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We propose simple equations in terms of the definite-signature partial waves of the quark

scattering and annihilation amplitudes with quark-quark and quark-antiquark states in the ex-
change channel. We discuss the singularities in the complex angular momentum plane generat-
ed by the double-logarithmic contributions and point out their relation to the particle Regge tra-

jectories.

Quark and gluon scattering appear as subprocesses
in hadronic reactions with large transverse momenta
in the final state and in exclusive two-body reactions
with large momentum transfer.

In this Communication we present results on the
quark scattering and annihilation amplitudes in the
Regge region (see Fig. 1)

s= —u)) p, '&~r~ or s ———r &) p, '&~u~ . (i)
We introduce an infrared cutoff p, . In principle, this
regularization can be introduced in a gauge-invariant
way. The parameter p, is chosen large compared to
the strong-interaction scale A =100 MeV:

We calculate the amplitudes in the double-
logarithmic approximation applicable in the region

FIG. 1. The contribution of the softest gluon.

We consider the amplitudes of annihilation (qq QQ
and qq 00) and backward scattering (qg q0
and qg qg). The corresponding graphs have two
quark lines in the t channel or u channel, respective-
ly. We distinguish the case of the exchange of a di-

quark state with baryon number
3 [D(s) ] and the

case of the exchange of a mesonlike state with
baryon number 0 [M(s) ]. With respect to the color
group SUc(N) the amplitudes can be decomposed
into two parts corresponding to a singlet [Mo(s) ] and
a vector [Mv(s) ] state or an antisymmetric [D&(s),
representation 3 in the case N = 3] and a symmetric
state [Ds(s), representation 6 in the case N =3] in
the exchange channel.

Our approach differs from the usual one, "which
is based on deriving Bethe-Salpeter integral equations
and where one considers off-mass-shell amplitudes.
The integral equations contain more information than
one needs finally. In our approach we deal with on-
mass-shell amplitudes only and maintain gauge in-
variance (in the approximation adopted). The result-
ing equations are much simpler: In terms of partial
waves they are differential equations of Riccatti type
or just algebraic equations.

The main point in our approach consists in isolat-
ing the softest virtual particle with the lowest
transverse momentum ~q in the Feynman graphs. It
turns out that the integration over the momenta of
the remaining virtual particles can be expressed in
terms of on-mass-shell amplitudes with the replace-
ment p, ~Kq~. The physical idea is reminiscent of
the renormalization group (separation of interactions
at different scales). 3

Consider an arbitrary graph contributing to the am-
plitude M(s) or D (s) and take the softest virtual
particle. Consider first the case that the softest virtu-
al particle is a gluon with the momentum k,
k A@2 +Ppf + KJ. The transverse component Kq is
much smaller than the transverse component in the
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FIG. 2. The contribution of the softest fermion.
FIG. 3. The equation for the double-logarithmic ampli-

tude.

remaining loops, ( ~J &&
~ ref~. It can be shown that

in the integral over k, the pole terms in the invariants

(pt —k)2= —sa and (p2+k)'=sp dominate. In
other words, the sum of all double-logarithmic contri-
butions arising from the softest gluon can be
represented by the graphs of Fig. 1. The soft gluon
is attached to the external lines and the blob
represents the amplitude on the mass shell with the
cutoff tt. replaced by ~KJ.

- In the electrodynamic case the analogous statement
has first been proven by Gribov and other authors. 4

The generalization to Yang-Mills theories and quan-
tum gravity has been used to verify gluon arid gravi-
ton Reggeization. ' The proof is based on dispersion
relations with respect to the invariants (pt —k)' and
(p2+k)' and uses gauge invariance.

Consider now the case that the softest virtual parti-
cle is a fermion. One shows in a similar way as for
the soft gluon that the sum of the corresponding con-
tributions can be represented by the graph of Fig. 2.
The blobs are the amplitude on the mass shell with
the cutoff tt, replaced by ~ ~J. Besides the two fer-
mion lines there are no further virtual lines connect-
ing the blobs. Only the transverse parts of the fer-
mion propagators contribute in the double-
logarithmic approximation. '

Now it is not difficult to see that the amplitude
obeys an equation represented in terms of graphs in

Fig. 3. The first graph on the right-hand side is the
Born term. The second graph stands for the sum of

r

bo(s, t) M —

2
or bo(s, t) D

2
p, p

where bo(s, t) is the Born amplitude except for the
color structure and, for convenience, the coupling g'.
Above we introduced the components of the ampli-
tudes M = (MO, M&) and D = (D„,Ds) with states of
definite gauge-group quantum numbers in the ex-
change channel. The Born term corresponds to vec-
tor exchange in the direct channel. Projecting on
states with definite gauge-group [SU(Ã)] quantum
numbers in the exchange channel we have in the
Born approximation

Mol Born g i Mvl Born

N+1 2 ) N —1
D~ Isorn =

2N g, Ds la«n 2N

(4)

The contribution of the softest gluon (Fig. I) to the
amplitude is given by

the graphs of Fig. 1. In the following we obtain this
equation in terms of partial ~aves. A more extended
discussion of the arguments with more technical de-
tails is given in a further paper.

Using the fact that in double-loga'rithmic approxi-
mation the spinor structure of the Born term is main-
tained in higher orders' we write the amplitude as

r

g2 t lsl dlrr&2I . - s
(m, + m„)sgn(s) M,

The first term in the brackets is even in s and hence does not change the signature of the amplitude M(s/~rent ~ ).
The second term represents the signature-changing contribution. The matrices m, and m„are given by

N —1

2N
1 N2 —2

2N 2N

mg—

, 2N
1

N

0
N2 1

2N
(6)

The soft-fermion contribution (Fig. 2) is given by

s —i I' lsld&dpd rriK& s p —sn I sp
(2m) " (soP+rrq +ie) —sa'

'
IKz I sP

i labels the color-singlet and -vector channels 0 and V. The integration runs over the region

~ & —K~' & t" ~
—~ & ~ p & ~ ~ s~p = Ki', IsI & IKi'I, Is pl & IKi'I .
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Here the conservation of the signature P (Ref. 7) and
the conservation of the gauge-group quantum
numbers have been used.

In double-logarithmic approximation the
Sommerfeld-Watson transformation reduces to a
Mellin transformation. We write the soft-gluon con-
tributions Eq. (5) and the soft-fermion contributions
Eq. (7) in terms of the transformed amplitudes

f, (pp). For the soft-fermion contribution the calcula-
tion is analogous to the discussion of the enhance-
ment problem in Reggeon calculus. ' With the results
we are able to write the equation of Fig. 3 in terms of
fe(~).

For the positive-signature amplitudes we have
2

fp'(~) = a.~+,—[fp+(~)]',
M 8~ QJ

(9)

The coefficients are given by

N2 —1

2N

1av= — bv=N ~ cv=+12N'

N+1
b

(N+1)(N —2)
2N A

N —1
b

(N —1)(N+2)
2N

'
N

cs =—1

with the boundary conditions
2

f;+(op)~„„=a;~ (i =O, V, A, S) (10)

f+(o)) =a;~+b; g, — f+(o))1 d
GJ 8~ 0) dc'

+e, —[f+(~)]' (i = V, W, S)
8

The resulting equations for the negative-signature
amplitudes are more complicated due to the
signature-changing contribution in Eq. (5):

fo (~) =ao — fv(~) + —[fo (~)l
2 N2 1 g2 1 + 1 1 — 2

4m' 8m2 ~

fv(~) =av— fv(pp) — fo (~) +bv
g2 N2 4 g2 1 1 g2 1 g2 1 d l~fv(~) 1 + —[fv(~)]1 1

N 4~2 8 ~2 (g2 de 8m2 ~
(12)

fg (~) = ag ——,, fs (pp) +4, , [A (pp) 1 —,—[fg (~) l
g2 N+1 g 1 g 1 d 1 1

OJ 2 4% G9 8m' co 8%

fs (~) =as~ — f~ (~) +bsN —1 g2 g 1 [~fs (~)]—,—[fs (~)]1 1 — 2

0) 2 4~ 8~2 ~2 de 8w

f;+(pp) = ~ ln e ' &p--(ro/a). ) /2

Pi d co

2

0) = bg
b. ' ' 8~2

(i= VA, S)

f;+(co) has simple poles at the zeros of the parabolic
cylinder function Sp(x).9 This solution holds for
N ~ 3 if i = V,S and for N ~3 if i =A. Notice that
at N=2 fg= —f~~ and fpv= fsp. At N ~3 and for—

The Born contributions a~g'ice coincide for both sig-
natures because there is only a s-channel singularity
in lowest order.

fp+ (pp) has a square-root cut starting from
co=pop+=—[g'(N' —1)4n'N]' '. fp (co) has singulari-
ties to the right of coo+. This is clear for large N,
where f v (co) can be replaced by its Born term. It
can be checked that this property is maintained down
to N=2.

The solution for the other positive-signature chan-
nels is given by

~p(„r) b(r)
g'ao[fo (~) ] ' —~'(r) (14)

the symmetric (S) and the vector ( V) channels at
N =2 the zeros of Se(x) lie to the left of the ima-

ginary axis. The negative-signature amplitudes of the
same channels behave at co 0 like lnao.

We see that in all cases the negative-signature am-
plitudes have singularities to the right of the right-
most singularity of the corresponding positive-
signature amplitude, i.e., the negative-signature am-
plitudes dominate asymptotically.

The results can be extended to processes with
gluons or photons in the initial or final states.

The results are easily extended to the case
p,
' » —t. It is also possible to include phenomeno-

logically the contribution from the confinement re-
gion j KJ —A = 100 MeV. The color-singlet partial
waves contain moving meson Regge poles. The
proper generalization of a particle Regge-pole contri-
bution including the perturbative double logarithms
has the form (compare Ref. 10)
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fj(co) is the solution for the singlet channel with sig-
nature P. np(t) is some meson Regge trajectory.
b(t) is the residuum function.

We conclude that besides the Regge poles and cuts
known from phenomenology there are further singu-
larities of pure perturbative origin. In the double-

logarithmic approximation in the color-singlet chan-
nel the most important perturbative singularities are
fixed cuts starting in the right half plane. Because
the particle Regge poles move to the left with in-

creasing t there are regions where the perturbative
singularities become important.
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