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The effects of vacuum polarization on the mildest possible sort of cosmological singu-
larity, the Taub-NUT (Newman-Unti-Tamburino)-type singularities, are studied. Unlike
stronger sorts of singularities where physical quantities (e.g., curvature, energy density)
diverge, in these universes the only barrier is a pathological topology. Quantum effects,
known to be important in regions of large spacetime curvature, are found to also be im-
portant in these universes, where the curvature may be arbitrarily small or even zero.
The vacuum expectation value of the stress-energy tensor for a conformal scalar field is
calculated on a flat archetype of the Taub-NUT-type universes, the Misner universe (flat
Kasner spacetime with S!X R topology). The vacuum stress energy diverges at the
singularity and on its associated Cauchy horizons. This divergence, together with the
“fixed” nature of the spacetime’s topology, suggests that these boundaries will be replaced
by curvature singularities in a better approximation to full quantum gravity.

I. INTRODUCTION

There are two outstanding problem areas in our
theoretical understanding of gravitation: the na-
ture of singularities! and quantum gravity.? It is
generally accepted that the two subjects are not
completely distinct: quantum gravitational effects
are expected to be most important in regions of
large spacetime curvature, i.e., near curvature
singularities.

There are, however, maximally extended space-
times which possess incomplete geodesics (and
hence singularities) yet whose curvature tensors are
everywhere well behaved. Such singularities arise
due to a pathology in the topological structure of
spacetime. In the singularity classification scheme
of Ellis and Schmidt,’ they are known as “quasi-
regular singularities.” Their defining property is
that the components of the Riemann tensor in a
parallel-propagated frame remain bounded along
each curve ending on the singularity. Alternative-
ly, if some component of the Riemann tensor
diverges, one has some sort of curvature singularity
(e.g., a “big bang” or a “whimper”). It is not clear
a priori that quantum effects will play a significant
role near the topological, i.e., quasiregular, sort of
singularity.

In this paper we examine how quantization of
matter fields might affect a particularly interesting
subset of quasiregular singularities: the “Taub-
NUT (Newman-Unti-Tamburino)-type” singulari-
ties. These singularities are characterized by in-
complete geodesics which spiral an infinite number
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of times around a topologically closed spatial di-
mension in a finite proper time, to end on one of a
pair of null Cauchy horizons. Even if the space-
time is analytically extended across the Cauchy
horizons, the intersection of the Cauchy horizons
is a quasiregular singularity on which geodesics
end. These spacetimes undergo a sort of “topologi-
cal collapse” rather than “gravitational collapse” to
the singularity. It has long been known that this
type of singularity can exist in spatially homogene-
ous cosmologies; Taub-NUT space is the most
thoroughly investigated example. More recently,
Moncrief has demonstrated the existence of an en-
tire class of inhomogeneous universes with singu-
larities of this type.* Although the global topology
of the spacetimes may differ (Taub-NUT space-
time is R X S° while Moncrief’s spacetimes are

R X T3), the structure of the singularities is similar.
A simple archetypal model for all such Taub-
NUT-type singularities is the four-dimensional
Misner universe®> 10 (flat Kasner spacetime with
S1%R? topology).

In this paper we calculate the vacuum expecta-
tion value of the stress-energy tensor of a confor-
mal scalar field in the Misner universe. Since the
Misner universe is flat, there is no particle creation
and the only vacuum polarization present is that
induced by the spacetime’s topology. The vacuum
stress energy diverges at the quasiregular singulari-
ty and its associated Cauchy horizons, suggesting
that in a self-consistent calculation including quan-
tum effects, these features would be replaced by a
curvature singularity.
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A number of classical stability analyses®~° have
shown that Taub-NUT-type singularities are classi-
cally unstable towards becoming curvature singu-
larities. In this work, rather than inserting a per-
turbation into the spacetime, the physics is treated
at a deeper level by including quantum effects. We
feel this approach is more fundamental than the
classical stability analyses, since the “perturbation”
is simply the vacuum polarization induced by the
topology of the spacetime.

Section II reviews the structure of the Misner
universe and its extensions. In Sec. III the vacuum
stress energy is calculated for both ordinary and
twisted conformal scalar fields. The effects of
closing the other spatial dimensions (to yield a
three-torus universe) are discussed. The implica-
tions of this work for more general Taub-NUT-
type cosmologies is considered in Sec. IV.

II. THE MISNER UNIVERSE
The Misner-universe metric is

ds?= —dt? +12dx P (dx?P 4 (dx3P, (1)

with the points (¢,x',x',x3) and (t,x'+na,x2,x?)

identified (n takes on all integer values from — oo
to + o0, and a is any nonzero number). The coor-
dinate ¢ ranges from zero to infinity, x! from zero
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to a (identified as above), and x? and x* from — o
to 4 o0. The metric described by Eq. (1) is the
familiar flat Kasner metric with an unusual topol-
ogy which causes a quasiregular singularity at
t=0.

For the purposes of this paper, any spacetime
with a metric given by Eq. (1) and with the x! spa-
tial dimension topologically closed will be defined
as a Misner universe. The remaining spatial di-
mensions (x2,x°) may be topologically open or
closed; either choice does not affect the quasiregu-
lar structure of the singularity. These spacetimes
were originally used by Misner’ in two-dimensional
form (x?=x>=const) as a model for understanding
the Taub-NUT universe. In this paper all calcula-
tions are performed in the full four-dimensional
metric of Eq. (1).

The universal covering space of the Misner
universe is a portion of Minkowski space, obtained
by the coordinate transformation

y°=tcosh(x!), y'=tsinh(x!),

(2)
yi=x?% pi=x3,

yielding the Minkowski metric,
ds’=—(dy°?+(dy '+ (dy*)+(dy?)? 3)
with the points

Oy L,y2%y3)(y cosh(na)+y 'sinh(na),y 'cosh(na) +yinh(na),y,y>) 4)

identified. The Misner universe occupies the quad-
rant y°> |p!| of Minkowski space.

The Misner spacetime may be analytically ex-
tended across the boundaries y°=y! (y!> 0) and/or
y°=—yp! (! <0); however, if both extensions are
performed the resulting spacetime is non-
Hausdorff. It is possible to obtain a maximally ex-
tended (albeit non-Hausdorff) spacetime by per-
forming both extensions. (For further discussion,
see Hawking and Ellis,' and Ellis and Schmidt.’)

Whether either, both, or none of the extensions
are performed, the point y°=y!=0 is not included
in the spacetime. Since, even in the maximally ex-
tended spacetime, there are timelike and null geo-
desics which end on the missing point (and hence
are incomplete), and since the spacetime is flat, the
point y°=y!=0 is a quasiregular singularity. Fur-
ther, the physical situation beyond the surfaces
»°=y' (»1>0) and y°=—p! (y' <0) is not deter-
minable by evolving Cauchy data given on a space-
like slice within the Misner-universe quadrant
%> |»'| (e.g., a t =const slice). The boundaries

|
y°=|y!| are then Cauchy horizons; one must
choose the type of extension (e.g., analytic) done
across the boundaries.

A few words concerning time-orientation con-
ventions are perhaps needed at this point to avoid
confusion. In this paper, we treat the Minkowski-
space quadrant y°> |y!| as the Misner universe,
as is traditional.>*1° By choosing this quadrant as
the original spacetime (i.e., pre-extension), the
singularity is an initial singularity, which is the
traditional time orientation one uses when discuss-
ing cosmological singularities. The Cauchy prob-
lem (and Cauchy horizons) are then to be under-
stood in terms of a final-value problem rather than
as an initial-value problem,; i.e., one chooses Cau-
chy data on a spacelike slice (e.g., t =const > 0)
within y°> |y!|, then evolves backwards in time
towards ¢ =0, where the singularity and Cauchy
horizons are encountered. Alternatively, one could
originally identify the Misner universe with the
%< |y'| quadrant of Minkowski space, so that
the singularity is a final (rather than initial) singu-
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larity and the Cauchy evolution may proceed for-
ward in time, rather than backward. All the phys-
ics is of course time-reversal invariant, the con-
clusions of this paper apply whether ¢ =0 is an ini-
tial or final singularity.

The global behavior of the extended Misner
universe is entirely analogous to the Taub-NUT
universe.>!! The Misner universe is spatially
homogeneous, as is Taub space. It can be extended
across the Cauchy horizons (or “Misner bridges”),
the surfaces y%= | y!| 520, to NUT-type static re-
gions (' > |»°]; ' < |¥°|) containing closed
timelike lines. These static regions are isometric to
the Rindler wedge.

III. VACUUM STRESS ENERGY

We have seen that the Misner universe may be
regarded as a portion of Minkowski space [Eq. (3)]
with an odd topology [Eq. (4)]. Over the past few
years, a powerful set of tools has been developed
for studying quantum field theory in Minkowski
space when boundaries are present (Casimir effect)
or a nonstandard topology is chosen.!!—13

Unfortunately, our study of the Misner universe
faces a problem which previous workers did not
encounter: the choice of a vacuum state. If one
makes a simple identification on Minkowski space,
such as y'<y!+na, then the timelike Killing vec-
tor 3/3y° which is used to define positive frequen-
cy, and hence the vacuum state, is unaffected. In
the Misner universe, while there are local timelike
solutions to Killing’s equations (e.g., 3/9y?), the
nature of the identifications [Eq. (4)] is such that
these local solutions cannot be patched together
into a global timelike Killing vector field. Without
a global timelike Killing vector field, there is no
rigorously defined choice of vacuum state. There
is, however, a physical argument which shows that

n=+o

1
ren =
(20
n£0

+P=F P+ =gt

Computation of (7, ) in Minkowskian coordi-
nates is now straightforward. The final result
takes a particularly simple form when transformed
to the Misner-universe coordinate system,
(t,x!,x%x3):

(T,")= 0 ,,1’ —* diag(1,—3,1,1), ®)

S, {—[y°—y cosh(na)—y 'sinh(na)]*+[p!

the usual Minkowski vacuum state on the covering
space is the correct choice for the Misner universe.
Since the timelike geodesics of the Misner universe
are, apart from identifications, identical with the
timelike geodesics of Minkowski space, an “Unruh
particle detector”!® carried by a Misner-space ob-
server will register no particles in the Minkowski
vacuum state. If any other state were chosen to
represent the vacuum, then geodesic observers in
Misner space would detect particles. Clearly the
unique quantum state in which all timelike geo-
desic observers agree there are no particles deserves
to be considered the vacuum state. This choice
also has a natural expression in terms of a mode
decomposition in the coordinate system of Eq.
( 1 ) 17,18

We can now calculate the vacuum expectation
value of the stress-energy tensor for a conformally
coupled scalar field in the Misner universe. In a
Minkowski vaccum, the stress-energy tensor may
be written!2— 1519

(T,)=—iim(3V,V,— 3V, V,
y—-y

- %g}tvvava)Gren(y’j;); (5)

where G, is the renormalized Feynman Green’s
function. The usual Minkowski-space Feynman
Green’s function is

Goy. )=~ 7P+ —5")?
(21r)
+(y2—}72)2+(y3—j73)2+i8]_1 .

(6)

The renormalized Feynman propagator for the
Misner universe is obtained from G, by adding all
the “image charges” at J, according to the
prescription of Eq. (4) and subtracting off the
singular term G:

—y'cosh(na) —y %sinh(na)]?

T
where

'S 2+4-cosh(na)

= , 9)

we [cosh(na)—11?
is a finite positive-definite number for all nonzero
values of a. The energy density of the vacuum, as
given by Eq. (8), is negative.
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As expected (and required), the trace of (T,”) is
zero, and (7,”) is conserved (V,(7,”) =0) and
homogeneous (independent of x°).

We see from Eq. (8) that every component of
(T,") diverges as the surface t =0 is approached
(the surface ¢ =0 consists of the Cauchy horizons
and the quasiregular singularity). The divergence
of the quadratic stress-energy scalar

Ty, TH=——1" (10)
shows the divergence of (7,*) is not a coordinate
effect.

A generic timelike geodesic (i.e., one which in-
tersects a Cauchy horizon, y°= | y' | 5£0, rather
than the singularity at y°=y!=0) is defined in the
covering space by the equation

yi=vyO4bt, (11

where v’ and b’ are constants, and i =1,2,3. Such
a geodesic spirals around the closed x* dimension
an infinite number of times in a finite proper time
before reaching the Cauchy horizon at t =0. Re-
gardless of whether one has chosen to attempt to
extend the spacetime, the vacuum energy density
measured along such a geodesic diverges as

___—Ky
Pvae= 24 | b |

where, as usual, y=(1—v';)!/2, and 7 is the prop-
er time along the geodesic, chosen so that 7=0 at

34007, (12)

)1/2

l

Kr=— 3 {cosh(2na)—cosh[(2n —1)a]]

n=1

the Cauchy horizon ¢ =0. In the special case when
b'=0, and the geodesic hits the quasiregular singu-
larity at y°=y!=0 rather than the Cauchy hor-
izon, the energy density diverges as

pvac=T_2—f—2y4[l—(v1)2]“27’_4+0(7_3), (13)

where the proper-time coordinate 7 has been
chosen so that 7—0 at the singularity.

Since the vacuum stress energy diverges as seen
by all physical observers as the surface # =0 is ap-
proached, any possible choice of extension is moot;
the vacuum energy density diverges on both the
quasiregular singularity (y°=y!=0) and the Cau-
chy horizons (y°= |y!|5£0).

It is interesting to consider a twisted scalar field
on the Misner universe. The “twist” of the bundle
simply changes the boundary condition on the
scalar field under the identification given by Eq.
(4) from periodic to antiperiodic. The calculation
of (T,,) may be carried out precisely as before,
and one finds that (T,”) again has the form given
in Eq. (8), except that the constant K is replaced by
K7, where

Kp— i(—l)n 2+ cosh(na) (14)

“ [cosh(na)—1]*

Thus the only effect of the twist is to insert the
factor (—1)" into the summand. The sum in Eq.
(12) may be regrouped into the form

X {2cosh(2na)+2cosh[(2n —1)a]+cosh(2na)cosh[ (27 —1)a] —5}

X {cosh(2na)—1} ~?{cosh[(2n —1)a]—1} 2. (15)

Since each factor inside the sum in Eq. (15) is now
positive definite, K is negative definite. The vac-
uum energy density of a twisted scalar field on the
Misner universe is then positive. Further, since the
summand defining K [Eq. (9)] is simply the abso-
lute value of the summand in Eq. (14), it follows
that | K7 | <K for all values of a. The twisted
scalar field then has positive vacuum energy densi-
ty, but of smaller absolute value than for the
untwisted field.

The divergence of (T,”) as the Cauchy hor-
izons and/or quasiregular singularity is approached
is unaffected by the twist; Egs. (10)—(13) still

[

hold, except K must be replaced by K.

We have also calculated (T,*) for an untwisted
scalar field on the closed Misner universe with
three-torus topology (T>XR!). In this case, the
points to be identified are

(t,x',x2,x3)(t,x ' +na,x*+mb,x3>+Ic), (16)

where n, m, and / take on all integer values from
— o0 t0 4 0, b and ¢ are any nonzero lengths, and
a is any nonzero number, as before. The only ef-
fect the closure of the x2 and x° dimensions has
on (T,‘V) is to complicate its form; there are addi-
tional terms in the stress energy caused by the im-
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position of periodic boundary conditions in the x>
and x? directions. Since the resulting expression
for (T,") is rather messy, we will not give its ex-
plicit value here. The important point is that all
the additional terms are everywhere finite; thus,
near the Cauchy horizons and/or quasiregular
singularity, the vacuum stress energy will diverge
exactly as described by Egs. (12) and (13), regard-
less of whether the topology is S'XR? or T>XR".

IV. DISCUSSION

Although we have at this point only established
explicitly the divergence of the vacuum energy for
this one spacetime, we believe the quantum stress
energy will probably diverge at any Taub-NUT-
type singularity. Curvature and/or other topologi-
cal complications (which do not affect the singu-
larity structure) will add additional terms to
(T, ), representing particle creation and addition-
al vacuum polarization. It seems clear that in any
generic spacetime of this sort these additional con-
tributions to (T,w) will not conspire to exactly
cancel the divergent terms.

In the absence of any practical scheme for calcu-
lating the back reaction to the vacuum stress ener-
gy, we can at this point only conclude that the
diverging stress energy is grossly incompatible with
the nature of a quasiregular singularity. Since the
stress-energy scalar diverges strongly, our best
guess is that in a self-consistent solution the
quasiregular singularity would be replaced by a
curvature singularity. While a diverging negative
energy density (as in the case of the nontwisted
scalar field) can possibly “erase” a curvature singu-
larity (e.g., quantum effects in a Friedman
universe?), here the pathological global topology
which causes the divergence seems fixed, i.e., unal-
terable by the back reaction via Einstein’s equa-
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tions. Hence, regardless of the sign of the energy
density we expect the following “bootstrap” pro-
cedure to occur: a pathological topology (quasireg-
ular singularity) gives rise to a divergent vacuum
energy which (via Einstein’s equations) will cause a
curvature singularity.

Of course, it is conceivable that once the radius
of curvature (and/or topological identification
length) is smaller than the Planck length, the
“foamlike” structure of spacetime on such
scales>2° will alter the topology and allow the
universe to become nonsingular. In view of our
current limited understanding of the theory of
quantum gravity, such a scenario is at best specula-
tive. The calculation presented in this paper cer-
tainly seems to show that quantum effects may
make a spacetime more singular rather than less,
even to the point of changing the type of singulari-
ty involved.?

Finally, it is interesting to compare this calcula-
tion with the work of Deutsch and Candelas,'’ in
which they calculated the vacuum stress energy
near an arbitrarily curved perfect conductor. They
found that the vacuum energy density generically
diverges as S 3, where S is the perpendicular dis-
tance to the conducting boundary. The 73 diver-
gence in the energy density in the Misner universe
[Eq. (12)] is perhaps the topological (periodic boun-
dary conditions) version of their conducting boun-
dary (Neumann or Dirichlet boundary conditions)
result.
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