PHYSICAL REVIEW D
q and the volume 26, NUMBER 5 1 SEPTEMBER 1982

Parametrization of \bar{p} invariant cross section in $p-p$ collisions using a new scaling variable

L. C. Tan and L. K. Ng Department of Physics, University of Hong Kong, Hong Kong (Received 22 April 1982)

It is found that to parametrize the \bar{p} invariant cross section in low-energy p -p collisions, a better scaling variable $\Delta X_R = X_R - X_R_{min}$ can be used instead of the usual radial variable X_R , where $X_{R,\text{min}}$ is the minimum of X_R for a given s and p_t . The ratio of the \bar{p} invariant cross section to the corresponding radial-scaling limit is seen to be independent of p_t , explicitly, and is monotonically and quickly approaching to one from above for increasing s.

Recently, Buffington et al.¹ reported their observa tion of an unexpected large interstellar \bar{p} flux in the low-energy range, where the median energy of the parent protons should be between 20 and 30 GeV (Ref. 2), if these \bar{p} 's are produced in the collision of cosmic rays with the interstellar medium. It is known that at low energies (\sqrt{s} < 10 GeV), the radialscaling (RS) limit is not reached and the existing accelerator data are insufficient. Hence a reexamination of the \bar{p} invariant cross section used in the calculation of interstellar \bar{p} flux is essential.

In order to avoid any distortion purely caused by kinematic effects near the \bar{p} production threshold, we have used a precise expression for the radial variable X_R in calculating the invariant cross section for $p + p \rightarrow \overline{p} + X$, i.e.,

$$
X_R = E^* / E_{\text{max}}^*
$$

= $E^* 2\sqrt{s} / (s - \overline{M}_X^2 + m_p^2)$, (1)

where m_p is the proton mass and $\overline{M}_x = 3m_p$ is the minimum mass of the undetected particle system (X) consistent with quantum-number conservation.

Taylor et al.³ have pointed out that the radial scaling limit for this inclusive reaction is always approached from the above for increasing s and is reached by $\sqrt{s} \sim 10$ GeV. Hence we have parameterized the \bar{p} invariant cross section $(E d^3\sigma/d^3p)_{RS}$ at \sqrt{s} greater than 10 GeV. In the low-transverse-momentum $(p_t = 0 - 0.8 \text{ GeV}/c)$ region, we have obtained

$$
(E d3 \sigma/d3 p)_{RS} = f(X_R) \exp[-(Ap_t + Bp_t^2)] , \qquad (2)
$$

where [f in units of mb GeV⁻²c³, A in (GeV/c)⁻¹, B in $(GeV/c)^{-2}$]

$$
f(X_R) = 3.34 \exp(-17.6X_R)\theta(0.5 - X_R)
$$

+ 2.10(1 - X_R)^{7.80} ,

$$
A = 3.95 \exp(-2.76X_R)
$$
,

$$
B = 40.5 \exp(-3.21X_R)X_R^{2.13}
$$
,

$$
\theta(U) = \begin{cases} 0, & U < 0 \\ 1, & U \ge 0 \end{cases}
$$

The behavior of $f(X_R)$ is a characteristic of several fragmentation models,⁴ and an exponential correction term is added to account for a possible increase of the \bar{p} cross section in the center region. The functional form for p_t is similar to those of other authors (e.g., Alper et al.⁵ and Guettler et al.⁶). Our param etrized result is shown in Fig. 1 together with the experimental data. The error for the important part of the experimental data has been given⁷ to be 15%. Figure 1 also contains the fitted curves given by Stephens⁸ and by Hillas⁹ for comparison.

FIG. 1. The \bar{p} invariant cross section at $\sqrt{s} \ge 10$ GeV. See Eq. (2) for our parametrized result.

26

1179 **1982** The American Physical Society

FIG. 2. Relation of the low-energy \bar{p} invariant cross section at \sqrt{s} < 10 GeV with its corresponding radial-scaling limit, (a) as a function of X_R , and (b) as a function of $\Delta X_R = X_R - X_{Rmin}$. Experimental data for $P_p = 12.5 \text{ GeV}/c$ from Ref. 13, 19.2 GeV/c from Ref. 14, and $24.0 \text{ GeV}/c$ from Ref. 15.

Further, based on the experimental data for \sqrt{s} $<$ 10 GeV we have examined the relation of the low-energy (LE) invariant cross section, $(E d^3\sigma/d^3p)_{\text{LE}}$ with its corresponding radial-scaling limit. This is done by plotting the ratio $(E d^3\sigma/d^3p)_{LE}$ $(E d^3\sigma/d^3p)_{RS}$ against X_R as shown in Fig. $2(a)$. It is seen that at the same s (corresponding to the same incident momentum of a parent proton, P_n), the data taken at different p_t are lying at the vicinity of a curve (i.e., each dashed line). This fact indicates that if we compare the variation of the longitudinal-momentum distribution with s, we may find that the transverse-momentum distribution will approach the radial-scaling limit earlier. From Fig. $2(a)$, this indication is not convincing, because the scattering of data points apparently exceeds the experimental error. Furthermore, the two data points taken at $P_p = 12.5$ GeV/c fall on the curve representing $P_p = 19.2 \text{ GeV}/c$, and this is a serious obstacle for extrapolating the \bar{p} invariant cross section to the \bar{p} production threshold.

On the other hand, a trend can be observed from Fig. 2(a) that the ratio $(E d^3\sigma/d^3p)_{LE}/(E d^3\sigma/d^3p)_{RS}$ decreases systematically for increasing p_t at the same

 X_R . This indicates an important behavior of X_R , i.e., for a given p_t and s, X_R should possess a minimum value.

$$
X_{R \min} = (p_t^2 + m_p^2)^{1/2} / E_{\max}^* \quad . \tag{3}
$$

Thus $X_{R \text{ min}}$ increases with increasing p_t and m_p and with decreasing s. Therefore, the effect of $X_{R,min}$ would be more pronounced for massive-particle production (i.e., \bar{p} production in this case) in the lowenergy range.

Consequently, a new variable $\Delta X_R = X_R - X_R$ min is introduced in place of X_R , and Fig. 2(a) is replotted as shown in Fig. 2(b). From the latter, it is clear that the data sets taken at different s are well separated, and each set is consistent with a specified curve as shown.¹⁶ This shows that there is a correct threshold behavior, i.e., the ratio $(E d^3\sigma/d^3p)_{LE}$ / $(E d^3\sigma/d^3p)_{RS}$ is monotonically and quickly approaching 1 from the above for increasing s. As this ratio is explicitly independent of p_t , parametrization becomes much easier. If we define $Q = \sqrt{s} - 4m_p$, where $4m_p$ is the \sqrt{s} value at \bar{p} production threshold, then the expression for the ratio becomes as follows:

$$
(E d3 \sigma/d3 p)_{LE}/(E d3 \sigma/d3 p)_{RS} - 1 = 6.25 \times 10^{-3} \times [\exp(-0.592Q) + 493 \exp(-5.40Q)]
$$

× [\exp(6.08 + 2.57\Delta X_R + 7.95\Delta X_R²) - 1] exp[3.00\Delta X_R(3.09 - Q)] . (4)

The solid curves presented in Fig. 2(b) have been obtained from the above equation.

In the present parametrization, we have not used the Serpukhov data,¹⁷ because their measurement was made relative to the pions on aluminum targets for the extreme forward direction. Instead, we require that at \sqrt{s}

FIG. 3. The average multiplicity of \bar{p} 's in $p + p$ collisions. The solid curve is obtained by using the present parametrized invariant cross section and σ_{inel} from Ref. 9.

= 10 GeV, the ratio $(E d^3\sigma/d^3p)_{LE}/(E d^3\sigma/d^3p)_{RS}$ reaches one by a 15% margin.

From our parameterized \bar{p} invariant cross section, we have calculated the average multiplicity of \bar{p} 's in $p + p$ collisions,

$$
\langle n_{\bar{p}}(p+p) \rangle = \frac{2\pi}{\sigma_{\text{inel}}} \int \int_{P_I} \left(E \frac{d^3 \sigma}{d^3 p} \right) d\theta^* dE^* \quad , \tag{5}
$$

where the inelastic cross section σ_{inel} is taken from Ref. 9. In Fig. 3, we compare $\langle n_{\overline{p}}(p + p) \rangle$ values obtained by various authors. It is shown that our values are lower than those of Antinucci et al . ¹⁸ by about 10% (except for Serpukhov energies), though

- ¹A. Buffington et al., Astrophys. J. 248, 1179 (1981).
- 2L. C. Tan and L. K. Ng (unpublished).
- ³F. E. Taylor et al., Phys. Rev. D 14, 1217 (1976).
- 4W. Ochs, Nucl. Phys. B118, 397 (1977).
- ⁵B. Alper et al., Phys. Lett. 47B, 275 (1973).
- ⁶K. Guettler et al., Phys. Lett. 64B, 111 (1976).
- ⁷J. Szabelski et al., Nature 285, 386 (1981).
- 8S. A. Stephens, Astro. Space Sci. 76, 87 (1981).
- ⁹A. M. Hillas, in Sixteenth International Cosmic Ray Conference, Kyoto, 1979, Conference Papers (Institute of Cosmic Ray Research, University of Tokyo, Tokyo, 1979),

TABLE I. The average multiplicity of \bar{p} 's in $p + p$ collisions.

the latter is usually taken as a standard. However, Whitmore²⁰ has already pointed out that the average \bar{p} multiplicity given by Antinucci et al. may have an -10 % overestimation because of the inaccuracies in extrapolating to small p_t . Consequently, what we have obtained as given in Table I should be closer to reality.

Some success for explaining the low- p_t behavior of hadron collisions on the basis of the quark or parton models has been reported. However, detailed discussion on the threshold characteristics of hadron collisions, particularly for massive-hadron production, is still lacking. Hence, it is of interest to explore the theoretical implication of this new variable ΔX_R and its applicability to other hadrons.

We have used the present parametrized \bar{p} invariant cross section to calculate the interstellar \bar{p} production spectrum, and the result will be published elsewhere.²

Vol. 6, p. 13.

- ^{10}P . Capiluppi et al., Nucl. Phys. $\underline{B78}$, 189 (1974).
- ¹¹J. R. Johnson et al., Phys. Rev. D 17, 1292 (1978).
- 12E. Yen, Phys. Rev. D 10, 836 (1974).
- ¹³C. W. Akerlof *et al.*, Phys. Rev. D $\frac{3}{2}$, 645 (1971).
- 14J. V. Allaby et al., CERN Report No. 70-12, 1970 (unpublished).
- 15 J. V. Allaby et al., in Proceedings of the Fourth International Conference on High Energy Collisions, Oxford, 1972, edited by J. R. Smith (Rutherford Laboratory, Chilton, England, 1972), Vol. 2, p. 285.

¹⁶The consistency of the data points in Fig. 2(b) with the P_p curves is quite good at larger ΔX_R . At smaller ΔX_R , the spread of data at various p_t may be due to the correction term added to $f(X_R)$ in Eq. (2), which has not achieved the required accuracy for low-energy \bar{p} 's. However, in view of the large error in the existing data, no further im-

provernent has been made.

- ¹⁷Yu. M. Antipov *et al.*, Phys. Lett. $34B$, 164 (1974).
- 18 M. Antinucci et al., Lett. Nuovo Cimento 6, 121 (1973).
- ¹⁹L. C. Tan and L. K. Ng. J. Phys. G $\frac{7}{1}$, 123 (1981).
- ²⁰J. Whitmore, Phys. Rep. 10, 273 (1974).