents of V, are (1,£,,/8,). Using vectorial no-
tation for V,=g,,/240, We may write in adapted co-
ordinates (assuming that such a global time coor-
dinate exists!?),

fhfvudxu § 7 az.
c [} C

(3.10)

The analogy with (2.7) is obvious.

There is an analogy to electromagnetic gauge
transformations for locally equivalent but globally
inequivalent gravitational fields. Any one-form in
the same cohomology class as w may be used to
characterize the periods which distinguish locally
equivalent but globally inequivalent gravitational
fields. Two such equivalent one-forms differ by
an exact one-form, just as do two equivalent elec-
tromagnetic potentials. In the case of globally
stationary but locally static fields, there is also
an analogy to the restricted class of gauge trans-
formations considered in the corresponding elec-
tromagnetic case. Since £*V,=1and L,V=0, it
is natural to restrict attention to the class of equi-
valent one-forms (i.e., those in the same cohomo-
logy class as V) with the same properties. It then
follows that the gauge function X will also have
vanishing Lie derivative with respect to §: That
is, if W is a one-form such that

g*w,=1, L,W=0, V-W=dx, (3.11)
then
Lx=0. (3.12)

Suppose we have a static space-time on some
manifold M. Then a quotient manifold is obtained
by identifying all points on a trajectory of the Kil-
ling vector field £. Suppose this quotient manifold,
or spatial cross section, has nonvanishing first
Betti number R,. Since the space-time is (glob-
ally) static, the periods of ¥ must vanish for all
R, independent cohomology classes of closed cur-
ves. But by de Rham’s theorems, distinct closed
one-forms will exist with arbitrary periods. Any
of these may be taken as the V corresponding to £.
This means that there is an R,-parameter family
of globally stationary but locally static gravi-
tational fields which are locally the same, but
globally distinct. Gravitational fields have often
been considered which are locally the same but
globally distinct because of a difference in the
topology of their underlying manifolds.® What is
unique about this class of globally distinct but
locally identical gravitational fields is that the
topology of the underlying manifolds is homeo-
morphic.

Now I shall prove a gravitational analog of the
theorem of Sakurai quoted in the last section. It
could be formulated in quantum-mechanical terms,
as is Sakurai’s theorem, but since I am interested
in showing that the gravitational analog of the
Aharonov-Bohm effect may be tested classically,
I shall formulate it in terms suited to a classical
light wave. I shall consider the eikonal equation
for the phase of such a classical electromagnetic
wave field in the eikonal approximation.!® But
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similar results would hold for any zero-rest-mass
field, and with appropriate modifications they
would hold for nonzero-rest-mass fields, includ-
ing quantum-mechanical wave functions (see the
Appendix).

If the field f of a locally approximate plane
wave is written in the form f=Re[ f,exp(iwS)],
where S is the eikonal function, w is the (very
large) angular frequency of the solution, and f, is
the slowly varying amplitude of the wave, then S
may be shown to obey the eikonal equation,

2"9,58,5=0. (3.13)

Suppose the gravitational field to be globally
stationary but locally static, with £ as the timelike
Killing vector. Then

'g‘“’=g‘“’—£“£"/p2 (3.14)

is the metric tensor of the hypersurface locally
orthogonal to the £ field. Let W be a scalar field,
such that L, W= §*8, W=0, which obeys the equa-
tion,

rghve, W, W+p2=0. (3.15)

Since the form of this equation is independent of
the particular choice of V, its solution will not
depend on that choice either. Then

X
s=_f Vv, dx* + W (3.16)
X0

is a solution to the eikonal equation (3.13). This
may be seen by noting that 8, S=-V, +3, W. Sub-
stituting this into (3.13) then yields (3.15).

If the amplitude f, is then taken to be of the form

fo=kaqefo,, =k, q,, k,=8,S, (3.17)

where ¢ is a one-form which propagates along the
null geodesic congruence of rays determined by
the solution to the eikonal equation in accord with
the equation

0,=—24,V,k"), 4,=K"V,q,, (3.18)

then it may be shown that 7 =Re[ f, exp(iwS)] obeys
Maxwell’s equations up to a term of order 1/w.
The rays of the wave field are the trajectories of
the &* field, and it follows from (3.17), (3.16),
and L,W =0 that

R =rghve W - £ (3.19)

Thus, the trajectories are independent of the
choice of V, and will be the same no matter what
the periods of V.

However, the phase of the wave, wS integrated
along any ray, does depend on V as seen from
(3.16). Thus, a coherent beam of light, split into
two parts which then travel along two different
spatial paths before being reunited, will show in-

terference effects proportional to the relative
phase difference

wfVo:owfVudx“.

Thus, classically described experiments with
light waves can demonstrate the existence of the
analog of the Aharonov-Bohm effect in globally
stationary but locally static gravitational fields.

It is the universal nature of the gravitational
coupling, of course—that is the equivalence prin-
ciple—which makes a classical experiment show
the effect. But the analogy between the electro-
magnetic and gravitational cases is so close that
it would seem strange to insist that the electro-
magnetic effect is fundamentally quantum mech-
anical. It seems preferable to regard the effect
as basically classical in both cases, although re-
quiring a quantum-mechanical test to demonstrate
its existence in the electromagnetic case. After
all, from the point of view of classical electro-
magnetic theory, it is adventitious that no class-
ical charged field exists (see the Appendix).

Analysis of (3.18) shows that the direction of
polarization of a linearly polarized wave is par-
allel transported along the rays, which gives rise
to other interesting nonlocal “Aharonov-Bohm”
type effects dependent on the Riemann tensor.?

I shall briefly consider an example of such a
class of gravitational fields which is exactly sol-
uble, and provides a gravitational analog of the
exterior electromagnetic field of a rotating
charged cylinder considered in the last section.
This is the exterior gravitational field of an infin-
ite rotating massive cylinder. Van Stockum® was
able to smoothly join the exterior metric for such
a cylinder, given by Lewis,* to an interior metric
for an infinite cylinder of rotating perfect dust.
(The latter solution had earlier been considered
by Lanczos® in a cosmological context.) Ehlers
and Kundt® noticed that the exterior metric could
be transformed to the Levi-Civita form of the
metric for a static cylindrically symmetric field.?
However, they did not note that the coordinate
transformation required could not be carried out
globally. Once this is realized, the result loses
its paradoxical character, and the field is seen to
provide just the desired gravitational analog.

The exterior field may be joined to a rigidly
rotating dust cylinder, as by van Stockum,* or to
differentially rotating cylinders of dust, as done
by Vishveshwara and Winicour,?? or it may be
matched to a rotating hollow cylindrical shell of
matter with flat interior, as will be shown else-
where. The latter example provides an analog to
the solenoidal Aharonov-Bohm example, with
charged solenoid. I shall not give details of any
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of the interior solutions, since the main interest
here lies in the exterior field.

Any (whole) cylindrically symmetric metric may
be put into the form?®®

ds?=exp[2(y — P)][(dx®)? - (dx*)?]

- exp[2(y+ p)](dx?)® - (x") exp(- 29)(dx®)?,
(3.20)

—0<x0<+00, O<xl<o, —w<x2<+o, 0<x3<27.
’ ’ ’

Here x° is a timelike coordinate, x' is the ana-
log of the cylindrical coordinate p,x? is the analog
of z, and x® the analog of ¢; all functions depend
only on x° and x*. If 7', +7°=0, and thus in vac-
uum, one may show? that x'exp(u) obeys the two-
dimensional wave equation. If the metric is to be
time (i.e., x°) independent, this requires that
exp(u)=A +B/x', where A and B are constants.
One may pick A =1 and B =0 for the exterior field,
as we shall do. (But it should be noted that this
choice is not necessarily the best one for the ex-
terior field when it is to be joined to an interior
solution.) With this simplification (u = 0), the
metric takes the form

ds?=exp[2(y = P)][(@x°)? - (dx")?]

— exp(29)(dx?)? - (x")? exp(- 2P)(dx®)?.
(3.21)

The static exterior solution is then given by
v=aln(x'/x,'), y=a?ln(x'/x,") +1Inb, (3.22)

where a, b, and x,' are constants. Consideration
of the behavior of a distant test particle or use of
the relativistic analog of Gauss’s theorem shows
that values of a between zero and one correspond
to a repulsive source.?* The values zero and one
for a correspond to flat space-times, but x% and
x° exchange roles in Eq. (3.21) if geo1—g. In
addition, the circumference of “circles” of con-
stant x! “radius” become infinite as x'—~ and ap-
proach zero as x'~0, only if a< 1. So it seems
necessary to restrict g to values <1 for the posi-
tive-mass solutions. In this case, the norm of the
Killing vector approaches zero as x'—0; and (un-
less a=0 or 1) the curvature invariants have a
singularity as x'—~ 0 which goes as (¥!)"2"0* (Ref.
24). So this limit represents some sort of im-
proper null horizon. The metric in the given co-
ordinate system thus covers a manifold homeo-
morphic to the product of R®* minus a line times
R'. The first Betti number of this manifold is one,
since closed curves encircling the missing line
cannot be continuously shrunk to a point. The
Killing vector &, given in this coordinate system
by & =56,*, corresponds to an exact one-form V,

with components V, = éu", for this globally static
metric. But it may be made to correspond to a
closed one-form with arbitrary period. Formally,
this may be effected by a coordinate transforma-
tion,

%% =x°~cx®, c=const, (3.23)

which introduces a cross term g,, into the metric,
and makes V,,=6,.°+c6,,°. But, because of the
periodic nature of x°, this is not a proper coordi-
nate transformation on the entire manifold. The
resulting family of stationary metrics must there-
fore be regarded as locally equivalent to the static
metric, but globally distinct for each value of c.
Matching to various interior solutions would en-
able the connection between ¢ and the rotation of
the source to be established, but I shall not enter
into this question here.® In the gravitational case,
however, in contrast to the electromagnetic, one
may simple extend the field as far as the curva-
ture singularity when x'— 0, beyond which it is
inextensible.

Assuming that a rotating interior source is used,
a classical optical experiment performed entirely
in the region outside the cylinder will enable the
state of rotation of the cylinder to be investigated.
If a coherent light beam is divided into two parts,
each of which is passed around an opposite side
of the cylinder, and they are then reunited and
allowed to interfere, the theorem about the eikonal
function proved above shows that there will be a
phase shift proportional to the period of V, allow-
ing the rotation of the cylinder to be verified with-
out the light beam having entered the region of the
cylinder.

The treatment of electromagnetic fields in Sec.
II may be combined with the treatment of gravi-
tational fields in this section to obtain combined
electrogravitational Aharonov-Bohm effects. The
electromagnetic field may be treated as an inde-
pendent field on a given background (nonflat) sta-
tionary space-time, or the combined Einstein-
Maxwell field equations may be considered. This
generalization is so obvious that I shall not bother
to give details. The more interesting possibility
of pentadimensional generalizations of these re-
sults, for some form of Kaluza-Klein unified gra-
vitational and electromagnetic theory, will be
discussed elsewhere®; as will be generalizations
of the approach followed here to space-times with
higher nonvanishing Betti numbers.

Finally, it is clear that this approach could be
used to generate a one-parameter family of so-
lutions from the static exterior metric of a toroid
of matter, for example. This shows that the ques-
tion raised by Marder,'®
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“Can two physically admissible solutions for sys-
tems of finite sources be such that the empty re-
gions of the two space-times are homeomorphic
and locally isometric, yet correspond to distinct
gravitational fields? If they can, then the metri-
cal properties of an exterior solution for a physi-
cally sensible system will not in general be suf-
ficient to determine the gravitational field”

has an affirmative answer.
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APPENDIX

I shall briefly sketch the way a classical charged
(complex) scalar field could be used to verify the
existence of the Aharonov-Bohm effect. The La-
grangian for such a field ¢, interacting with the
electromagnetic field, is uniquely determined by
the requirements of linearity of the free-field
equation and invariance of the Lagrangian under
gauge transformations of the second kind ¢
-~ ¢ exp(—ieX) when the electromagnetic potentials
A undergo the gauge transformation 4, ~A +98 X
(minimal coupling).?” ¥ one inserts the decompo-
sition ¢ =¢,exp(iS) into this Lagrangian, where

S is the phase of a wave solution, then S trans-
forms by S— S — eX under a gauge transformation.
In a region where the electromagnetic fields are
time independent and the magnetic field vanishes,
curl A = =0, and we may always write A

= V[f A(x') dx'], where the integral is taken
over any path lying in the region. Let S, be a solu-
tion for the phase function in the presence of an
electrostatic potential but no vector potential A.
Then in the presence of a vector potential with
vanishing curl the corresponding solution is S=S,

- ef X A(x )*dX'. The phase change correspondmg
to a closed curve in the region in question is then
AS= ¢ ng(x )*dX. Aninterference experiment
using this field would then yield evidence for the
Aharonov-Bohm effect.

In the eikonal approximation, S obeys the rela-
tivistic Hamilton-Jacobi equation.?® Since this
would be true for fields of arbitrary spin, similar
results should be expected for any such classical
field.

On the question of whether such a classical limit
for charged boson fields obeying the Klein-Gordon
equation exists, so that such interference experi-
ments might in principle actually be performed,
or whether such interference experiments are
forbidden by the charge superselection rule, see
the paper by Aharonov and Susskind®® and the com-
ments by Kalckar.*
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