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Gravitational effects upon cosmological phase transitions
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The effects of spacetime curvature upon phase transitions in an expanding universe are
investigated. We consider a Robertson-Walker model which is a radiation-dominated
universe at early times and becomes de Sitter space at later times. In this universe the
stability of a field theory containing a pair of interacting scalar fields is studied in first-
order perturbation theory. It is noted that the crucial quantity in the stability analysis is

(P ), where P is a free scalar field. The behavior of (Pt) as a function of time is inves-

tigated, where both thermal and vacuum contributions are taken into account. It is
shown that this behavior can be strongly affected by the coupling to the background grav-
itational field. Such coupling can cause (P ) to decrease more slowly or even grow as
the universe expands. This behavior can alter the evolution of the system and can result
in either stabilization of an otherwise unstable field configuration or destabilization of an
otherwise stable configuration.

I. INTRODUCTION

If one combines the standard hot big-bang
theory of the origin of the Universe with gauge
theories of elementary-particle interactions, one is
led to the conclusion that the Universe has under-

gone a number of phase transitions in its earlier
history. ' Recently, particular attention has been

given to grand unified models with Coleman-
Weinberg symmetry breaking in which strongly
first-order phase transitions occur. ' Such a tran-

sition can occur by quantum tunneling through a
barrier. Because the barrier penetration probability
can be small, it is possible for the Universe to
remain in a false vacuum state for some time after
the temperature has dropped below the critical
temperature T„resulting in supercooling.

The false vacuum state has a nonzero energy
density p„; when the temperature of the Universe
falls below some value 0, p, can become greater
than the thermal energy density and begin to dom-

inate the dynamics of the Universe. The Universe
then enters a phase of exponential expansion in

which the scale factor is approximately that of the
de Sitter metric, a (t) cc e ', where

H =(8rrGp„/3)'i

Guth has proposed an "inAationary" universe
model in which such exponential expansion is uti-
lized to resolve the long-standing horizon and flat-
ness problems of the standard big-bang cosmology;
it requires that the Universe supercool by at least
28 orders of magnitude. The main difficulty with

this model is that it is not easy to explain the ter-
mination of the de Sitter phase in a way which
leads to the observed homogeneity of the present
universe. (Some interesting recent suggestions can
be found in Refs. 6—8.)

In most work on cosmological phase transitions,
the coupling to the background gravitational field
is ignored. One deals with quantum field theory in
Aat spacetime at finite temperature, and the expan-
sion of the Universe serves only to decrease the
temperature. However, at sufficiently early times
the spacetime curvature can be expected to be im-
portant. The effects of spacetime structure upon a
field theory can arise both from the coupling to
the local curvature and from the global properties
of spacetime (such as the presence of horizons).
Abbott and Hut and Klinkhamer have argued
that such effects may be important in the context
of cosmological phase transitions in grand unified
models.

The purpose of this paper is to investigate and
illustrate gravitational effects in the context of a
particular field-theoretic model which consists of a
pair of interacting scalar fields. It is shown that
the spacetime curvature can drastically change the
behavior of the system and produce either stabili-
zation or destabilization of the false vacuum.
Some of these results have already been brieAy re-
ported in Ref. 10.

In Sec. II the field-theory model is discussed and
the analysis of stability to lowest order in perturba-
tion theory is outlined. The essential ingredient of
the stability analysis is (P ), the expectation value
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of the square of a free scalar field. In Sec. III, the
Einstein equations are solved for a universe con-
taining both radiation and the vacuum energy den-

sity p„, and the transition from a radiation-domin-
ated to a de Sitter universe is detailed. In Sec. IV,
((() ) in de Sitter spacetime is investigated for vari-
ous choices of the quantum state. In Sec. V, the
results of Sec. IV are applied to the study of phase
transitions in our field-theory model. Finally, in
Sec. VI the results of the paper are summarized
and discussed.

(CI+M )4(x)=0,

where

M (x)=my +gg+ ( Uyy)g, p .

(2.6)

(2.7)

In this paper we shall consider interactions of the
form

U(P g)
' 2P2y2+ '

g ye+ '
g q4 (2.8)

If U(()t), g) is invariant with respect to the transfor-
mation P—+ —P, then (Uy)y p=0 and Eq. (2.5)
takes the form

II. THE STABILITY CRITERION

Stability of a field theory in flat spacetime is
usually analyzed using an effective potential V(4)
calculated for a constant classical field (I). Here
we shall take a different approach which is more
suited for essentially nonstatic situations, such as
an expanding universe. The stability condition will

be deduced from the dynamical field equations for
the field operator (t). This approach is similar to
that of Refs. 11—13.

We consider a model of two interacting real
scalar fields P and P described by the Lagrangian

~(p) +~(p) (2.1)

where

, [~a„y) m&—y gg—y ], —
~(P) i

[(g y)2 2y2 gpy2]
(2.2)

where —U((I},g) is the interaction Lagrangian, R is
the scalar curvature, and g~, g~ are the conformal

coupling parameters. The Heisenberg field opera-
tor (() satisfies the equation

(0+m p +gg )P+ Up(P, f)=0, (2.3)

where U~ =(}U/(}P. To investigate the stability of
the symmetric phase, (P)=(g) =0, with respect
to the appearance of a nonzero expectation value

(()1)(x)) =4(x), we study the behavior of small per-
tubations of 4(x) near 4=0. Here and below the
angular brackets mean quantum statistical averag-

ing,

((I) ) =Tr(pg), (2.4)

where p is the density matrix. Taking the average
of Eq. (2.3) and linearizing in 4& we obtain

(CI+mp +gg}4(x}+.(Uj)g, p

+ ( U jp )g, p4(x) =0 . (2.5)

Then

(2.9)

U(P, f)= ,g (t) P— (2.10)

with g & 0, k & 0. A necessary condition that
higher-order terms in A, and g be negligible is that

g gyes, gag~. The interaction potential (2.10) does
not have a minimum but one can still investigate
the quasistability of the symmetric phase 4& =0.
(By quasistability we mean stability against small

perturbations, but not necessarily quantum barrier
penetration. ) To make a connection with more
realistic models, one can asume that Eq. (2.10) is

an approximation which breaks down for suffi-
ciently large values of 4. [We note that for small

4 the Coleman-Weinberg effective potential can be
approximated as V(C))=AT 4& B(T)4, wh—ere
T is the temperature and A,B~ 0. The interaction
(2.10) gives an effective potential of the same
form. ]

In flat spacetime the finite-temperature expecta-

where the averages are taken at 4=0. The sym-
metric phase is unstable if Eq. (2.6) has solutions
which grow in time and is stable otherwise. For a
constant M, Eq. (2.6) has growing solutions in de
Sitter spacetime if and only if M &0 (see Sec. IV).
For a time-dependent M the solutions are not
known in general. However, it seems reasonable to
assume that if, in the course of the system's evolu-

tion, M becomes sufficiently negative, an instabili-

ty will arise. Destabilization of field theories by
the effects of spacetime curvature and topology has
been discussed for static spacetimes in the papers
cited in Ref. 14 and for time-dependent situations
in Ref. 13.

We will discuss only-models for which it is suf-
ficient to calculate (P ) and ((b ) to the lowest or-
der in perturbation theory, that is, treating P and P
as free fields. For example, set m~ =m~ ——0 and
take
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tion values of P and f are"

T2
(y') =(y') = „,

and thus

M =—„(g —A)T2.

(2.11)

(2.12)

The symmetric phase is quasistable at all tempera-
tures if g )A, and is unstable if g & A,. Naively,
one would expect that the only difference in de
Sitter space is the presence of the curvature-
dependent term gg and thus the flat-spacetime
conclusions are unaltered for $4,=0.

However, it will be shown in Sec. IV that in de
Sitter space the evolution of (P ) and (P ) can be
very different from that described by Eq. (2.11); as
a result, the behavior of the system can strikingly
differ from that in flat spacetime.

III. SOLUTION OF EINSTEIN'S EQUATIONS

ds =dt a(t)d—x (3.1)

Let us consider a spatially flat Robertson-Walker
metric,

Robertson-Walker universe; the latter is that for de
Sitter spacetime. Thus Eq. (3.5) represents a
universe which makes a smooth transition between
the two regimes on a time scale of the order of
H —1 g —1/2

Note that Eq. (3.1) with a ~ e ' is a metric
which covers one-half of the full de Sitter space-
time. ' This is not relevant for our purposes. The
spacetime with which we are concerned is only lo-
cally de Sitter space and is entirely covered by the
metric of Eqs. (3.1) and (3.5).

In the de Sitter region we can take a (t) =e ' (a
constant rescaling of a is unimportant), or

a(rl ) = (Hrt)—

where

q= J a '(t)dt= H'e—
and

ds2=a (rt)(dg —dx ) .

(3.g)

The conformal time g is negative and approaches
zero as t~ oo. The scalar curvature for the metric
Eq. (3.8) is a constant:

Suppose that the energy-momentum tensor of the
matter in the Universe is of the form

8 =12H (3 9)

(3.2)

) dQ

dt
=8—p.

3
(3.3)

There, p has the form

(rad)
Tpv = Tpv +Agpv ~

where Tp(':d) is the (trace-free) energy-momentum
tensor for radiation and A is a constant. The Ein-
stein evolution equation is

Let 8 be the temperature of the Universe at the
beginning of the de Sitter phase. At this time the
thermal energy density and vacuum energy density
are approximately equal, so 8 =H . This occurs
at a time much larger than the Planck time tt (of
the order of 10 tp in grand unified models). Con-
sequently 8 «1 (Planck units) and H «8. For
the purposes of this paper, H will be treated as a
free parameter which is unrelated to the parame-
ters appearing in the field theory.

3 Ap= 4+8
8m g4

(3 4)
IV. THE BEHAVIOR OF (P2)

where A and 8 are constants. A solution of Eqs.
(3.3) and (3.4) is A. The vacuum contribution

a (t)=(3 /B)1/4[sjnh(2B t )]

which has the following asymptotic forms:

a(t)-v 2A' t', t « —,B

and

a(t) 2 ~ (g/B} ~ e, t ))—B

(3.5)

(3.6)

(3.7}

In this section we wish to investigate the
behavior of (P ) in de Sitter spacetime for various
choices of the quantum state. Quantum field
theory in de Sitter spacetime has been discussed by
several authors from various viewpoints. ' ' The
approach which we adopt is most similar to that of
Bunch and Davies, ' several of whose results we
will utilize. A free scalar field operator which sa-
tisfies

The former is the metric for a radiation-dominated DP+m /+/RE=0 (4.1)
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may be expanded in creation and annihilation

op rators x a d k as
The formal expectation value of P in the vacuum
state defined by the mode functions Eq. (4.3) is

P=(2n) i J d k[a „fk(r))e'"'"+H.c.] .

(4 2)

The functions 1(k(g), for the metric Eq. (3.8), take
the form

where
I
c2 i' —

~

ci
~

'=»nd

v = —,—12(m /R+g) . (4.4)
I

pk(q)=(~/4)'i Hg i [ciH'„"(kg)+c2H'„'(kryo)],

(4.3)

(4.5)

Different choices of the constants c& and c2 can
be interpreted as different choices for the vacuum
state of the quantum field theory. The choice
c& ——0, c2 ——1 is of particular interest because it
leads to a de Sitter-invariant state. It is this state
which was treated by Bunch and Davies and will
here be referred to as the Bunch-Davies vacuum.
The formal expectation value of P in this state
may be regularized by point separation.

The regularized expectation value can be ex-
plessed as

(P )„,s ———(16m e )+R/576'+(16' ) '[m +(g——, )R][ln( —„e2p~)+In(R/p~)

+2y —1+4(-, +v)+ 1((-, —v)], (4.6)

(4 7)

where the additive constant has been chosen so that (P )nD ——0 at R =0. The term proportional to
ln(R/p ) was discussed in detail in Ref. 13.

The renormahzation mass p appears to introduce an additional free parameter into the theory; however,
this is not actually the case. A redefinition of the renormalization mass readjusts the other parameters of
the theory in accordance with the renormalization-group transformation. For the theory described by the
interaction Lagrangian of Eq. (2.8), let p~ and p, ~ denote the renormalization masses associated with the
fields P and g, respectively. Then if p~~ p~ and p~~ p~, rn~~ m&, and g~~ g~ where to first order

mp mp +(8'——) '[Apmp ln(pp/pp)+g mp 1n(pp/pp)] (4.8a)

and

where y=Euler's constant, p is an arbitrary mass, 1(t(x) =I"(x)/I (x), and e is the regularization parameter
(the point separation). The regularization is removed in the limit that e~ 0. The e ~ term may be ab
sorbed by mass renormalization and the 1n» e p, term by renormalization of g. [That is, in Eq. (2.9) the
quadratic divergences in (p ) and (p ) are absorbed by renormalization of m~. the corresponding logarith-
mic divergences are absorbed by renormalization of g~.] In addition, terms of the form of (constant) or
(constant) &&R may be removed by finite mass and g renormalizations, respectively. The renormahzed expec-
tation value in the Bunch-Davies vacuum can be expressed as

(p )sD ——(16') '[ —m ln(12m /p )+[m +(g——,)R][ln(R/p )+g( —, +v)+1(( —, —v)]j,

(~=g~+(8m ) '[A~(g~ 6)ln(p~/p~)+g—(g~ 6)ln(p~/p~)] .— (4.8b)

To first order, the coupling constants A,~, A,~, and g are not renormalized and are left unchanged by this
transformation. All measurable quantities, such as M defined in Eq. (2.9), are invariant under this
transformation. Equations (4.8a) and (4.8b) may be derived from the invariance of M . A similar pair of
equations hold for the parameters of the iP field, m& and g&.

One can eliminate this freedom by fixing p to be any convenient value. For the massive theory one could,
for example, set p, =m . Another possible renormalization condition for m+0 is to require that the linear
term in the expansion of Eq. (4.7) in powers of R vanish. This yields

T

p =12m exp

1

9
(4.9)

Of
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&P )»——— I( —, (—)R+[m +(g —,—)R][ln(R/12m )+f(—,+v)+P( —, —v)]j . (4.10)

This renormalization is not defined if m =0.
In the massless theory, p cannot be eliminated.

If one sets m =0 in Eq. (4.7), g( —,+v) is a constant
and may be absorbed by a finite g renormalization.
Then we have

&$ )»—— Rin(R/p ) .
16

(4.11)

Note that one can have & tI) )» &0. This means
that radiative corrections can act in such a way as
to destabilize the symmetric vacuum state if A,~ & 0.
This will be discussed in Sec. V.

In the particular case m =0, g= —, no infinite g
renormalization is required. If one chooses not to
perform any finite renormalization then one ob-

tains &P )»=R/576m . This is equal to T /12
where r=H/2m is the temperature which Gibbons
and Hawking' have argued should be associated
with de Sitter spacetime. From some points of
view, it is more natural to retain this term in Eqs.
(4.7) and (4.11). If gQ —,, such a term can be
created or absorbed by altering p. If one goes
beyond the one-loop approximations, this is true
even if g= —,. Consequently, the decision to retain

or not retain this term does not affect the physics.
Let us note two features of the Bunch-Davies

vacuum state. The first is that it is the natural
choice for the vacuum state for particles of large
mass, m &gH '. In this case the Compton wave-

length is small compared to the local radius of cur-
vature of spacetime (here H ') and the flat-space
definition of particles is applicable. If one matches
the de Sitter metric to flat space by allowing H to
vary slowly in time, then the Bunch-Davies vacu-
um is the in-vacuum or the out-vacuum, according

I

to whether the matching occurs in the past or fu-
ture, respectively. As will be shown below, & P )
approaches & P }iso at late times.

However, the Bunch-Davies vacuum is not a
physically realizable state in the limit m =(=0.
This can be seen from the fact that &P )» is
singular as v—+ —, (i.e., as m +JR —+ 0):

&P )»- — [m +(g—, )R](m—+JR)
64m

(4.12)

If (=0, &P )BD-(3846) 'R /I as m~O.
This is an infrared divergence and can be interpret-
ed as arising from the presence of an infinite num-
ber of long-wavelength particles in this state and
would cause even the point-separated expression
Eq. (4.6) to be infinite. A state which exhibits an
infrared divergence cannot arise as a result of
dynamical evolution from regular initial condi-
tions. ' ' An example of a state which is realiz-
able for I=(=0 is the state which is the confor-
mal vacuum state in the initial radiation-
dominated regime (t «H '). Here the effect of
scalar curvature is negligible, so conformal (g= —,)

and minimal ((=0) coupling are equivalent. The
conformal vacuum state for a massless field is the
analog of the vacuum in Minkowski spacetime
where the mode functions are conformal
transforms of Minkowski-space positive-frequency
mode functions. Although this state is. defined
only for massless fields, we can consider states for
massive fields which approach the conformal vacu-
um in the massless limit.

Let & P )0 be the expectation value of P in any
state associated with mode functions of the form
of Eq. (4.3). Then for real v we have

&y'), —&y')» —(8~)-'H'
( q [

' J' dk k'[
~
c,(k)H„"'(kq)+c, (k}H,"'(kg)

~

' —
~

H'„"(kg)
~

') .
(4.13)

F(k/H)=
i
c2(k) —ci(k)

i
(4.14)

then the integral will converge at the upper range
of integration (and state-dependent ultraviolet

Provided that ci(k) vanishes sufficiently rapidly as
k ~ ao, this integral is convergent at the upper
range of integration. This will be the case for
physically reasonable states. ' The integral in Eq.
(4.5) will converge at the lower limit for such
states even if rn =/=0 (v=

2 ). This requires that

e~ and c2 approach one another as k~0. If

divergences will be avoided if

F-1+0(k r), y)1, k~ ao . (4.15)

Infrared divergences will be avoided for the case
v= —, (m =/=0) provided that

F-k~, P)0, k —+0 (4.16)

in this case. As noted above, states which arise by
dynamical evolution are free of infrared diver-
gences and hence satisfy Eq. (4.16). A simple ex-
ample of such a state can be constructed by consid-
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ering a metric of the form

2+Hg, q &go
Q=

(H—rt), ri & gp, gp —— H——1 —1
(4.17)

which is a Robertson-%alker spacetime with
a ~ t' matched to de Sitter spacetime at
g=go ———H '. For g &go we choose the mode
functions

q(P)( ) (2k)
—1/2u —1(~)e —ikg

which are pure positive frequency, so the state is
the in-vacuum. Requiring that pk(ri) and gk(rt)
be continuous at g =go, we can find the coeffi-
cients ci and c2 in Eq. (4.3). This gives

F(z)=
~

e "(I+2iz) 1 ——2z
4z4

(4.18)

~here

K= J dzz "F'(z) . (4.20)

Equation (4.19) can be derived from Eq. (4.13) by
changing the integration variable to x =kg, using
the small argument limit of the Hankel functions,
and then differentiating with respect to q. If

3v= —,, then we have

At small z, F(z) o:z, and hence Eq. (4.16) is ful-
filled. This particular choice of state does not
satisfy Eq. (4.15) because the scalar curvature for
the metric Eq. (4.17) has a discontinuity which
creates an excessive number of particles in modes
of large k. Hence, the F(k) of Eq. (4.18) is not a
good approximation to the corresponding function
for a metric such as that of Eq. (3.5) for k & H.
However, it is expected to be a good approximation
for k «H.

The late time behavior of (P)p is found by tak-
ing the rj~ 0 limit of Eq. (4.13). In this limit, we

may write (here and below we assume v real)

d(~')p —322@—3H5 —2vr2(v)~
~ ~

2—2v

d'g

(4.19)

(y'), ——(4H)-'H'in
~ qtq, (, q 0

(4.23)

InR lp +2ln( —Hq)
96m

+ 2 I F'(z) lnzdz . (4.25)

B. The thermal contribution

In addition to the vacuum contribution to (P )
there is the contribution due to the particles which
were present in the initial radiation-dominated
phase of the Universe. At the beginning of the de
Sitter phase, it dominates the vacuum part and is
usually the only contribution taken into account.
If one assumes that the Universe is approximately
in thermal equilibrium for t=II ', then we can
write the thermal contribution as

where

)T ~ I dkk ttk
I 6 I'

(ek/s 1)
—i

(4.26)

3
where rtp is a constant. If v& —,, we have (recall
that rt= —

~
rt

~
)

(y'), —(y'), —~-'2'"-3H'r'(v)

X(3—2v) 'K
~
il

~

", r)~0 .

(4.24)
3

Because K~1 as v—+ —,, for v sufficiently close to
—,, E & 0. Consequently, (P )p is increasing as
3)~0 and asymptotically approaches (((I )iiD from
below. For —,—v«1, (P )aD is large and (P )p
grows by a large amount at late times, as reflected
in the factor of (3—2v) ' in Eq. (4.12). When
v~ —, (m =/=0), (p )i3D does not exist and

(P )p grows indefinitely.
In this latter case, one can expand both of the

terms on the right-hand side of Eq. (4.24) about
3v= —,; the terms proportional to (3—2v) ' cancel

and one obtains, for m =/=0,

E =F( ao ) —F(0)=1

and

d( ')p
=(4rt ) 'H ~rt ~

dT/

Thus for m =/=0, (P )p is of the form

(4.21)

(4.22)

Here, 0 is the temperature of the Universe at the
beginning of the de Sitter phase (t=H '). It will
be assumed that 0»H, m. Note that the condition
that this integral converge at the lower limit when
v= —, is that F-k'+~, P&0, k~O, which is ful-

filled by Eq. (4.18).
The assumption of thermal equilibrium in the
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very early Universe may or may not be valid. If
the Universe is described by a thermal state at the
Planck time, this would presumably have to do
with the fundamental relationship between quan-
tum mechanics, statistical mechanics, and gravita-
tion which is not yet well understood. It is also
possible that interactions could rapidly thermalize
an initially nonthermal state. In any case, Eq.
(4.26) is the simplest ansatz for describing the ef-
fect of the particles upon ((I) ).

At the beginning of the de Sitter phase
(t=H '), because 8»H we can approximate the
integrand of Eq. (4.26) by assuming that

~

kri
~

&&1, ci-O, and
~
c2

~

=1. Then one has

T'
&y'),= „, (4.28)

(y2) 22v —3 —3H5 —2v
~

3—2v

X J dzz "nk ~F(z)
~

(4.29)

where z =k/H and F(z) is defined in Eq. (4.14).
In the Appendix it is shown that if 8/H &g1 and
—,—v « 1, the integral in Eq. (4.29) is proportional
to HH . Thus

(P )r-AOH ~H31 ~3 2", r~(g),

where

A =n. I dzz iF(z)
i

(4.30)

(4.31)

is a numerical factor of the order of unity. For
m =/=0, ((('i )T approaches a nonzero constant

(P )r~AOH, t —voo . (4.32)

In fact, it can be shown that Eqs. (4.28) and (4.32)
together give a good approximation throughout the
de Sitter phase, ' so

T'
(p2) T= +AOH

12
and that corrections to this equation do not exceed
TH In[8/(T+H)].

Thus the behavior of (P )r at late times is
strongly influenced by the coupling to the back-
ground gravitational field. For the massless con-

1

formal (g= —,) scalar field, one would have

(P )T ——T /12 at all times, so the behavior exhi-
bited in Eq. (4.30) reflects the nonconformal char-
acter of P. In the massless minimally coupled
theory, Eq. (4.32), ($2)T approaches a constant

(4.33)

where T =8/a. This is just the usual behavior for
a thermal distribution which is being red-shifted by
the expansion of the Universe. At late times,
t—+ ao, we have g —+0 and

which depends upon the initial temperature. This
result is due to the fact that fk~constant as k~O

3
for v= —,. Normally the expansion of the Universe
causes the contribution of a given mode to be red-
shifted to zero; in this case each mode is red-
shifted until its wavelength is of the order of the
horizon size (H '), and afterwards it gives a con-
stant contributio~ to (P )T.

Note that f(x)=ax =ae ' =a(1+alnx) if
a

~

lnx
~

&&1. Thus although f~0 as x~O
(a & 0), f is approximately constant over a large
interval if a « 1. The next correction in Eq. (4.29)
is 0(

~
2)

~

"). Consequently, if —,—v&&1,

(P ) T =AOH over a finite interval in which

((3—2v)ln ~Hri~ (
&1. For the case g'=0 and

m/H « 1, this condition can be expressed as

~Hg
~

&e . Thus, for small I, the scale
factor (Hri) ' can change by many orders of mag-
nitude while (P ) r remains constant.

Let (P ) be the complete expectation value in-

cluding vacuum and thermal contributions:

(y') = &y'&.+ &y'&, .

%'e are now in a position to describe qualitatively
the behavior of (P ) in various cases. Consider

3
first the case 0& —,—v«1, for example, m «H
and

~ g ~

&&1. Initially (P )=(P )r and de-
creases as a; (P ) r then levels off at a plateau
value of AOH Meanwh. ile, (P )p begins to grow
and eventually dominates (P )T. Eventually (P )
approaches its asymptotic value (P )BD. If v is
sufficiently close to —,, (P )BD&AOH. This
behavior is illustrated in Fig. 1, curve A. In the
limit m =(=0, the time dependence of (tI) ) is
essentially the same except that (P )BD~oo and

(P ) continues to grow indefinitely.
Another case which we can treat is that of a

massive field with m &H. Here the Bunch-Davies
vacuum is a reasonable choice for the vacuum
state, so (P )p=(P )BD. Here (P ) decreases
monotonically as shown in curve B of Fig. 1. [In
this case v may be imaginary and the explicit for-
mula given above for (P )r, Eq. (4.29), does not
apply; however (P )r will still decrease monotoni-
cally. ]

The expectation value of the energy-momentum
tensor ( T„,) does not exhibit the exotic behavior
found in (P ) at v= —,. Although the Bunch-

Davies vacuum is not well defined at v= —,,

(T&„)i3D does exist in the limit v~ —, . The expec-

tation value in a general state approaches ( T„„)iiD
3

at late times even for v~ —,. One can understand

this difference between (P ) and ( T„,) as due to
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the fact that the former quantity is more sensitive
to the contribution of very-long-wavelength modes.

V. DESTABILIZATION OF
THE SYMMETRIC PHASE

~

Hr)
~

&&exp( 4n AH/H—) . (5.1)

Assuming that this condition is satisfied, we can
write

(y')=, +~eH.
12

For the conformal field g we have

(5.2)

T2
(g~) = +O(H ),

12

where 0 (H ) refers to the possible presence of the
term R/576m . From Eqs. (5.2) and (5.3) we have

(5.3)

M'=g'(y') —X(y')

=—„(g —A, )T —A)i,oH, (5A)

where we have neglected g H compared to A,OH.

At high temperatures, T»(8H)', M & 0 and
the symmetric phase is quasistable.

It is destabilized at T =T~, where

12M A,HH

g —A,

With g /A. and 2 of order unity, we have T, of
order (HH)'~2.

The above analysis has been done for a strictly
massless, minimally coupled field P (m~ =/~=0).
One expects that the conclusions remain qualita-
tively unchanged for nonzero m~ and g~ if
a. =m~ +gQ is sufficiently small. Increasing a.

(5.5)

The results of the previous section show that in

de Sitter space the evolution of the expectation
values (P ) and (g ) appearing in Eq. (2.9) can be
substantially different from that in flat spacetime.
This difference can give rise to a qualitative
change in the behavior of the system. In particu-
lar, the symmetric phase can become unstable, even

if it is stable at all temperatures in fiat spacetime.
As an illustration, let us consider a model with the
interaction of Eq. (2.10) and with m~ ——m~ =(~
=0, g~ ———,. We shall assume that g & A, & 0 and

g and A, are of the same order of magnitude.
Comparing Eqs. (4.25) and (4.33) we see that if
lnR/p is not too large, then the vacuum part of
(P ) is small compared to the thermal part pro-
vided that

Cl
n~

V

I

A

V

has a stabilizing effect on the theory, and above
some critical value, ~ & ~, , destabilization will not
occur. %e can estimate ~, in the following way.
Suppose that ~ g ~, , so that at late times M be-
comes a positive constant and the system ap-
proaches the Bunch-Davies state. For x «H, we
find, using Eq. (4.12),

3A,H
M =a— (5.6)

%e see that M is positive only if z y z, , where

K, =(3A, /87r )' H (5.7)

This estimate can be improved if we go beyond the
first-order perturbation theory and replace Eq. (5.6)

by
3A,H

8 M 2
(5.8)

Here the expectation value (P ) is calculated using
the effective mass M instead of the zeroth-order
approximation x . This is analogous to the Har-
tree approximation in the many-body theory. '

The solution of Eq. (5.8) is
1/2

sc4 3m 4
M =a /2+

4 8&
(5 9)

Real solutions exist only for a & (3A, /2H)'~ H,
and thus

'=(u/2H)'"H'. (5.10)

Equation (5.8) goes beyond the first-order approxi-

FIG. 1. The behavior of (P2) as a function of time
is shown for two cases. If

~

m +JR
~

&&H, (P')
behaves as shown in curve A. If m2+gR & H2, then the
behavior is as shown in curve B.
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mation and includes some (but by no means all)

higher-order contributions. The fact that it yields

a value of v, which is approximately equal to the
first-order value, Eq. (5.7) indicates that this first-
order value is reasonably accurate, at least for suf-

ficiently small A,.
As a second example, we take a model with

m~
——m~ ——0, 0 & g~ && 1, /~@0, 6, and with an in-

teraction of the form

(5.11}

Finally, we shall briefly discuss the time scale
for the onset of instabilities. When the tempera-
ture drops below T„M becomes negative, and
Eq. (2.6) has growing solutions. In our model
(2.10), for T « T„Eq. (5.4) gives M = AA—,OH.
The solutions of Eq. (2.6) with M =const are
4(x)=C k(i) )e' " ' ", where

4 (rt) =r) [C,H„"'(kr))+C H„' '(kryo)]

(5.16)

M'=gP+g'(q') . (5.12) (5.17)

At high temperatures (P ) =T /12, M & 0 and
the symmetric phase is stable. As T—+0, (l( ) ap-
proaches the Bunch-Davies value, Eq. (4.11),

(y )aD —
(gy ——,)111(RID/) .

16ir
(5.13)

Using this expression in Eq. (5.12), we find

T2 —— (g& , )R ln(R Ip—~ —)

4

We have noted earlier that (i)'j )BD can be negative.
In this case, M can change sign at some tempera-
ture T =T„and the symmetric phase can become
unstable. If the phase transition occurs at a suffi-
ciently high temperature, we may estimate T, by
writing

(5.14)

In the last equation, we have assumed that
A,HIH «1. For small rt, @k(r))~ rt

~ ' or

4k(t) ~

exp(Ain't/3)

. (5.18)

The characteristic time ~ can be defined as a typi-
cal time of growth of the fluctuations (as measured

by a comoving observer):

v=3/AA, O . (5.19)

During this time the Universe will expand by a
factor of e ~ which can be large for sufficient-
ly small A, . The actual magnitude of 4t, (t) de-

pends on the initial spectrum of Quctuations at
T- T~. These fluctuations can be of thermal or
quantum origins, and we do not attempt to esti-
mate them in this paper.

—12/~ R . (5.15)
VI. SUMMARY AND DISCUSSION

The high-temperature form of (g ) is a good ap-
proximation if 8

~
ii

~

=T/H &&1. Thus Eq. (5.15)
is valid provided that T, ~&H. Note that T, is in-

variant to first order in g under the transforma-
tion of Eq. (4.8b). If (P )uD&0, then the sym-
metric phase remains stable down to zero tempera-
ture. (Note that even in flat spacetime radiative
corrections can cause 4=0 to be only a local rath-
er than a global minimum of the effective poten-
tial; in this case the symmetric phase is only
quasistable. )

The condition /~ &&1 is imposed in order that
first-order perturbation theory be applicable at the
phase transition. One expects Eq. (5.13}to contain
higher-order corrections such as terms of the form

g R In (R/p~ ). ' These higher-order contribu-
tions will, however, be small compared to the
first-order contribution at T =T, if g~ is suffi-
ciently small.

In the preceding sections we have seen how the
coupling to spacetime curvature can drastically
modify the time evolution of (P ). This modifica-
tion arises whenever the scalar field is not confor-
inally invariant (i.e., m+0 or g+ —,). In this sense,

1
the massless conformal (g= —, ) theory is really the
case when the coupling to the background gravita-
tional field is minimal, and for the so-called
minimal theory (/=0) gravitational effects are far
from minimal. In particular, we have seen that for
the massless, minimal (m =/=0) theory, (P2) can
grow in an expanding universe rather than decrease
as one would normally expect.

This modification in the behavior of (P ) can
have an important effect upon the stability of the
field theory. In the previous section we have seen
how, in the context of a particular model field
theory, otherwise stable field configurations may be
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destabilized by the coupling to spacetime curva-
ture. Conversely, this coupling can also have a sta-
bilizing effect upon an otherwise unstable configu-
ration.

In discussions of quantum field theory in de
Sitter spacetime, the issues of "Hawking radiation"
and of a minimum temperature in de Sitter space
often arise. Gibbons and Hawking' argued that
observers moving along timelike geodesics with a
particle detector will measure blackbody radiation
at a temperature T =H/2m. It is important to
emphasize that the contribution of this radiation to
(P ) is included in what we have called the vacu-
um contribution (P )o and is not in any way a dis-
tinct effect. That is, once one has chosen the
quantum state of the system and calculated the ex-
pectation value of P in that state (a scalar quanti-

ty upon whose value all observers will agree) all

possible contributions are included. It is true that
the distinction between vacuum and thermal con-
tributions to (P ) is observer dependent and hence
not unique. A similar situation arises in the case
of the radiation emitted by a black hole. Fulling '
has noted that the decomposition of (T&„) into
vacuum and thermal parts is not unique and de-

pends upon the choice of observer.
The growth of (P )o and the large value of

(P )sD when
~

g+m /8
~

&&1 found in Sec. IV
depend upon a large contribution from long-
wavelength modes. However, de Sitter space can
be represented as a closed Robertson-Walker metric
with scale factor a (t) =H ' coshHt, One might
expect that if one were to use this form of the
metric, then the finiteness of the spatial sections
would prevent the appearence of infrared diver-
gences. This is not the case. Dowker and Critch-
ley and other authors quoted in Ref. 16 have cal-
culated the de Sitter-invariant Green's function us-

ing the closed-space form of de Sitter space. The
corresponding expression for the formal expecta-
tion value of P with (=0 is

n(n+l)(n+ —, )

86 „& (n+2)(n —1)+m /H

(6.1)

This expression can be obtained, for example, from
the formulas preceding Eq. (10) of Dowker and
Critchley . The n =1 term of Eq. (6.1} is
3H /gn m, which is just Eq. (4.12) with /=0;
hence the infrared singularity is still present.
Moreover, the Green's function found by Dowker
and Critchley turns out to be identical to that of
Bunch and Davies, and hence (P ) in (6.1) is

identical to (P')Bo.
In this paper we have restricted our attention to

first-order perturbation theory. As discussed in
Sec. V, this is sufficient for some range of the
parameters of the models we consider. However,
first-order perturbation theory may not be a good
approximation even if the coupling constants are
small because the coupling constant can be multi-
plied by a large dimensionless quantity such as
8/H or ln(R/p ).

One problem for future work in this area is to
understand more fully the higher-order corrections
and when they have a significant effect upon the
behavior of the system. This is important for the
study of phase transitions in grand unified theories
in the early Universe with Coleman-Weinberg sym-
metry breaking, where it appears that higher-order
contributions will be important. '
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APPENDIX

Here we wish to obtain an approximate expres-
sion for the integral appearing in Eq. (4.29). We

3
assume that 8/H » 1 and —,—v« 1. Write the
integral as

I=I)+I2,
where

I, =f dkk' '"n, ~S'(k/H) -~'

and

(Al)

(A2)

(A3)

a8/H
I,=eH' '"f -dzz' "iI (z) i'

0

=gH "f dzz' "~y'(z}
~0

g~ 2—2v (A4)

Because ~I'
~

=1 for k&H, we can write Iq as

2—2vdx x
a e"—1

(A5)

Iq ——f dkk "nt, ~F(k/H}
~

where a is chosen so that 0 &a «1 and
Oa/H))1. In I~ we have that k &&8, so n~-8/k.
Thus if z =k/8
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For small a this integral is dominated by the con-
tribution at the lower limit, so

Both ct and c2 are constants of the order of unity,
so because Ha/H »1, I»&I& and

Iq-c2(8a) (A6) I=c)OH (A7)
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