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Anisotropic fluid spheres in general relativity
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We present various analytic solutions for anisotropic fluid spheres in general relativity.
First we consider generalizations of the I' =ap solution to the case where pressure is an-

isotropic, and study the effects of anisotropy on the structure of neutron stars. Next we
study radiating anisotropic fluid spheres and present three classes of analytic solutions.
We also study slowly rotating anisotropic fluid spheres and present two analytic solutions
corresponding to the nonradiating case. One of these solutions corresponds to uniform
rotation, while the other corresponds to differential rotation. We also present differential
equations to be solved for slowly rotating and radiating anisotropic Quid spheres.

I. INTRODUCTION

In some of my previous papers I have discussed
spherically symmetric fluid spheres with isotropic
pressure and constructed several analytic solu-

tions, ' which could be used to represent some of
the compact objects observed in nature. However,
recent theoretical works on more realistic equations
of state and stellar models indicate that some of
these objects could have anisotropic pressure, at
least in portions of them. The purpose of this pa-

per is to discuss the mathematical structure of the
field equations and to present various analytic„an-
isotropic stellar models. In Sec. II, we will study
static anisotropic Quid spheres, which were also
studied by Cosenza eI; al. and by Bowers and
Liang. In particular, we will discuss generaliza-
tions of the solution for I' =up to the case where
pressure is anisotropic, and study the effects of an-

isotropy on the neutron-star mass limit and struc-
ture. In Sec. III, we will consider radiating aniso-
tropic fluid spheres and present several classes of
analytic solutions. In Sec. IV, we will discuss
slowly rotating anisotropic fluid spheres with and
without radiation. %e will present two solutions
for the nonradiating case, where one of them corre-
sponds to uniform rotation, while the other corre-
sponds to differential rotation. Boundary condi-
tions will be discussed in Sec. V, and finally Sec.
VI will be the conclusion.

Anisotropy could be introduced by the existence
of a solid core, by the presence of type-P super-
fluid, by the complexity of the interactions, or by
the existence of an external field. ' Actually, re-
cently it has been suggested that cooling of neutron
stars might be accompanied by a phase transition

from one anisotropic superfluid to another with

significantly different properties. Such phase tran-
sitions might have significant influence on the evo-
lution of the star.

Besides these, the energy-momentum tensor for
anisotropic Auids could also be obtained when the
fluid is composed of two perfect fluids, with the
following energy-momentum tensor:

T""=(P)+pl)U"U Ptg""—
+(P, +p, )Wt'W' P,gt", —

where

This tensor can be cast into the standard form for
anisotropic fluids by the following transforma-
tions':

' 1/2
~~+p2U~ U*~=cos~v~+ since 8'",
~i+pi

(1.2)
' 1/2

~i+pi
sinu UI'+ cosu 8'I' .

~2+p2

Notice that (1.2} leaves the quadratic form

(P)+p))U&U +(P2+p2}W&W"

invariant. Thus,

T""(U,W) =T""(U*,W*} .

Now we shall rotate U and 8'such that one be-

comes timelike, while the other is spacelike. This
implies
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From (1.3) and (1.2) we obtain

[ Pi+pi P2+p2 ]'", „tan 2a =
Pi+pi —P2 —p2

(1.4)

Thus U& is a timelike vector and 8'& is a spacelike
vector. Now we define the following quantities:

0.=T""XX„p v

=(Pi+P2) —(P2+p2)W~ W'

m=P1+P2 .

Thus the energy-momentum tensor can now be
given as

T""=(p+ n ) V"V" erg"—"+(cr m)X—&X",

(1.8)

V~= U~il'/(UgaU' )'n

X&= W~&/( —W"W')'",
p=T" VpV„

=(Pi+pi)U~ U~ —(Pi+P2),

(1.5)

(1.6) where

V~V„=1=—X~X„, X~V =O.

A direct computation shows that

(1.10)

P g (pi Pi +p2 P2)+ i I(P1+pl+P2+p2) +4(Pi+pi)(P2+p2)[(U WiIt) I]]
0 = ——,(pi —Pi+p2 P2)+ —,—[(Pi+p, —P, —p, ) +4( U„W )'(P, +p, )(P, +p, )] (1.12)

In comoving coordinates we may choose

V'= V = V =0, V Vii ——1,
and

X =X =X =0, X'Xi ———1 .

Thus the components of (1.10) become

TO —Pp T1 — 0 p T2 —T3 — 7T ~
0 1 2 3

(1.13)

(1.14)

T""=(Pi+P2+pi+p2) U"U" (Pi+P2)g"—",
(1.15)

which is the energy-momentum tensor for a perfect
fluid. However, in some cases the two perfect
fluids in (1.1) could be decoupled from each other
or at least could be weakly interacting. In that
case reaching equilibrium might take a significant-
ly long time to make anisotropic pressure impor-
tant in the evolution of the object. Such a case
could actually be realized in neutron stars. It is

Hence, 0 is the pressure along the radial direction,
while a is the tangentia1 pressure on the
r=constant surface. The energy-momentum tensor
given in (1.10) is the standard form for anisotropic
fluids.

In general, a fluid with two perfect fiuid com-

ponents, with the energy-momentum tensor given
in (1.1), is expected to reach equilibrium through
dissipative mechanisms. In that case U"—+ 8'" and
Tl'" becomes

U"8' =1+—.a (1.16)

In this picture we let U& represent the four-
velocity of neutrons while W& represents that of
the protons and electrons. We also choose our
coordinates such that we are comoving with the
neutrons. Thus,

UO U1 U2 U3 0
(g00)1/2 '

also let W =W =0. (1.17)

From U"Uz
——1, W"W& ——1, and (1.16) we can ob-

tain

0 1+
4 00 1/2

(g )

(Wi)2

With these we get

a
16g 11

I

well known that it is not possible to have pure neu-
tron star, since neutrons are unstable against P de-

cay. Hence, in order to stabilize neutrons, neutron
matter should be contaminated with sufficient pro-
toris and electrons (sometimes with hyperons and
heavy mesons). The partial density of protons and
electrons obviously depends on the density of the
neutrons. For example, when the neutron density
is 10' g/cc, the partial density of protons and
electrons must become 10' g/cc. '

Let us take the two fliuds in (1.1) such that they
have differing four-velocities, so that we may write
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T

(Pi+pi)(Pi+pal)=P j +P2+ —+
2 16 (Pi +Pi+pi+pal )

(1.19)

II. STATIC ANISOTROPIC FLUIDS

Let us consider a static distribution of matter,
which is spherically symmetric with the metric

ds =A (r)dt 8(—r)dr

Pg ——m. =P) +P2,

a a (Pi +p i )(P2+p2)

2 16 (P + P +p&+p&)

(1.20)
—r d8 —r sin Odg

The corresponding field equations are

1 2A' 1 1—SaT) —— — +-
B2 Ar r2 r2

(2.1)

(2.2)

where we have assumed

a (Pi+pi)(Pg+p~)
2Q +

4 (Pi+Pi, +pi+pi)'

(1.21)

(1.22)

—Sm T2 ———SmT32= 3

1 A" A'B' 1 A' B'
A AB r A B

(2.3)

We take P =p as roughly the equation of state for
both gases, for the typical densities expected in

neutron stars. We also take pi —10' g/cc for neu-

trons and pz-10' g/cc for protons and elec-
trons. ' With these values we obtain -0.02 for the
ratio

(Pi+pi)(Pp+pp)

(Pi+Pi+pal+pi)'

Also for P=p the
~ gii ~

component of the metric
is a constant and equal to + 2. (For the solution
see the next section. ) Thus, from (1.17)—(1.22) we

see that, in principle, a small amount of difference
in the radial velocities of the neutron and the
proton-electron components of the Quid could
cause a significant amount of anisotropy. Ex-
istence of such differences in the four-velocities is
probably normal during the early phases of the for-
mation of neutron stars. However, whether this
difference will last long enough or not is subject to
further research, which is beyond the scope of this

paper. This point seems promising in bringing fur-
ther explanation to the observed properties of pul-
sars such as glitches. Anisotropic pressure due to
two perfect fluids, which are weakly interacting, is
also an interesting problem in cosmology. Aniso-
tropic fluid energy-momentum tensor (1.10) does
also appear in relation to string fluids, which are
easier to realize in cosmology. '

From the above discussion we easily see that an-

isotropic fluid spheres could have a wide range of
applications in nature. Besides, the presence of an
additional degree of freedom makes it easier to ob-
tain analytic solutions by mathematical means.

T p 1 2B'
B2 Br

1 1+r2 r 2
(2.4)

For anisotropic fluids the energy-momentum ten-
sor is given by (1.10), and in comoving coordinates
its components are

Tp =p, —T1 Pr~ T2 ——T3 ——
. —Pg .2 — 3=

(2.5)

A" A' 1 2A'f +f
Ar r2 Ar B+

1

A+r

B

fr
A' 1

A r

(2.6)

For isotropic fluids P„=Pi P, and one ——has to
supply an equation of state to the above set of cou-

pled differential equations. However, to obtain an-

alytic solutions one usually assumes a relation be-
tween A,B,r, and their derivatives such that the
above system is integrable"; of course at the end

one has to check this solution for physical reason-
ableness. For anisotropic fluid spheres we need

two relations to be supplemented to the set
(2.2)—(2.4). These relations may be taken as

p=p(P„,Pj) and P„=f(r)Pj, where f(r) is a mea-
sure of the anisotropy.

These two relations may in principle come from
statistical physics. However, to obtain analytic
solutions this way would almost be impossible. On
the other hand, the necessity of two relations
makes. , it easier to obtain analytic solutions for an-

isotropic fluids. Using P, =f(r)Pj and Eqs. (2.2)
and (2.3) we obtain
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(2.7)

As seen, instead of A and f we could actually guess
both of the metric coefficients. Thus any metric
given as in (2.1) is a solution to the Einstein field
equations for an anisotropic fluid energy-
momentum tensor, where the amount of anisotropy
is given by (2.7).

In order to study the effects of anisotropy we
may take A (r) from one of the isotropic solutions
and introduce a certain amount of anisotropy
through f(r) and find 8 from (2.6). Later we
check this model for physical reasonableness. To
elucidate the role of anisotropy on neutron-star
mass limit calculations we will consider the gen-
eralizations of the isotropic solution corresponding
to the isothermal equation of state given as P =ap.
The solution of the field equations is now given as'

aP(r}=
2mDr

(2.8)

For a given A (r) and f(r) this is a Bernoulli equa-
tion, which could be reduced to quadratures im-
mediately. Notice that (2.6) can be solved for f(r)
giving

B B 2A'B
r2 r2 Ar

A' 1 A" A'

A r A Ar
+——B

case. This model still does not have a finite ra-
dius, also f(r) is equal to a constant given as

f(r) =
Bp — 1+ Bp3 4a

a+1
4a

Bp(a+1)'

(2.13)

When we evaluate the core mass we find it to be

1 1
mc

2 (Sop )'

1
X 1—

(a'+ 6a+ 1)/(1+a)'+g()

' 3/2

8m'ap
=1— r"+

(n+3)
A =C,r'a"a+"

(2.15)

(2.16)

Note that 3 is the same as given in (2.10). For
this solution, pressure and density distributions are
given as

(2.14)

where p, is the density at the boundary of the core.
For various values of gp we obtain the following
core masses given in Table I.

Next we consider the following anisotropic solu-
tion:

p(r) =
2mDr

/1(r) C r2a/(a+()

B (r)=
(1+a)

(2.9)

(2.10)

(2.11)

Sea()(5a+ 1)
8m.P, = r(a+1) r (n+3)(a+1)

4a 1
8mP

(a+1) r'

(2.17)

where C~ is an integration constant and
D =(1+a}+4a. This equation of state, even
though it does not yield a solution with finite ra-
dius, is important in neutron-star mass limit calcu-
lations, since it corresponds to the asymptotic form
of the equation of state at high densities. ' Since
P(r) does not vanish at finite radius the solution
should be connected to an envelope over which
pressure drops to zero.

In order to study the effect of anisotropy we
take A (r) to be the same as given in (2.10) and
take 8 (r) to be a constant different from (2.11),
such as

4map

2
(14a +3na +4na

(n +3)(a+1)

+8a+n +2)r", (2.18)

p=apr", (2.19)

where ap, a, n are constants. For monotonic de-

go
3

TABLE I. Core masses, where go ——0 corresponds to
the mass with isotropic pressure, a=1, p, =5)&10'
g/cc, and D/(1+a) =2.

B =Bp —— (2.12)

where gp is the difference in B from the isotropic
0.8 1.3 1.5

Nl /NgO

1.7 1.8 2.3
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4a(n +3) 1

8n(5a+I) R"+ (2.20)

creasing pressure and density we require n &0, also
for positive mass we need n & —3. This solution
reduces to the isotropic case for n = —2 and

ao =a/2nD. Even though the pressure diverges at
the origin the fluid sphere has a finite radius given

by

compact than the Schwarzschild interior solution
and hence allows one to put more mass in a given
region in space. It also allows us to explain red-
shifts larger than 2.'

For stability against radial oscillations we may
require

dP, 00.
dp

We evaluate the mass from

M=4m f pr dr,

which gives

(2.21)

Then, we obtain

/n //(2 —/n
/

)

(n+3) fn f
M

4a 2 R

M= P Rn+34nap

(n+3)
(2.22)

Using (2.20) we obtain the following mass-radius
relation:

For the sake of completeness we will conclude
this section with a mathematical property of anis-
tropic fluid spheres. Notice that we can write (2.6)
as

2a
5a+ 1

(2.23)
f C+—B'=fBC'+ f C +—B——,1, , 2 C B

r r r

As seen the largest possible value for M/R is 0.40,
which is less compact then the Schwarzschild solu-

tion which gives 0.44. '

In order to obtain a larger M/R value we try

2CB B+
r r

where C =A'/A. This can also be written as

(2.31)

A (r)=C2r (2.24)

Snap
8mP„= — . (2m + 1)r",

r2 (n+3)

m 2 4nap
SnPi ——

r' (n+3)

(2.25)

with the same B as given in (2.15). This solution
has the following pressure and density distribu-

tions:

f C+—dB (fB)dC ——fB C +-
r r

2CB B+ dr =0,d 0,

(2.32)

which is a Pfaffian differential equation in three
dimensions, in general given as

np=apr
X [2m +(n +2)(m +1)]r", (2.26)

(2.27)
F, (B,C, r)dB+F2(B,C, r)dC+Fi(B, C, r)dr =0 .

' 1/(n+2)
2m (n +3)

8mao(2m + 1)
(2.28)

The mass of the fiuid is given as

where C2,ap, n,m are constants. Again the pressure
and density diverge at the origin but they are both
monotonic decreasing functions of r, while the ra-
dius is

(2.33)

Solution of this equation is a surface in B,C, r
space, and once such a surface is found then we

know that any curve on that surface, which could
be given as B=B(r) and C =C(r), will also be a
solution to the field equations. Existence of such a
surface has a necessary and sufficient condition of
the form

or

M=
4n-ao

R 3+8
(n+3)

(2.29)
x aux=0,

where X is the vector field defined as'

(2.34)

M m

R 2m+1
(2.30)

which gives 2M/R —+1 for large m. This is more

X=(Fi,F2,Fi) .

For our case Eq. (2.32) is integrable if f(r) satisfies
the following relation:
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1 1 —8f(r)=-
r 2C +C2p.

(2.35)
T"'=(l3+Pi »"U" P—ig"'

+(P, Pi—)X"7'+oW"W", (3 1)

Once such a solution to Eq. (2.32) is found for an

f(r) satisfying (2.35) it will amount to finding a
surface in the mathematical B,C, r space that will

contain all the solutions [with such f(r) of course]
to the field equations. We have mentioned that
such a surface does not exist for static isotropic
fluid spheres.

III. RADIATING ANISOTROPIC
FLUID SPHERES

For this case the energy-momentum tensor is
given as

where U"Uz ——1, XI'X& ———1, 8'I'8'& ——0, and
X&U& ——0. In comoving coordinates we take

U Uo-—-1, X'Xi ———1, W +0, W'+0,

and all the other components are zero. Thus the
components of T" become

T~' ———P„+cr8'j 8', T2 ——T3 — PJ
(3.2)

To ——p+o.S'oS" T)o 08 ) g o

The field equations are given as

Z~"——,g~ ~ = —8~T~,

, n p'+ p'}"~ p'+}"+ e r p p2 py

L

(3.3)

8~T,2=8~T,3= e
-P" +—&-" + P'+ &'

2 2 4 4 4 4 4 2r r 2r
~ 0

+.— —+ p+ "+p'+'p-"- p'
2 2 4 4 4 4 4

(3.4)

8~To = —e P"+ P' — —+ ——+—+ +e ' +o „3,2 a'P' 3P' a' 1 e P aP P
4 2 r y

(3.5)

8n Ti ———e r p' — +(p—a) +(p—a)—o , p}"
2 2

(3.6)

where the metric is

ds = edr re~(d8 +—sin ad—g )+et/dt

From (3.2) —(3.7) we obtain the physical variables in terms of the metric coefficients:

Pj ———T2 ———T3, P, = —T) '+e' '
T&

T Q+T i+P —(3 —y)/2(W1) —2Z 0

Now the analogous equation to (2.25) in Bayin becomes

OT 2 ~r—~~~2T o
]

where

(3.7)

(3.8)

(3.9)

(3.10)

P„(r,t) =8(r, t)P, (r, t) .

We make the following substitutions for the metric coefficients:

e =h(r) m(t), e~=l(r) m(t), er=f(r) g(t), 6)n(r) (tk) .

With these (3.10) becomes

(3.11)
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P

1 I' 21'f' 2l' 2f' 1 I" f" h'I' I'f' h'f' h' 21' f' 1

h 2 12 If Ir fr r2 I f hl lf hf hr lr fr 12r2

This could be written as

2m +
m m2

2mg

mg

n m'k m' 2mf'
(3 12)f' g' f'g' f'hg

-nk —+—+- h'= h + + +-- +—-nk —+
f' 1, I'2 21'f' 21' 2f' 1 I" f" I'f' 21' f'

I f r I~ lf Ir fr r I f If Ir fr
h

j'2r 2

2m m 2mg+ + 2m m mg

m nk 1 3 2mf'h
h +

g2 f2 f2 f2g
(3.13)

For isotropic radiating fiuid spheres we have seen that to solve (3.13) we need two auxiliary relations, one
of which corresponds to an equation of state and the other one corresponds to the law of energy genera-
tion. ' However, to obtain analytic solutions we assumed two relations between the metric coefficients such
that the above system is integrable and later we evaluated the physical parameters and checked the model
for physical reasonableness. We also mentioned that if we assume

I' f' 1 Co—+—+—=0, which means I =
I r r

(3.14)

we can express h (r) immediately in terms of 1(r) without a quadrature. ' Now again for anisotropic fluids
if we assume (3.14) we can solve for h (r) immediately as follows:

1 I'2 21'f' 2l' 2f' 1
k

I" f" I'f' 21' f' 1

lf lr fr r2 I f If lr fr I r

2m m 2mg
m m mg

m

g
2

nk 1 2m f'
f2 f2 g f2h

For anisotropic radiating fluids we have e, e~, er, I'„, Pq, p, and tr as our unknowns and we have four
equations (3.3)—(3.6) to be solved simultaneously. Hence, we need three more relations to be supplied. One
of these we take to be Eq. (3.14). Now we have the following possibilities.

Case I. Solution I. For this case we let k(t) =1. Thus, even though the model is time dependent and ra-
diating, anisotropy does not change with time. Now, the left-hand side of (3.15) is entirely a function of r.
Hence, for (3.15) to be meaningful the right-hand side should be separable in r and t. This can be achieved
if we assume

I

n=l+ —.
h

Now the equations become

Sof' I'2 21'f' 2l' 2f' 1 I" f" I'f' 2l' f'

(3.16)

(3.17)

and

m m img+
m m mg

m 2mg+g'' (3.lv,

where So is a separation constant. So far we have assumed (3.14) and (3.16), for our third assumption we
would take f(r). Actually we could express the remaining variables in terms of f(r) without quadratures as

- follows:

h( )=—,. + So' — '(n+1)1 So 1 2 4
f' 2(n +1) 2(n +1)

1/2 '

(3.19)
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(3.20)

and

2fl2 C 2fl f4 iI&

n (f)=1— (4—4Sp)+ f'i(4 —4Sp)~ —128
8f 8f C

(3.21)

Time dependence of the metric will come from (3.18), which has to be solved such that the radius of the
star is independent of time. This is so since we are using comoving coordinates. From the boundary condi-
tion we require P,(R, t) =0 Usi.ng P„(r,t) =n (r)k(t)P&(r, t}, we see that if we do not require Pz to simul-
taneously vanish at the surface with P„, then n (R)=0 defines the radius of the star and the time dependence
of the metric comes from the solution of (3.18) with an additional equation supplied. However, if we also
require Pz(R, t) =0, then from the field equations which give Pz as

1 I" f" h'I' I'f' h'f' h' 2l' f' 1 2m m 2m g
I f hl lf hf hr lr fr g rn m m g

(3.22)

we sm that we can have a radius which is independent of time if
T

m 2m m 2m g+ p
g m m m g

where Cp is a constant. Remember that m and g also have to satisfy (3.18}. However, even though these
two equations determine Cp as

(3.23)

Cp =Sp +2+2QSp + 1

m =Spg .

This automatically satisfies (3.23) so the boundary conditions do not put any restriction on m or g. This is
contrary to the previous opinion. ' '

Case I. Solution II. The next solution we would obtain consistent with the k(t) =1 case is with the fol-
lowing relation:

they do not determine m or g, so we will still need an additional assumption on the time dependence of the
metric. Note that for isotropic radiating fluid spheres m and g have to satisfy

2m m 2mg
'm mg

m

g
2

2m
(3.24)

This allows us to separate (3.1S) as

1 I' 2l'f' 2l' 2f' 1 I" f" I'f' 2l' f'
lf lr fr r I f If lr fr I r~

f(n —1) + Sp, (3.25)
fr fzh

2m m 2mg+
m m mg

2m
p &

g g
' (3.26)

where again Sp is a separation constant. Solution of (3.26) gives

4 m
1 ———0

Sp m
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This fixes the value of the separation constant So as 4. From (3.25) and (3.14) we can obtain h as a function
of fandnas

and

&2 &2 t2 2 1
4 + 4 +4 (n+1) +4(1—n)f2 — f2 f2 C 2 f2

2 +4(1 n)—f 1

2 f2

Col=

1/2

(3.27)

(3.28)

So far the only assumption we have made on the r-dependent part of the metric is (3.14). Thus, f and n are
left arbitrary in the solution.

Time dependence of the metric will come from

2mlg =4 (3.29)

with an additional relation. Note that if we require P„(R,t) =PL(R, t) =0, then Co in (3.23) is determined as
4

Case II. In this case we allow the anisotropy to evolve with time, so that k =k(t). Now Eq. (3.15) can
be rearranged to give

1 1'2 21'f' 21' 2f' 1 1 n 1" f" 1'f' 2l' f'
lf 1» fr r' 1'»' h' 1 f lf 1» fr

2m m 2mg m

-g g'

J

nk 1 2m f'
f2 f2

J

(3.30)

We can arrange the separability of this equation by
assuming

where So is a separation constant. We could ob-
tain k, 1, and n in terms off as

and

2m m mg
mm2mg (3.31) SoCo'f'+f'Co(So'Co 4f')'"—

h(r)=
4

(3.35)
n 1" f" 1'f' 21' f' f'

1 f lf lr fr f h l(r) = Cp
(3.36)

With these Eq. (3.30) becomes

(3.32)
SoCo +Co(So C—o 4f )»—

n(r)=
4

(3.37)

f h
k + . (3.33)

g

21'f' 21' 2f' 1 1

lf lr fr r 1 r
J

and

k(t) =So 2m

g
(3.38)

Thus

k+ =Sp2m
(3.34)

where m (t) and g (t) should come from an addi-
tional assumed relation, which is simultaneously
solved with

which gives the time dependence of the anisotropy,
2m m 2mg+

m mg
(3.39)
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IV. SLOWLY ROT+TING ANISOTROPIC
FLUID SPHERES WITH

AND WITHOUT RADIATION

It is well known that the metric for slowly rotat-
ing fiuid spheres could be given as '

We take the energy-momentum tensor to be the an-
isotropic fluid energy-momentum tensor plus the
energy-momentum tensor for a radially expanding
null fiuid, which could be either for photons. or
neutrinos. Hence,

T""=(p+Pi )Ul'U" Pig—""
ds2= f(r)2g(t) dt h(r)—m(t) dr +(P„Pg )X—"X"+o W"W", (4.5)

l(r—) m(t) (r d8 +r sin 8dg )

+21(r)2m(t) Q(r, t)r sin 8dgdt . (4.1)

Here we took the metric separable for the sake of
simplicity. To first order in 0(r, t) only the fol-
lowing components of the Ricci tensor are nonzero:

where

UI'U~ ——1, XI'Xp ———1, 7"Up ——0, W"Wq ——0.
We choose

Uo~O, U'=U'=O, U'=

R2 =R3 & Rp & Rj & Rp andRj

(4.2)

where to=dgldt,

X'=X'=X'=O, X'~O

and
The first four components to the order we are con-

sidering do not involve 0(r, t), and their solution

gives g,"k ', where
w'=, w'~o, w'=

fg' '
fg

' (4.6}

gr'k=ggk +&g .(p)
and o represents the radiation density. With these
(4.3) becomes

This determines the pressure and the density distri-
butions, which are not perturbed to first order in
Q. ' The remaining field equations which are
solved for 0, which represents the dragging of
inertial frames, are given as

Ro3 —— Sn[(p+—Pi)l m r sin 8(0 t0)—
+ , 1 m r sin 8—0(P, p)—
+cr Wo W3] (4.7)

1

Ro3= — ( o3
—igo3T)

R j3 =—SmTj3

(4 3)

(4.4)
I

Rj3 ——0,
where Rp3 and Rj3 are

(4.8)

P

f'l'Ir 41'lr 1' r f7 r I h'l'Ir
Rp3 ———sin 8

fh h h fh2 h h3

h'1 r ll"r l mmgr 2l m r l mmr

h 3 h 2 f2g3 f2g2 f2g2

h'1 r 1 f'1 r 2ll'r2 2l r, 1 I r
2 fh2

(4.9)

m 2l2r2
Rj3————,sin 8 f'g'

0' —+ +0'
m g

(4.10}

Finally the field equations to be solved for Q(r, t)
can be given as

0-+ ——--'+ +- 04l' 4
h f l r

I

and

n' —g +~=0.3m

g
(4.12)

=16irh m (p+Pi+tr)(0 —t0) (4. 11) As seen, (4.12) will give the time-dependent part of
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Q(r, t) while (4.11}will determine the radial depen-
dent part. Equation (4.12}can be solved immedi-

ately to give

For uniform rotation we take co(r) =coo (constant)
and the solution of (4.21) becomes

Q(r, t) =C(r) g(t)
m (t)

(4.13)
Q(r) =coo+ —

k
r ' +C, , (4.22)

1 ~0 A) —1

rk (1—A))

When (4.13) is substituted into (4.11) it will give a
differential equation to be solved for C(r) for a
given rotation function co(r).

For nonradiating and stationary solutions (4.12)
is satisfiei identically while (4.11) reduces to

where

a+3
k

a go

a+ I a+1 4
=0 (4.23)

Q"(r)+ ————+ +—Q'(r)
h' f' 4l' 4
h f l r

=16nh (p+Pj )[Q(r)—co(r)], (4.14)

and

For

A) ——2k — @1 .2

1+a (4.24)

where we have set m =g =1, o.=0. Now we will
consider the solution of (4.14) for the anisotropic
solution given in Sec. II as

A, =l, Q(r)=coo+ —(Colnr+C~),
1

A=Cr '+" (4.15) where k = —,+1/(1+a), and

B =Bp, (4.16) a ( —,—2go)+a( —, +4go)+( —,+2go) =0 .

1 1
Sap= —1—

r Bo
(4.17) Finally, we will present a solution to (4.21) corre-

sponding to differential rotation as

1 4a 1
SmI'j ——

80 (a+1) r
(4.18) Q(r) =C

&
r'+ C2r'+ '+ e"r',

where

(4.25)

1 Sa+1
a+1 (4.19}

1 a go
to(r) =— -+

8 a+1 4
e fr+ +2 (4.26)

Equation (4.14) in Schwarzschild canonical coordi-
nate would be given as and a =(—2a —4)/(2a +2) so for a & 0 we need

—2&a & —1, and

Q'(r)+ —,Q"(r)1 B'
r 48 4A

=4n8(p+Pz )[Q(r') —co(r)], (4.20)
go ——4 a(a+1)+ Sa

a+1

where the metric is given as in (2.1). For the
above solution (4.20) becomes V. BOUNDARY CONDITIONS

2gtt 4+2a gt 8
a g0

1+a a+1 4

co(r) . (4.21)a+1

We have discussed the boundary conditions
relevant to each section in my previous papers in
detail. ' However, for the sake of completeness
we will give the exterior metrics for each case we
discussed. The boundary of the star is defined by
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s = 1
2M

gt
2M

dT —T d8

P„(R,t) =0, and as we have mentioned because we
are in comoving coordinates, 8 should be indepen-
dent of time. At the boundary, static anisotropic
fluid spheres have to be matched with the
Schwarzschild exterior solution, which is given as

ds = 1—,dg —2 dgdT'
T' T'

1+, dr' —r' (d8~+sin 8dg ),2M
T

(5.2)
where r )R. Of course we have to make a change
in the radial marker of our metric (3.7) to put it
into the same form with (5.2) as~

r'=l(r)m (t)r . (5.3)

—r sin 8d(I) (5.1)

where T &R. Metrics corresponding to the radiat-

ing anisotropic fluid spheres have to be matched
with Vaidya's ' radiating solution, which is given
as

In this metric M is a function of the retarded time
t —T'.

For slowly rotating and radiating anisotropic
fluid spheres the exterior solution is simply the
solution given by Murenbeeld and Trollope '
which is

T" 2m 4m
dt +2drdf ++ 1—

4m 2a2 a —2 4m 2

—dr —1+
T

T 2m1—
4m T

2m +1 rd8 r—sin 8d—g +2sin~8ydgdt, (5.4)

where a is a constant, m is a function of retarded
time t —T, and y is an integrating factor obtained
from,

y(r, t)dt = dt
T

2ma +a dr.
T (5.5)

Again the interior metric we have (4.1) can be put
into the form (5.4) most easily by the transforma-
tion

r =I (r)m (t)r . (5.6)

Finally, for the slowly rotating stationary aniso-
tropic fluids the exterior metric is the Kerr metric
to first order in angular velocity, which is given as

r 4

ds = 1+—(dr +r d8 +r sin 8dg )
2T

(r —m/2) z 4ma sin 8
2dt + ~d dt.

(r+m/2) r(1+m/2r)~

(5.7)

VI. CONCLUSIONS

We have discussed that anisotropy in stars could
appear in a number of ways. One of these is the

possibility of a star being composed of two perfect
fluids, with the energy-momentum tensor given as
in (1.1). We have said that such a case could actu-
ally be realized in neutron stars. Also, with small
differences in the radial component of the veloci-
ties we could in principle introduce a significant
amount of anisotropy.

In Sec. II we considered various generalizations
of the P =ap solution to the anisotropic case. For
the models we have discussed a small amount of
anisotropy affects the mass by a small amount.
We have also shown that through anisotropy we
could approach the 2M/R ~1 limit as much as we
want. This implies that surface red-shift could be
as large as possible. We have also seen that the
core mass for one of the solutions we have con-
sidered could be increased roughly by 300% with
respect to the isotropic case, if we allow large
amounts of anisotropy.

It seems that there is quite a lot to be done on
anisotropic fluid spheres in general relativity.
Even though it seems possible to affect the mass
limit and the surface red-shift significantly
through anisotropy, first is has to be established
physically how much anisotropy we could generate
in neutron stars and how long this anisotropy
would last. Also stability is another problem that
should be investigated in detail. The models we
considered correspond to equilibrium.
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In the next section we considered radiating an-

isotropic fluid spheres and constructed several
classes of analytic solutions. We would like to
point out that these solutions are obtained through
mathematical assumptions, which do not have any
a priori physical basis. They just allow us to solve
the differential equations. At the end one has to
check the physical parameters for physical reason-
ableness. We also considered slowly rotating aniso-
tropic fluid spheres and gave two analytic solutions
for the nonradiating, stationary case. One of these

solutions corresponds to unit'orm rotation while the
other corresponds to differential rotation. We have
also given the differential equations to be solved
for slowly rotating and radiating anisotropic fluid
spheres.
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