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WKB approach to the Schrodinger equation with relativistic kinematics

P. Cea, P. Colangelo, G. Nardulli, G. Paiano, and G. Preparata
Istituto di Fisica Universita di Bari, Bari, Italy

and Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy
(Received 5 April 1982)

We develop a WKB approximation technique to the Schrodinger equation with rela-
tivistic kinematics for central confining potentials. This approach gives simple formulas
for the eigenvalues of the equation with a large class of potentials; numerical results are
in good agreement with the results obtained with other methods even for small quantum
numbers. Approximate expressions for the eigenfunctions are also obtained and the inter-

polation among different regions is discussed.

I. INTRODUCTION

The theoretical analysis of heavy-quark systems,
prompted by the e+e data, has been carried out
so far in terms of the nonrelativistic Schrodinger
equation supplemented by a variety of more or less
phenomenological potentials. ' It is thus that the
Schrodinger equation has crept back, several years
ago, in the realm of high-energy physics; and the
results are certainly remarkable. It would therefore
seem natural to try and extend such treatment to
other hadronic states, which do not involve heavy
quarks such as the "charmed" and the bottom"
quarks. At this point, however, one encounters the
difficulty that one does not know how to deal with

quark systems which are far from the nonrelativis-
tic regime and furthermore a phenomenological
choice of the potential is seen to imply an intoler-

ably large number of new parameters.
Both difficulties have been recently removed in

the theoretical framework of anisotropic chromo-
dynamics (ACD), where it has been possible to
show that (i) the hadronic states are color singlets
inade out of confined colored quarks; (ii) the had-
ronic dynamics can be calculated in terms of a sys-
tematic perturbative expansion of the quark-pair-
creation term of the Hamiltonian; and (iii) the
lowest-order terms in the expansion involve the di-
agonalization of the unperturbed part of the Ham-
iltonian, and give rise to relativistic Schrodinger-
type equations for hadronic wave functions with a
well defined (and calculable) potential. The first
results regarding the solution of these equations for
quarks of different flavors have been published in
a recent paper, where it is shown that a very satis-

factory spectrum emerges for rnesons (all known
states are reproduced within a mass range of 100
MeV) in terms of five parameters only: p, "the
string tension, " and the four quark masses
m„=my, ms, m„and lb.

Owing to the success of this first step and the
peculiar smoothness character of the interaction
among quarks (for instance its linearity at large
distance), we believed it very useful to develop a
WKB approach to the solutions of this kind of
problem. The reason for this is essentially practi-
cal, as our calculational program will necessarily
involve a simple and mathematically manageable
representation of the spectrum and of the wave
functions for hadrons whose excitation is arbitrari-
ly high.

In the following we shall see that our %KB ap-
proach has indeed the desired characteristics of
simplicity and expedience, and we are confident
that it will be of valuable help not only in the ac-
complishment of the ACD program but also in the
general analysis of the spectrum equations for
confined-quark systems.

The plan of the paper is as follows. In Sec. II
we formulate our problem in its simplest form and
for any potential; Sec. III deals with the WKB
spectrum for the S wave, while the complete S-
wave WKB solution for linear potential is given in
Sec. IV. The extension of our method to higher
partial waves is presented in Sec. V. The applica-
tions to a class of interesting and phenomenologi-
cally meaningful potentials comprise Sec. VI.
Some brief concluding remarks are given in Sec.
VII. Finally some details of our calculations are
reported in the Appendix.
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II. THE SCHRODINGER EQUATION WITH RELATIVISTIC KINEMATICS

Our starting point is the following equation:

(2.1)[(—A'-V'+m')'"+ V(r)]g(r) =&/(r),
where the square root of the operator ( fi V—+m ) is defined through the following spectral representa-
tion:

( fp f2+m 2}1/2g( r ) d 3&'ei i (r —. r ')/s( k2+m 2)1/2q( r }
(2r/%)

As for V(r') we make the physically relevant assumptions that it is central [i.e., V(r) =V(r)] and that it in-
creases without bound as r increases (i.e., it is a confining potential).

If we now decompose the exponential e' " ' ' " in spherical harmonics [ji(kr) are the spherical Bessel func-
tions]

t'

e'"' "=4m+i —F (k)F (r) (2.3)

it can be easily checked that g(r ) takes on the following form:

P(r)=I"i (i"')@i(r),

and that 4i(r) satisfies the integral equation
r

2 k'
[V(r)—E]@i(r)+ f dr'r' f dk (k +m )'/ji ji — 4i(r')=0. (2.5)

By introducing the notations

ui(r) =rCi(r)

Xi(p) = pj's(p),

we can rewrite (2.5) as
r

[V(r) E]ui(r)+ —f dr' f dk(k +m )'/ Xi Xi ui(r') =0 . (2.6)

The problem we must solve is to find solutions of (2.6) subject to the boundary conditions

ui(0) =0 (2.7)

ui(r) —& 0. (2.8)

In order to simphfy our discussion of the WKB solutions of Eq. (2.6} we shall need to consider also the re-
gion r &0. If we set V( r) = V(r), then from (2—.6) we obtain the "parity" relations

ui( —r)=( —1) +'ui(r) . (2.9)

III. THE %KB S-%AVE SOLUTIONS: SPECTRUM AND EIGENFUNCTIONS

For S wave (l =0) Eq. (2.6) becomes

00 oo kr . k~'
[V(r) —E]uo(r)+ —f dr' f dk g (k)sin —sin uo(r') =0,

0 0 (3.1)
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where g(k) =(k +m )'/. We look for solutions of this equation of the form

( r) en((r)e (i/A)n(r)u0r =e e

By making use of the "parity" relations (2.9), (3.1) can be rewritten as

[V(r) E]en( "e(i/A' )n(r)+ dk dr~ ( k)&(i/A)k. (r r')en—)(" )e(i/A)n(r') 0
2mB 00

(3.2)

(3.3)

o'(r')+ —o.', (r') =k, r'=r .
l

(3.4)

In the WKB limit (iri~0), the double integral

appearing in (3.3) can be evaluated by the saddle-

point method. The saddle point is easily seen to be
determined by the equations

u((r) = [E—V(r)]'/
p

1
Xsin p (x}dx+-

fg r

(3 9)

At the zeroth order in fi we obtain

[cr'(r)'+m']'/'=E —V(r) . (3.5)

un(r) = [E—V(r)]'/2
2 p

Note that the square root appearing in (3.5) is, by
definition, non-negative. Thus, unlike the nonrela-

tivistic case, the %KB approximation applies only

in the region r & rM, where rM is defined by

r
Xexp f ip(x)

i
dx

(3.10)

V(re�)=& ~ (3.6)

An equation for 0.
~ can be obtained by develop-

ing the function g(k)=(k +m )' around the
saddle point (3.4). We thus get

2 1/2

0 + . 0& +Pl
l

f p(x)dx =n(n+ —,) . (3.11)

The spectrum is determined by imposing the boun-
dary condition u (0)=0, which, according to (3.9),
becomes

2'
»' I(o'+(I//i)o', ] +m I

(3.7)

IV. COMPLETE S-%VAVE &KB SOLUTION
FOR THE LINEAR POTENTIAL

Equations (3.5) and (3.7) determine the (r and (r(
functions up to first order in A. Note that, as in

the nonrelativistic case, the %'KB method fails
around the "classical" turning point rp, defined by

V(rp}=Z —m .

The WKB solutions of (3.3) in the regions

(I): 0&r &rp,

(II): rp &r &rM

(3.8)

can be matched in the standard fashion ' and one
obtains

u(p)= dr'sin r' u(r'), —
0

(4.1)

we find that u (p} satisfies the equation

The method just described provides us (approxi-
mate) eigenvalues and eigenfunctions for the equa-
tion (3.1) in the region r K [0,rl] (with the excep-
tion of a small neighborhood of the "classical turn-
ing point" rp). In the case of a linear potential
V(r) =p, rifi, the WKB method allows us to write
a solution also for r & rM. Let us see how. The
starting point is again (3.1). By defining the
Fourier transform

[(p +m )' —E]u(p)+ f dr V(r) f dp'sinp sin "u(p')=(},

which can be extended to the interval ]—ao, + ap [:

(4.2)
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+oo + oo

[(p +m )'~ —E]u(p)+ J dr V(r) j dp'e'~""~ ~ )u(p')=0. (4.3)

In order to apply the saddle-point method to the
evaluation of the double integral, we set

(4.4)

G(p)=
2 I [E—(p +m-')'~ ]dp . (4.6)

We observe that, in analogy with the findings of
Sec. III, the %KB method gives a solution for
u(p) only for p & (E —m )'~ . However, this re-
sult can be used to derive the large-r behavior of
u (r). The function u (r) is given in fact by

u (r) = I sin —u (p)dp
oo pp (4.7)

and in the large-r region the integral is dominated
by the small-p region, where u(p) is known and
given by (4.S) and (4.6). So that we can conclude
that in the region (III) r »E, u (r) is given by

00 pp'
un)(r)= sin —sinG(p)dp . (4.8)

The asymptotic behavior of u (r) can be evaluat-
ed by the Laplace method of asymptotic estimates
(after having deformed the contour in such a way
that it avoids the cut of the integrand occurring at
p =im). One thus gets

With this definition (4.3) is formally identical with
(3.3) if we substitute mme and
V(r)~(p +m )'~ . Looking for solutions u(p)

&][» (~.ys)x( )=e e ' ~, we obtain the results

u(p)=A sinG(p), BE[0,(E —m )'~ [,
(4.S)

(4.11)

for large n coincides with (3.11).

The approach described in Secs. III and IV can
be naturally extended to the case of 1@0,i.e., to
the solution of Eq. (2.6).

We look for WKB solutions of the type

~,(~) o(r)u)r=e X) (S.l)

where XI are the Riccati-Bessel functions, which,
for large values of the argument, behave as

0
Xg

r

cr . 0 . o. l~
JI ~sin

fi A A 2

(S.2)

g 0
O'I

cr tm~—cos
fi 2

correctly extrapolates to the %KB solutions in the,

three regions defined above, thus realizing a
smooth approximation to the large-quantum-
number solution of (3.1) over all the r range. By
evaluating (4.10) in the regions (I) and (II) by the
saddle-point method (see the Appendix), it is easy
to see that it coincides with (3.9). In the region
(III) the Laplace method of asymptotic expansions
can be used, and again (4.10) is seen to behave as
(4.9). Thus we conclude that (4.10) provides a
WKB approximation to the solutions of (3.1)
without restrictions. Incidentally, we observe that
the quantization condition

u (0)= I cos[G (p)]dp =0

8
un) (r)

P' —+ oo P'
(4.9) Note that, for o(r) »A[i(1+1)]'r, (S.l) can be

written as
fhis is the correct behavior of the wave function,
as can independently be proved by studying the
general properties of Eq. (3.1) for large r.

By collecting all the results obtained, we remark
that the &KB method provides eigenfunctions in
the regions (I) 0 & r & (E m), (II) (E m—) & r &E, —
and (III) r »E. We would hke to show now that
the function

(S.3)

(S.4)

whereas for o'(r) «A'[l(1+1))' we are only in-
terested in the regular solution

r

~, (r) a(r) . ' o(r)
uI r =e ' — j)

u (r) = I cos ——G (p) dp
[ fi In the latter region, Eq. (2.6) has the solution
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(5.5)

o(r) —+ pr,
r —+0

cr, (r) ~ lnC =const .
r~p

(5.6)

where p =(E m—)'/ . This can be checked by
direct substitution. Solution (5.4) is compatible
with (5.5) provided

In the region o (r) »A'[l (l + 1)]'/, using the repre-
sentation (5.3), we encounter the problem already
solved in Sec. III. Thus we may write

r &rp'. u~ (r)= [E—V(r)] sin F(r)+
p

ro &r &rM: u~"'(r)= [E—V(r)]'/ exp —— Ip(x)
I
dx

p fi '0

(5.7)

where ro, rM, and p (x) are defined in Eqs. (3.8},
(3.6), and (3.10), respectively, and

fo
E(r)= f p(x)dx . (5.8)

„„[E—V(r)]'"
u("(r) =D ( —1)"+' ' ' X([g(r)+/I],

[ ( )]1/2

(5.9)

In order to connect regions (I) and (II) we rewrite
u~"(r) in the form

l

equation for

(5.14)

~~(p) =&X~[G(p)], (5.15)

where G (p) is defined in (4.6). For larger r, the
small-p region dominates and u~(r) is given by

u&(p) = f dr'X& u~(r')
o

and for p & (E —m )'/, one obtains the solution

where X~(p) =pj~(p), and (n is any integer)

A = —f p(x)dx+ ——+nm. ,0 2 4

g(r)= f p(x)dx .
(5.10)

ui(r)- f dpXi
"

Xi[6(p)] . (5.16)

It is easy to check that Eq. (5.9), supplemented by
the relations (5.10), coincides with (5.7) for any in-

teger n. Furthermore, (5.9) coincides with u&'(r) if

C =D( —1)"+'V E
p

(5.11)

f
P'0 l 3

0
p(x)dx =m. n'+ —+—

2 4
(5.13)

where n'=(n —1) is a non-negative integer. For
r &~E the %KB solution for a linear potential can
be obtained by a method analogous to the one em-

ployed in Sec. IV. One considers the Schrodinger

(5.12)

The latter equation gives rise to the quantization
condition in the form

VI. APPLICATIONS

V(ro}=E—m~ —mq . (6.2)

The region where the WKB approximation is ap-
plicable is 0&r &r~, where r~ is given by

V«M }=E—
I
m 1

—mz I
. (6 3)

The %KB wave functions for l =0 are as follows:

In view of the applications to concrete physical
problems it turns out that it is important to gen-
eralize (2.1) to

[( AV +—m) )'/ +( fi V +m—2
}' V(r)]g(—r)

=Ef(r) . (6.1)

This equation describes in ACD the general qq sys-
tem to lowest order.

Instead of (3.8), the equation for the turning

porn«o is
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(1) 0(r(ro. u, (r)=
[E—V(r)] —(m& —mq )

4 2 2 2 1/2

[E—V(r)]
D . 1

sin — p (x)dx +-
@ g r

(6.4)

(lr) r, (r&rM: u„(r)=
[E—V(r)] —(m$ —m2 )

4 2 2 2

[E—V(r)] 2v p A' '0
exp ——

i p (x)
i
dx (6.5)

where

2 2 2 22 1/2
[E—V(r)]' m, +m, (m, —m, )

4 2 4[E —V(r)]
(6.6)

The spectrum for l =0 and i+0 is obtained by substituting (6.6) in (3.11) and (5.13), respectively.

A. The linear potential

Choosing V(r) =p r, the spectrum is given by

2 2 2 2 2 2 /
~E m, m2)/p (E lJ2r) m 1 +m2 (m 1 m2 3

dr =n.(tt +l/2+ —,),
0 4 2 4(E pr)—

which for m~ ——mz ——m reduces to (n, l =0, 1,. . . )

(6.7)

' 1/2
E E2 —m
2 4

E2—min + —
2

—1
2m 4m 2 =p n(n+l/. 2+ —„). (6.g)

From these equations one sees that for light quarks
(m t, 2 «p) one gets a set of linear Regge trajec
tories without odd daughters. In Fig. 1 we report
the Chew-Frautschi plot for the uu system (choos-
ing @=0.57 GeV and m„=100 MeV). The fol-
lowing facts ought to be stressed.

(i) The linearity of Regge trajectories for a linear
potential is a peculiar property of relativistic
kinematics. This property is lost in the nonrela-
tivistic limit.

(ii) The WKB approximation is a very good ap-
proximation (within l%%uo) for the linear potential

also for n =0 and I =0. This has been checked by
comparing our results with the numerical calcula-
tion performed by the Multhopp method.

(iii) Our knowledge of the meson spectrum clear-
ly indicates that the linear potential describes
correctly only the long-range part of the confining
potential.

(iv) For high excitations (n, l) we can compare
the structure of the ACD wave function with the
one predicted in quark geometrodynamics
(QGD). ' Figures 2(a) and 2(b) show a comparison
between the two theories for n =7 and l =0, for
both the wave function and its square. We note
that in the average the QGD distributions resemble
very closely the ACD ones. Deviations are, as ex-
pected, concentrated at the "bag boundary, " i.e.,
r -r~. The latter fact explains the adequacy of
the QGD description of high-energy phenomena.

I

0 10 20 80 40 50 BO 70 $0 SO +s

FIG. 1. The Chew-Frautschi plot for the uu system
(m„=100 MeV, p=0.57 GeV) showing the linearity of
the trajectories and the absence of odd daughters.

8. V(r) =pr

This class of potentials has been considered,
within the nonrelativistic Schrodinger equation, by
many authors. ' In particular, Martin" considers
the potential
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S.S 5.0 7,5
I I

10.0

V(r) =A +Br (6.9)

with a=0.1. By applying our WKB formulas to
the potential (6.9) and with the parameters of Ref.
11 we obtain the results which are compared wit
those of Ref. 11 in Table I. As we can see our

nt with those ofWEB results are in good agreement wi os
Martin for heavy quarks (good nonrelativistic ap-
proximation), whereas for the s quark the
discrepancies can be understood yd b Martin' s
neglect of relativistic effects. We would like to

rFIG. 2. ( ) Comparison between the %KB eigenfunc-
tion of the Schrodinger equation with relativistic
kinematics and linear potential V(r) =pr) = r {dashed line)

d the solution calculated within the QGD bag modelan e so
lid line). (b) Comparison between the squareuare of the

WKB eigenfunction with linear potentia & as e in

(so i ine .

and the s uare of QGD-bag-model solution (solid line).
Values of the parameters are radial quantum number
n =7, angular quantum number l =0, m~ =m& ——0. 18.
All quantities are in units of string tension.

C. Linear plus logarithmic potential

It has been pointed out that a linear potential
1 not explain the (approximately equal

splittings between the low-lying members o e

for r & lI it is linear, but for short distances
it behaves logarithmically. This poten ia
following expression:

V(r) =P r gECc(Ar)+ Vc—, (6.10)

where Vc is a constant shift and Ez(x) is a Bessel
function, w ic orh' h for small x diverges logarithmical-

' ~

ly, while at large x dies off exponentially. In ig.
'

1 (6.10) is plotted with realistic values
for the arameters p, g, and A, (Ref. 9) (see later .
In order to apply our WKB formulas we

or t e parame
we note that

V(r) satisfies the requirements o Sec. , anSec. III, and that
the logarithmic potential can be treated as a limit
of a r potential for a—+0. Solving the spectrum
equation numerically, for the following parameters

P=0.4 GeV, g =0.7 GeV,

A, =0.6 GeV, Vo ———0.2 GeV

m =m~ ——200 MeV, m, =300 MeV,Q

m, =1.S GeV, mb ——4.8S GeV,

(6.11)

stress, however, that this kind of potential, with

approach for large r, as they fail to give the experi-
ntall observed linearity of Regge trajectories.

We believe in fact that, from the phenome g-nolo-
ical point of view, a linear potential plus some de-
viation at short distances and spin-spin corrections

accurately account for the most important aspects
of the meson spectrum (irrespective o e qu
flavor).

cc states
m, =1.8 GeV

results (Ref. 11) and WKB approximation for the spectrum of qq statesTABLE I. Comparison between Martin's results (Re . an
r r )". A =—8.064 GeV, B=6.8698 Ge, ro —— eV =1 GeV ', u=0. 1. Results are in GeV.with the potential V{r)=A +B(rlro) .

bb statesss states
Martin %'KB mb ——5.174 GeV Martin %KBm, =0.518 GeV Martin WKB

E(1++)

1.02
1.42
1.634

0.78
1.16
1.42

1/l(1

yuI

Average P state
g' (D state)
yiv

3.095
3.687
4.032
3.502
3.787
4.28

2.98
3.60
3.96
3.35
3.60
4.21

Y
~I
~II
~III
~IV

1P state
2P state

9.46
10.025
10.36
10.60
10.76
9.861

10.242

9.38
9.99

10.33
10.57
10.75
9.74

10.17
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V(r) a TABLE II. WKB results for the spectrum of qq
states as a function of quantum numbers n, l. The po-
tential is V(r)= Vo+P'r —g Ko(k,r) [see Eqs. (6.11) and

(6.12)]. Results are in GeV. We present also predic-

tions for radial excitations of the tt state for two dif-

ferent m, masses.

0 1 2 3 4

FIG. 3. Plot of the potential V(r) =Ii'r g'K—o(A r)
+ Vo. Values of the parameters are P=0.4 GeV,

g =0.7 GeV, A, =0.6 GeV, Vo ———0.2 GeV. Units of r
are in GeV

we derive the results reported in Table II. We
have also calculated the tt spectrum for two dif-
ferent values of the top-quark mass (m, =20 and
25 GeV).

In view of the absence of spin-spin splitting the
results we obtain reproduce quite satisfactorily the
experimental data. In particular, the nearly equal
splittings of the lowest members of the J/P and Y
families, and the linearity of light-quark Regge tra-
jectories are especially noteworthy.

.99
1.66
2.15
2.55
2.90

1.11
1.78
2.25
2.64
2.98

3.13
3.68
4.06
4.38
4.65

uu states
1.37 1.66
1.93 2.15
2.36 2.5S
2.73 2.90
3.06 3.21

CC

3.45
3.88
4.22
4.52
4.78

states
3.68
4.06
4.38
4.65
4.91

ss states
1.48 1.78
2.03 2.2S
2.45 2.64
2.81 2.98
3.14 3.29

1.93
2.36
2.73
3.06
3.36

2.03
2.45
2.81
3.14
3.43

3.88
4.22
4.52
4.78
S.03

2.15
2.55
2.90
3.21
3.49

2.25
2.64
2.98
3.29
3.57

4.06
4.38
4.65
4.91
5.14

D. The linear plus magnetic potential

The first investigations on the structure of the
meson spectrum in @CD have shown that, to
lowest order in quark-pair creation, the potential
consists of a linear part plus a magnetic interac-
tion. Leaving aside its spin-dependent part, which

can be treated perturbatively, the S-wave magnetic
potential has a highly nonlocal structure, which in

momentum space is given by the following expres-

sion:

20
25

9.50
10.02
10.33
10.57
10.78

39.39
49.32

bb states
9.82 10.02

10.19 10.33
10.46 10.57
10.68 10.78
10.88 10.97

tt states
39.90 40.17
49.84 50.10

10.19
10.46
10.68
10.88
11.07

40.36
50.29

10.33
10.57
10.78
10.97
11.15

40.52
50.44

V,s(k) = —— arcsinh -+arcsinh1 p . k . k

~ k Ptl )

(6.12}

We obtain the following wave function:

(6.14)u(r)= I cos ~ G(p) dp, —
o

+V,s(k) . (6.13)

This potential can easily be treated by adding it
to the kinetic term in the Schrodinger equation,
and by applying our previous WKB methods to the
modified kinetic operator:

O(k) =(k'+rn ')'"+(k'+m, ')'r'

G(p)=, J dt[E —O(t)] . (6.15)

In the large-E limit u (r), as given by Eq. (6.14),
can be evaluated once more by the saddle-point
method; we thus recover the WKB wave function
with o and o

&
given by Eqs. (A2) and (A5} of the
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Appendix. The eigenvalue equation is, as expected,

f dp cos[G(p)]=0, (6.16)

which can be also solved by the saddle-point
method in the large-quantum-number limit.

Once again we obtain results which agree within
a few percent with those obtained by solving the
Schrodinger equation numerically by the Multhopp
method. This comparison is presented in Table
III, where we limit ourselves to the two lowest qq
states; as a matter of fact, for higher quark masses
the contribution of magnetic potential becomes
negligible as compared to the linear one.

VII. CONCLUSIONS

Tables I, II, and III are a relevant summary of
the effectiveness of the %KB method, when ap-
plied to look for solutions of Schrodinger equations
with relativistic kinematics, with a class of confin-
ing realistic potentials.

Although we have concentrated our attention in
Sec. VI mainly on ACD-inspired potentials, the
particular simplicity afforded by the WKB method
in dealing with confining potentials of considerable
complexity could also be of some aid in those
research programs, such as the ones carried out in
Ref. 13, where a realistic qq potential requires an
extremely structured expression.

From work in progress we can already see that
with the %KB method high-energy behavior of
ACD can be analyzed in a most effective and
physically transparent fashion. But to this we
shall return in future publications.

0
1

2
3

5

6
7
8

9

mq
——m~ ——0. 18

1.032
3.015
4.385
5.487
6.433
7.273
8.036
8.739
9.394

10.010

1.180
3.039
4.395
5.493
6.437
7.276
8.038
8.741
9.396

10.011

mq
——m~

——0.31
1.796
3.580
4.862
5.912
6.821
7.634
8.375
9.060
9.701

10.304

1.878
3.595
4.869
5.916
6.824
7.635
8.376
9.061
9.702

10.303

solution

u(r)= f dpcos ~—G(p)
0 fi

(Al)

where

TABLE III. Comparison between WKB method and
Multhopp's method results (Ref. 4) for the spectrum of
the two lowest qq states (uu and ss), with the potential
V=p r +V,~, where the magnetic potential V,s is
given by Eq. (6.12). All results are in units of "string
tension" p.

Multhopp

APPENDIX G (p) = f [E—g (k)]dk (A2)

In this appendix we want to describe in some de-
tails the application of saddle-point techniques to
the study of Eq. (3.1). We restrict ourselves to the
case in which V(r) =p r/A but g (k) arbitrary (this
generalization is useful in the presence of the mag-
netic potential studied in Sec. VI D).

Moreover we want to prove explicitly that the

coincides in the region 0 & r ~ r~ with the previous
solutions.

Let us start with Eq. (3.3) which reduces to Eq.
(3.1) by using the "parity" relations (2.9). The r'
integral in (3.3) can be evaluated by the saddle-
point method:

1, i, fidr'exp —o(r')+ —o ~(r') —r'k
l

1 1 E fg, ie,
, ~ exp —o(ro)+ —o)(ro) —rok e2~ [ ~

o "(ro)+(&h')oj'(ro)
~

]' '
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where 0&
——m/4 and rp is the saddle point defined by the equation

a'(rp)+ —.o &(ro) =k .
l

The k integral in Eq. (3.3) can be evaluated once again by the saddle-point method. One obtains

(A4)

1 dkg(k)e ' i A'

exp —o(ro) +—o,(rp )+k (r —ro )
&2@k [ ~

o"(ro)+(A'/i)o I'(ro)
~

]'r'

g(k')
I'

drp
~

a"(rp)+(&h)aI'(rp)
~

i (8)+82)

t

Xexp —„' o(ro(k'})+ —.o.,(ro(k'})+k'[r —ro(k')], (A5)

where 02———m/4 and the saddle point k* is obtained by

o=r —rp(k*)+ o'(rp(k ))+ . o J(rp(k*)) —k
l dk

(A6)

which, using (A4) reduces to

rp(k*}=r . (A7)

Now we consider

g „drp da (rp)+ . 0']'(rp)
l pp= p ~p

drp
& (ro)+ . a](rp)

l

d a'(ro)+ —.o )(rp) =1,
l

(AS)

where the last equality in Eq. (AS) is a conse-
quence of Eq. (A4).

By using result (AS) and the fact that 8~+82——0
we obtain, in zeroth order in A,

I

g (k) around the saddle point defined by Eqs. (A4)
and (A7). Equation (3.7) is generalized as follows:

V(r) E+g cr'+——.o)
g(cr') =E —V(r), (A9)

which must be compared with Eq. (3.5). Equation
(A9) must be solved in order to obtain o'(r) Let.
us observe, however, that for V(r) =p re we get,
from (A9),

o(r)= I cr'(r)dr

o."=0 (A 11)
fi dg
2l dk k=~'+(sh)~',

from which we obtain, by considering O(A') terms
and by using (A9),

1 dg
g'(k) dk

—1/2

=o'(r) r — + f g(o')do'EA

p p

d dg
dr dk k =cr'

+ const. (A10) (A12}

In order to obtain cr~(r) we develop the function which gives
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C

(
i
dg idk

i k )'

For the case g(k)=(k +m ),Eqs. (A13) and

(A9) solve the problem in the form given in Eq.
(3.9).

Finally we evaluate the integral given by Eq.

ls' ——&+g (p') =0, (A14)

which coincides with Eq. (A9). So it is easy to
find that in the large-E limit

(Al); once again we use the saddle-point method.
The saddle point p' is defined by the equation

1 Eu(r)=, , exp i p r 2p —+ 2 g(p)dp+-
(g'(p') l'" (A15)

By taking into account that Eq. (A14) coincides
with (A9) for V(r)=p r/A and that the exponen-
tial factor in (A15) is equal to

e (i /A)cr(r)+i n/4

[compare with Eq. (A10)], we conclude that, at the
same level of approximation, the function u (r)

I

given by Eq. (Al) coincides with the WKB results.
Note added in proof. The angles 8~ and Hz

which appear in Eqs. (A3) and (A5) are not equal
to n./4 and —n/4, respectively, for all the values

of k. However it is always true that 8~+ 82 ——O.

Thus the results of the Appendix are unaffected.
We thank Professor M. Villani for a discussion on
this subject.
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