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We analyze some of the detailed consequences of the recently proposed grand unified
theory based on SO(10)~)& SO(10)H subject to a discrete V~H symmetry. The model at-
tempts to unify flavor, color, and hypercolor, and provide a multigenerational grand uni-
fied theory. It predicts SU(4) as the unique unitary group for hypercolor. With the fun-
damental fermions belonging to the (16,10) 6 (10,16) irreducible representation of
SO(10)v)& SO(10)H, there are exactly four generations of ordinary fermions (hypercolor
singlets). The dynamical symmetry breaking which gives masses to the vector bosons of
the standard electroweak theory is accomplished through the condensates of a single gen-
eration of hyperfermions belonging to the sextet of SU(4). We show that the Weinberg
relation M~ ——Mzcos0 will be satisfied provided the hypercolor dynamics satisfies certain
constraints. Present in the model are the much desired extended-hypercolor gauge bosons
whose radiative transitions between the ordinary fermions and the hyperfermions give rise
to both masses and mixing of the ordinary fermions; hence the generalized Cabibbo an-

gles are in principle calculable. We also analyze the pseudo-Goldstone bosons and the
rare decay modes of the E and D mesons. With the hyperfermions in the TeV range and
the extended gauge bosons in the 1000-TeV range, we show that there is no conflict in the
model with any known experimental bounds on such decays. We establish a
hypercolor —Pati-Salam-color symmetry at medium energies.

I. INTRODUCTION

In this paper we combine two currently popular
ideas in particle theory, namely grand unification
of the fundamental strong, electromagnetic, and
weak interactions, and the possible existence of a
new superstrong hypercolor gauge interaction. We
shall be particularly interested in hypercolor not
only as a possible origin for a superstrong force
which could lead to the dynamical symmetry
breaking of unified theories, but also as an extra
group-theoretical degree of freedom which will
provide us with a new group-theoretical structure
to both label and relate the various generations of
fundamental fermiOnss. Thus we shall seek to en-

large grand unifying theories to include hypercolor
interactions as well.

With regard to grand unification we remark that
while there is as of yet no theoretical unanimity or

experimental preference regarding the choice of
grand unifying group there is a lot of support in
the current literature for grand unification based
on the group SU(5). ' This support derives from
the fact that SU(5) involves the smallest possible
number of additional vector bosons beyond those
of SU(3)c && SU(2)L, XU(1), thus making SU(5) the
simplest choice. Its immediate shortcoming is that
it puts the fundamental fermions into many differ-
ing 5* and 10 representations. It is possible to par-
tially remedy this by embedding the theory in
SO(10) provided some so far unobserved right-
handed neutrinos which are to be singlets under
SU(5) are introduced. The 16 representation of
SO(10) then nicely accommodates 16 two-
component fermions which transform as
5* S 10 EB 1 under SU(5). Each set of 16 fermions
of this type is known as a generation or family.
Thus SO(10) puts all the members of a given gen-
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eration into a single irreducible representation.
However it still treats the different generations as
separate irreducible representations under the
group. Consequently SO(10), like its SU(5) sub-

group, is strictly a single-generation grand unifying
theory which can thus not adequately address
questions such as how many generations there are
or in what way they mix with each other. With
regard to this generation problem two points of
view can be adopted. One is to say that the very
fact that SO(10) [or SU(5)] is a single-generation
theory could be an indication that it is simply the
wrong group for grand unification altogether;
while the other is to take SO(10) as a good starting
point with the generation structure then hopefully
emerging after SO(10) is itself embedded into a yet
larger group again. In the absence of an equally
popular alternative to SO(10) we shall thus only

explore the latter alternative in this paper, though
we believe that the former alternative merits fur-
ther study.

With regard to hypercolor we recall that the pri-
mary motivation for hypercolor was to understand
the origin for a force which could be strong
enough to produce a typical weak-interaction mass
scale of the order of 100 GeV. ' It was argued
that hypercolor might act as a scaled-up version of
quantum chromodynamics (QCD) which is itself
thought of as being responsible for producing a
scale of the order of 100 MeV for the usual strong
interactions by breaking the strong-interaction
chiral symmetry dynamically. Using this as-yet-
poorly-understood analogy hypercolor would then

be expected to break the weak-interaction flavor

symmetry dynamically and provide a mass scale
for the intermediate vector bosons of the
SU(2)L, XU(1) theory. Indeed it was noted that
the Weinberg mixing formula M~ ——Mzcos0 would

follow naturally (i.e., group theoretically) if the hy-

percolor force caused hypercolor-carrying fermions

(hyperfermions) to form fermion bilinear conden-

sates which acquired nonvanishing vacuum expec-
tation values.

While these features of the hypercolor scheme
are very attractive, the scheme nonetheless fails in

one significant respect. In the conventional
Weinberg-Salam theory a fundamental Higgs field

gives masses to both the intermediate vector bosons
and the usual fermions (now the hypersinglet fer-
mions of the hypercolor scheme). In the dynami-
cal hypercolor scheme the hyperferm]ton conden-
sates which are to replace the fundamental Higgs
fields give 100-GeV masses to the intermediate
vector bosons and TeV masses to the hyperfer-

mions, leaving the usual fermions massless. While
this already constitutes a considerable though ac-
ceptable departure from the structure of the con-
ventional Weinberg-Salam theory, it also leaves
open the question of where do the usual fermions
in fact get their masses from. To this end yei
another even stronger interaction has been pro-
posed, extended hypercolor, which would then
serve to mediate processes in which the now mas-
sive hyperfermions could then contribute radiative-

ly to the self-energies of the usual fermions. The
hypercolor theory as currently formulated is thus
still somewhat unsatisfying in that it appeals to a
still poorly understood dynamics, gives no indica-
tion of what the hypercolor group actually is [save
that it be larger than SU(3) so that renormal-
ization-group effects would make it stronger than
QCD in the TeV region], and needs to be augment-
ed by an additional extended hypercolor interac-
tion. Thus further guiding principles are needed in
order to make hypercolor a more restricted and
hence more predictive theory. In this paper we
shall provide such principles by using the group
structure of hypercolor and extended hypercolor in
order to solve the generation problem. We believe
that this now puts the whole hypercolor idea on a
more secure footing.

Our aim is thus to enlarge the SO(10) grand uni-

fying theory to include hypercolor interactions as
well. The immediate possibility of course would be
to embed SO(10) into SO(10+4n) groups. Howev-
er this choice has been shown to be afflicted with
serious phenomenological difficulties since it has to
introduce unobserved conjugate 16* spinor repre-
sentations and can only admit of two separate gen-
erations of usual fermions. Motivated by our re-
cent work in semisimple grand unification we
have instead proposed to embed SO(10) into the
semisimple SO(10)y X SO(10)& group. Here
SO(10)v is our initial "vertical" single generation
SO(10}while SO(10)& is a new "horizontal" SO(10)
symmetry which as we will see will connect the
various generations. Further we will identify
SO(10)~ as the complete hypercolor group, so that
SO(10)& will contain both hypercolor-carrying and
flavor-carrying (generation-changing} gauge bosons.
Thus one single group structure restricts the
hypercolor- and the flavor-changing interactions
simultaneously. There is of course initially some
freedom in specifying the horizontal group factor.
However the simple imposition of a discrete
vertical-horizontal symmetry, which we make, then
unambiguously forces the horizontal group to be
SO(10) just like its vertical counterpart, while also
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fixing the otherwise unknown horizontal coupling

gH to be equal to the vertical gq at the grand unifi-
cation mass scale. Moreover, as we will see below,
there will also be vestiges of the discrete symmetry
in the low-energy structure of our theory following
the symmetry breaking. This will then lead to an
attractive approximate low-energy color-hypercolor
symmetry.

While we have now fixed the horizontal symme-
try, our model is not yet completely specified since
we still have to classify the fermions according to
an appropriate irreducible representation of
SO(10)~ XSO(10)H and still have to identify
which subgroup of SO(10)H is to serve as the hy-
percolor group. Whatever generators of SO(10)H
are then left over will serve to count generations.
Thus because of the embedding into an extended
hypercolor SO(10)H group the size of the hyper-
color group and the number of independent genera-
tions of fermions are simultaneously fixed.

In classifying the fermions the obvious embed-
dings of the 16 of SO(10)~ would be in (16,16*) or
(16,16) under SO(10)vX SO(10)H. Because of the
discrete symmetry however the (16,16*) would
have to be accompanied by a (16', 16) to thus give
a real representation which is not appropriate for
fermions. The (16,16) would be acceptable on this
score but was found not to be acceptable phenom-
enologically as it could only lead to two ordinary
generations of usual fermions. Because of this we
instead proposed to classify the fermions according
to the (16,10) representation which would then be
accompanied by a (10,16) representation to main-
tain irreducibility under the discrete symmetry.
The 10 would not ordinarily be considered in
grand unified models since by itself it would be
real. However when combined with the 16 it leads
to a complex (16,10) 6 (10,16) representation
which now is appropriate for fermions. Given this
classification of fermions it was found that there
was only one choice for the hypercolor snbgroup
which could lead to both a unitary hypercolor
group and to more than two ordinary generations
of fermions. Specifically, we decomposed SO(10)H
accordlBg to SO(6)H X SO(4)H to obtain

16=(4,2)+(4*,2'),

10=(6,1)+(1,4)

with the (16,10) 6 (10,16} then containing alto-
gether four generations of fermions [i.e., fermions
which transform as the 16 under SO(10)v] which
were SO(6)~ singlets. Thus identifying SO(6)~ as
the hypercolor group enables us to obtain the pre-

viously ad hoc choice of SU(4) uniquely as the hy-
percolor symmetry while yielding at the same time
exactly four generations of usual fermions. As we
noted in Ref. 8, the emergence of four generations
occurred only because we identified SU(4) with the
SO(6}H subgroup of SO(10)H using the SU(4),
SO(6) homomorphy. Had we instead identified
SU(4) through the SO(8)H subgroup of SO(10)H
[using the connection between SU(N) and SO(2N)
groups] we would only have obtained two genera-
tions. Thus in our model the hypercolor group is
special because it is both a unitary and an orthogo-
nal group, a situation which only occurs for SU(4).
It is this feature of our model which makes SU(4)
special and not merely the fact that because SU(4)
is larger than SU(3) it becomes strong at a higher
energy than QCD.

Having chosen to identify SO(6)H as the hyper-
color subgroup and SO(4)H as the generation-
counting subgroup of SO(10)~, we can decompose
the adjoint representation of SO(10)H according to
SO(6)H X SO(4)H to obtain

45 =(15,1)+(1,6)+ (6,4) . (1.2)

The (15, 1) and (1,6) gauge bosons are the genera-
tors of SO(6)H and SO(4)H, respectively, while the
additional (6,4) gauge bosons carry both hypercolor
and flavor. These latter gauge bosons couple the
hyperfermions to the usual fermions, and thus en-
able the usual fermions to acquire radiative
masses. Our SO(10)y XSO(10)H model thus au-
tomatically contains the previously ad hoc
extended-hypercolor gauge bosons of Ref. 5.
Moreover, since the different generations of fer-
mions all belong to one irreducible representation
of SO(10)y XSO(10)H, the spontaneous breakdown
of the model leads not merely to fermion masses
but also to fermion mass mixing. Thus we natur-
ally obtain Cabibbo mixing in our model by tak-
ing advantage of the correlation between hyper-
color and the generation structure which our model
possesses. Hence we exploit the group-theoretical
structure of hypercolor in a nontrivial manner to
make the hypercolor concept highly predictive.

In this present work we shall report on all the
various interesting aspects of our theory, to com-
plete our analysis of the central features of the
model. This paper is organized as follows. In Sec.
II we present the general group-theoretical struc-
ture, and the classification of all the fermions and
gauge bosons of the model. We identify the
relevant hyperfermion condensates needed for the
dynamical symmetry breaking. In Sec. III we
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show how the %einberg mixing relation

M~ ——Mzcos8 arises in the model. Since the
weak-interaction local flavor group is the chiral
SU(2)L XSU(2)g XU(1) group the analysis needed

to obtain this mixing relation dynamically is sub-

stantially different from that given in Refs. 3 and
4 where only the Weinberg-Salam weak interac-
tions are local. In Sec. IV we discuss the genera-
tion of the light-fermion self-energies and of Ca-
bibbo mixing. In Sec. V we identify the Goldstone
and pseudo-Goldstone bosons of our model, and in
Sec. VI we show how the model successfully meets
the constraints due to rare flavor-changing decay
processes. In Sec. VII we catalog all the various
symmetry-breaking scales, and in Sec. VIII we

present our conclusions. Finally for the sake of
completeness we discuss briefly, in an appendix,
the other alternatives for the choice of hypercolor
and generation-counting subgroups of SO(10)H.
Some of these alternatives are theoretically permis-
sible, but not as attractive as the one we have dis-
cussed in detail in this paper.

(2.1)

E(4,2, 1;1,2,2),

C
&e C

(2.2)

E(4",1,2;1,2,2},

with the complete classification of the fermions
and gauge bosons being given in Table I. Physical-

ly on the vertical side we identify the two SU(2)
groups as SU(2)L XSU(2)z and the SU(4) as the
Pati-Salam vector color group which extends QCD
to include the leptons as a fourth color. ' Thus for
the usual fermions of the first generation we iden-

tify

II. STRUCTURE OF THE MODEI. C
Qg

Our model is an SO(10)v XSO(10)II gauge
theory in which the fermions belong to a left-
handed (16,10) 8 (10,16) representation and the
gauge bosons to the (45, 1) 8 (1,45} representation.
It is useful to decompose each SO(10) according to
SU(4) X SU(2) XSU(2). Under this decomposition

where R, G, and 8 denote the three QCD colors
red, green, and blue. The 15 generators of SU(4)
are then the 8 SU(3)c generators, 6 generators
which mix quarks and leptons and one extra diago-
nal generator Y=(8 I.)/2 with c—urrent

TABLE I. Classification of the fermions and gauge bosons.

[SU(4) X S&(2)X S&(2)]v X [S&(4)X SU(2) X SU(2)]H

15
6
1

1

15
6
1

1
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i =R, G,B

(2.3)

Denoting by Tz, and TR the third components of
SU(2)L and SU(2)z, respectively, we identify the
electric-charge generator as

Q=TI +T&+ —,(B L),— (2.4)

so that

Yws=Tz+ —,(B L)— (2.5)

i.e., hyperfermions in the 6 of SU(4) and four gen-
erations of usual fermions (i.e., hypercolor singlets).
In the following we shall denote the hyperfer-
mions, whose SO(10)i content is the same as that
of the usual fermions, by E,U;,E,D;. It is impor-
tant to note that the hyperfermions are generation
singlets. Thus, as we shall see in the following,
hyperfermion condensation will not lead to

is the U(1)ws generator of the Weinberg-Salam

group SU(2)L, . XU(1)ws. With regard to the verti-
cal gauge bosons we note also that the (6,2, 2;1,1, 1)
gauge bosons are the leptoquark bosons which lead
to proton decay and hence possess masses of the
order of the grand unification 10' -GeV mass scale.

On the horizontal side we identify the two SU(2)
groups together as an SO(4) which counts and
links the generations. The SU(4} group is the hy-

percolor group. Thus the (16,10) contains the fol-
lowing particles:

hyperfermions- (4,2, 1;6,1,1)

+i4* 1 2'6 1 1,'
(2.6)

usual fermions- (4,2, 1;1,2,2)

strangeness-changing processes. Further, the
(10,16), whose presence is required by the discrete
symmetry, contains no hypercolor singlets at all,
and hence leads to no other observable particles,
assuming of course that hypercolor confines all its
hypercolor-nonsinglet particles.

With regard to the horizontal gauge bosons we
note that the (1,1, 1;6,2, 2) gauge bosons carry both
hypercolor and flavor and hence connect a hyper-
fermion with a usual fermion to mediate the self-

energy diagram of Fig. 1. The model thus natural-

ly possesses the extended hypercolor gauge bosons
which had previously been introduced by hand.
The (1,1,1;1,3, 1) and (1,1,1;1,1,3) gauge bosons
lead to flavor-changing processes in the tree ap-
proximation. These will readily be seen to be easi-

ly suppressible in the following.
The symmetry breaking of the model is achieved

first by fundamental Higgs fields (which might be
an expression of our ignorance of yet stronger and
stronger farces), and then in the TeV region by
dynamical symmetry breaking. The force respon-
sible for dynamical symmetry breaking is the ex-

change of the (1,1,1;15,1, 1) hypergluons. In our
left-handed theory they can only produce
Majorana-type masses l(L Cl(tL which are sym-
metric in the internal SO(10)v XSO(10)H symme-

try indices. When viewed from the classification
according to the vertical SU(2)1 X SU(2)~ sub-

group this mass term will include both Majorana
and Dirac masses. Since hypergluon exchange is

not to lead to dynamical syrnrnetry breaking of hy-

percolor itself there can be no condensation of a
(16,10) fermion with a (10,16) fermion. Further,
bilinears built out of a pair of (10,16) fermions will

play no significant role in the following. (See how-

ever Sec. VII.) The key condensates are contained
in a pair of (16,10) bilinears and are

(4 2, 1;6,1, 1)X(4,2, 1;6,1,1)~(10,3, 1;1,1, 1)+.(6, 1,1;1,1,1),
(4*,1,2;6, 1, 1)X(4*,1,2;6, 1, 1)—+(10",1,3;1,1,1)+(6,1, 1;1,1, 1),
(4', 1,2;6, 1, 1)X (4,2, 1;6,1,1)~(L5,2,2;1,1,1)+(1,2,2;1,1, 1) .

(2.7)

On the vertical side we decompose SU(4) according
to SU(3)c to obtain

10=6+3+1,
6=3+3*,
15=1+3+3*+o .

(2.8)
V
I'4

Thus the only fermion bilinears which can leave
SU(3}c unbroken are

FIG. 1. Radiative graph that generates the light-
fermion masses.
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bL ——(10,3, 1;1,1,1),
(2.9)

III. DERIVATION OF
THE %EINBERG MIXING RELATION

In their original analyses Susskind and Wein-

berg identified a possible origin for the Weinberg
mixing relation

Mg =1
Mzcoso

(3.1)

in a dynamically broken Weinberg-Salam theory of
the weak interactions. They discussed the situation
in which the condensate potential possesses a glo-
bal chiral flavor SU(2)i, XSU(2)s XU(1)I +z in-
variance [the U(1)l. +R generator is the (& —I ) /2
current of Eq. (2.3)] with its Weinberg-Salam
SU(2)l XU(1)ws subgroup being given a local ex-
tension [the U(1)ws generator is that of Eq. (2.5)].
The fermion Dirac mass term (to be labeled X)
transforms as the (2,2',0) 6 (2', 2,0) representation
of the chiral group. If this mass term breaks diag-
onally down to a residual SU(2)l +g XU(1)L, +z

With electric charge to also be unbroken we recog-
nize Al and hz as Majorana masses for the hyper-
neutrinos X, while g is a Dirac mass for the hyper-
fermions N, U;, E, D;. Since the hyperfermions
have the same SO(10)i properties as the usual fer-

mions we note that the hypercolor-singlet conden-

sates h~, A~, and 7 have the same group-
theoretical content as condensates built out of the
regular fermions. Now precisely such condensates

(at the usual fermion level) were introduced by one

of us recently to obtain the Weinberg-Salam theory

by breaking chiral theories dynamically. " Thus all

of the group theory of those works will carry over

into the present theory with the bonus that now a
new hypercolor dynamics has been introduced to
provide a basis for the dynamical symmetry break-

ing in the first place. Thus hl and Az which

were previously introduced as neutrino-pairing
terms are now reinterpreted as hyperneutrino-

pairing terms with all the group-theoretical struc-
ture remaining intact. Since that group theory is
somewhat different than that discussed by
Susskind and by Weinberg in their attempt to ob-

tain M~ ——Mzcos8 dynamically we shall now dis-

cuss the M~ ——Mzcos8 problem in our model in
some detail.

subgroup [i.e., if (UU) =(DD)], then the dynami-
cal potential produces just the right three Gold-
stone bosons required to give masses to three of ihe
foul lntermedlate vectol' bosolls. Slllce tile SU(2)L
Weinberg-Salam gauge bosons transform as a trip-
let under this residual unbroken SU(2)l +ii sub-

group they acquire degenerate masses by the Higgs
mechanism. This then yields Eq. (3.1) after the
mixing with the U(1)ws gauge boson. The residual
global SU(2)I +a symmetry of the condensate po-
tential thus provides a group-theoretical origin for
the Weinberg mixing relation. '

The above standard discussion is deficient in
three respects. The first is that the same residual
SU(2)I +R symmetry which enforces Eq. (3.1) also
entails an isospin invariance for the up and down

hyperquarks to yield MU ——Mii and hence (as we
shall see in Sec. IV) m„=m~, a mass relation
which is known to be violated experimentally. The
second difficulty is that any attempt to split MU
and Mii would not ]ust spoil Eq. (3.1) but would

also reduce the residual symmetry of the conden-
sate potential to Tz+ii XU(1)l.+„. Then the po-
tential would generate more Goldstone bosons than
could be removed by the Weinberg-Salam gauge
bosons. Finally, the above analysis does not by it-
self even yield the usual Weinberg-Salam
phenomenology at all in the event that the full

SU(2)l. XSU(2)& XU(1)l.+& group is given a local
extension, since then both the fermion mass term
and the gauge-boson sector would be parity con-
serving. The grand unified theory under discussion
contains the full SU(2)l XSU(2)z XU(1)L+~ as a
local vertical subgroup of SO(10)v. Thus all of the
above problems need to be addressed on our model.
It turns out that the general resolution of all of
these difficulties has been proposed recently. "'
Since the results of this analysis are applicable to
our model we shall briefly review the important as-

pects.
The key point of Ref. 12 was to note that while

a residual symmetry yields both p=1 and

MU -—-M» we cannot immediately say by how
Inuch these relations are not satisfied when the
symmetry is only approximate, this being a
model-dependent statement. Reference 12 then
constructed an explicit model in which Eq. (3.1)

was found to be approximately valid while MU and

M~ were free to be very different from each other.
For our purposes here we note that the model con-
sidered in Ref. 12 was none other than a local
chiral SU(2)l XSU(2)ii X U(1)l +z weak-
interaction theory.

With regard to this local chiral theory we have
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~g &&X)&~g (3.2)

and in which the fermion masses were split by an
arbitrarily large amount. Explicit counting shows
that because there are now seven gauge bosons me
now have just the right number of gauge bosons to
remove the six Goldstone bosons generated by the
breaking pattern of Eq. (3.2) while simultaneously
leaving the photon massless. Thus in a local chiral
theory we can split the fermion masses without
having any superfiuous Goldstone bosons. Finally,
evaluating the gauge-boson mass matrix we find all
the usual Weinberg-Salam phenomenology with
Eq. (3.1) being accurate to order

T

~W X'1+0, +0 --;
MzcosO

(3 3)

Thus in the tree approximation there is no residual
symmetry at all and yet p only deviates from unity
by a small amount dependent on the relative
strengths of the left- and right-handed currents of
the model.

Having now obtained a good limit in which p is
close to unity and in which the fermions are far

to introduce some new additional symmetry break-

ing which first breaks the local chiral flavor group
down to SU(2)L, XU(1)ws. Now precisely such a
breaking has recently been introduced through the
idea of neutrino pairing" in which a Higgs field
which transforms as a pair of right-handed neutri-
nos acquires a vacuum expectation value. This
neutrino pairing term (to be labeled hei) transforms
as the (1,3, —1) representation of SU(2)L, XSU(2)s
XU(1)L, +z and hence breaks both SU(2)g and

U(1)l +z (since it breaks lepton number), while

leaving SU(2)L and Q unbroken. Hence according
to Eqs. (2.4) and (2.5) it leaves SU(2)i, XU(1)ws
unbroken, and thus exactly breaks the local chiral
theory down to the Weinberg-Salam model. More-
over, since the neutrino-pairing term transforms as
a difermion, another fermion bilinear, this breaking
can also be achieved dynamically.

This neutrino-pairing phenomenon has been
studied in detail in Ref. 11 not in the dynamical-
symmetry-breaking situation itself, but rather in a
fundamental-Higgs-field theory. The model con-
sidered in Ref. 11 contained Higgs fields which
transform as all the available fermion bilinears,
namely X and b,q given above and a left-handed
counterpart b,L which transforms as the (3, 1,—1)
representation. In Ref. 11 (and also Ref. 13) a
tree-approximation minimum to the Higgs poten-
tial was found in which

from degenerate, Ref. 12 then studied the radiative
corrections to the tree approximation. It mas
found that there was sufficient approximate residu-
al symmetry in the theory so that Eq. (3.3) contin-
ued to hold while the fermions stayed far from de-
generate, no matter how big the coupling constants
were. Thus the Weinberg mixing relation can be
obtained in a local chiral weak-interaction theory
to any required degree of accuracy with the fer-
mion masses being unconstrained.

Returning now to the SO(10)v XSO(10)& model,
we observe that the hyperfermion Dirac mass term
X of Eq. (2.9) contains exactly one (2,2', 0)
8 (2', 2,0) piece under SU(2)I XSU(2)„
XU(1)L +z which is an SU(3)c singlet, while the
hyperfermion Majorana mass terms hl and A~ of
Eq. (2.9) contain exactly one (3, 1, —1) 8(1,3, —1)
piece under SU(2)L, X SU(2)g XU(1)I.+z which is
an SU(3)c singlet. Thus our SO(10)vXSO(10)&
model contains just the right condensates required
for the analyses of Refs. 11 and 12, this therefore
being a highly nontrivial feature of our theory.
Since dynamical symmetry breaking is equivalent
in content to a fundamental theory plus its radia-
tive corrections the analysis of Ref. 12 mill also
hold dynamically. Thus if the hypercolor interac-
tions of the horizontal sector of our theory are able
to produce a hyperfermion bilinear condensate
breaking pattern of the form of Eq. (3.2) dynami-
caliy (which of course we can make no comment
on without a detailed knowledge of the dynamics
of the actual breaking mechanism), then all the
usual Weinberg-Salam phenomenology (and espe-
cially p=l and m„/m~ far from one) will obtain
dynamically in the vertical sector of the theory.

We would like to make three additional remarks
about our breaking pattern. First, we note that Eq.
(3.2) has a clear experimental signal in that the
right-handed and left-handed neutrinos acquire
very different Majorana masses, with this disparity
between the left- and right-handed sectors of the
theory being due to the way we have spontaneously
broken parity in Eq. (3.2). Further, since b,~ and
X both arise dynamically via the exchange of the
same hypergluons we would not expect their vacu-
um expectation values to be overwhelmingly dif-
ferent. Hence we may anticipate that the right-
handed neutrinos mill acquire GeV region masses.
Thus in models in which local chiral theories are
broken dynamically by hypercolor interactions
there will be relatively light Majorana neutrinos, so
that such models can be tested at normal energies
way below the 10' -GeV grand unification mass
scale. Moreover, our neutrino mass spectrum
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stands in sharp contrast to that obtained in the
standard treatment of the SO(10)i model. There
SO(10)i is first broken down to SU(5) by a right-
handed neutrino Majorana mass, which has to be
of order 10' GeV. ' As we shall see below in
more detail, in our model we break SO(10)i down
to SU(4) X SU(2)L XSU(2)z instead and never go
via SU(5) at all. Hence in our scheme the right-
handed neutrinos are decoupled from the 10' -GeV
region physics altogether and are thus able to be
relatively light particles.

Our second remark concerns a subtle interplay
between parity nonconservation and hypercolor
conservation in our model. As we have just seen,
in order to break SU(2)r XSU(2)g XU(1)L++
dynamically we have to break with b,z, a dihyper-
fermion. On the other hand, we do not want to
break hypercolor itself, so that the dihyperfermion
must be a hypercolor singlet. Since the product of
two fundamentals of SU(4) contains no singlet, we
see that we must not put the hyperfermions into
the 4 of SU(4) of hypercolor, the "obvious" choice.
Indeed, in our model we did not put the hyperfer-
mions into the 4 but rather into the 6 [as they go
into the 10 of SO(10)~], so that b,ii does nicely
contain a hypercolor-singlet piece. Now our origi-
nal choice of the 10 was determined for completely
different phenomenological reasons [the classifica-
tion according to the (16,10) 8,(10,16) representa-
tion is the only possible one for the fermions in
our model which is complex, which contains no
particles with bizarre quantum numbers, and
which possesses the usual SO(10)i structure. See
Ref. 8]; thus we see that the fact that b,~ is a hy-

percolor singlet is then a highly nontrivial property
of the model. Moreover, we will see below that the
radiative corrections due to extended hypercolor
are also only nonvanishing because the fermions
are classified according to the 10 of SO(10}&.
Thus the model provides strong support for the use
of the vector representation of orthogonal groups
in grand unified theories, rather than just of the
overwhelmingly popular spinor representation.

Our third and final remark concerns a subtle in-

terplay between electric charge conservation and
color conservation in the model. As well as serv-
ing to break SU(2)L XSU(2)ii on the vertical side
the difermion condensates b,ii and KL also break
the vertical SU(4)i color group of Pati and
Salam, ' as they both transform according to the
10 of SU(4) i . Now we note that the 10 of SU(4) i

only contains one SU(3)c singlet. Thus there is
only one breaking pattern which does not lead to
@CD breaking. However, within each 10 of

SU(4}i the SU(3)c singlet is the unique piece
which is electrically neutral. Thus if the difer-
mions do not break electric charge then only the
dihyperneutrinos can acquire an expectation value,
so that @CD is then necessarily not broken. Thus
we correlate the conservation of electric charge
with the lack of spontaneous breaking of @CD
which is very interesting. Finally, to summarize
we note that if hypercolor exchange is clever

enough to break according to Eq. (3.2) we will ob-

tain the relation M~ ——M, cos8 in our theory to any
required degree of accuracy of order X /hz . In
this way the hypercolor dynamics produces all the
usual SU(3)c XSU(2)L, XU(1)ws phenomenology.

IV. THE LIGHT-FERMION SELF-ENERGIES
AND THE CABIBBO ANGLE

We turn now to a discussion of the mass-
generation mechanism for the usual fermions in
our model. As we have seen, the hyperfermion
condensates are responsible for the dynamical sym-
metry breaking. They give masses to the
Weinberg-Salam gauge bosons by giving Dirac
masses MU, Mii, M~, and Mz (to be referred to
collectively as Miip) to the hyperfermions. Specifi-
cally, these condensates produce a triplet of hyper-
pion Goldstone bosons with decay constant F.
These hyperpions then become the longitudinal
components of the gauge bosons and give them
masses of order eF by the Higgs mechanism so
that F is typically of order 125 GeV. Further,
these hyperpions give a mass of order i' to the
hyperfermions via the Goldberger- Treiman rela-
tion, where v is the coupling of the hyperpions to
the hyperfermions. If ~ takes the same value here
as it does for the coupling of ordinary pions to or-
dinary fermions we would expect MzF to be of or-
der 1 TeV, so that 1 TeV is the typical mass scale
of hypercolor theories.

While the hyperfermion condensates give masses
to the hyperfermions, we note that in a pure hyper-
color theory these condensates do not give masses
to the usual fermions, since these fermions carry
no hypercolor and hence undergo no hyperstrong
interaction in the first place. However, in our ex-
tended hypercolor model, the usual fermions can
get masses through the radiative corrections of Fig.
1 which involve the hyperfermions and the addi-
tional (1,1,1;6,2, 2) extended hypergluons of the
model. Specifically these extended hypergluons (to
be labeled E;, a =1, . . . , 6, i = 1, . . . , 4) can cou-
ple a (4,2, 1;6,1,1) hyperfermion H to a usual
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(4,2, 1;1,2,2) fermion f; with an interaction I.a-

grangian W of the form [suppressing all SO(10)v
indices]

~=gH gE (f }'j.,II II —Xd' }
ai

(4.1)

since the extended hypergluons carry both hyper-
color and a generation index. We thus recognize
W as the required interaction of Ref. 5, with the
intermediate hyperfermion's in the graph of Fig. 1

then providing a mass scale for the usual fermions.
Since the dynamical symmetry breaking is only an
effective TeV region phenomenon we evaluate the
graph of Fig. 1 by cutting off the loop integration
at MHF. Momentarily ignoring SO(10)H indices
we thus expect light-fermion self-energies m of or-
der

(16,10) 8 (10,16) representation of SO(10)v
&& SO(10)H for the completely different set of
reasons previously outlined.

When SO(10)i X SO(10)H is spontaneously bro-
ken the SO(4)H group will necessarily have to be
broken since there are no known massless gauge
bosons associated with it. This will then both give
masses to and mix the E; gauge bosons into new
mass eigenstates

E~;=QAijE j
J

(4.3)

gE;(B};jEj QE——~j,(Mk) E~k .
aij

(4 4)

so that the gauge-boson squared-mass matrix 8 can
be written in terms of its eigenvalues (Mk) as fol-
lows:

3
MHF~ =gH

MEHG
(4 2)

Thus

(B}ij=g(A ') i(kM )iAkj .
k

(4.5)

up to kinematic factors. Here MEHG denotes the
mass of an extended hypergluon. From Eq. (4.2)
we thus typically expect MEHG to be in the 1000-
TeV region. Thus given the interaction of Eq.
(4.1) the usual fermons acquire their masses by ra-
diative corrections in a straightforward manner in
our model.

We would like to stress the group-theoretical
structure of our model which permits the interac-
tion W to exist in the first place. On the vertical
side we recall that the extended hypergluons are
singlets. Consequently the hyperfermions and the
usual fermions must both transform the same way
under SO(10)i in order to couple in W, and this
exactly occurs in our model as they both transform
as the 16 of SO(10)i . Further, on the horizontal
side we note that the extended hypergluons
transform according to the vector representations
of SO(6)H and SO(4)H, and hence can only couple
H~ to f; if the fermions also transform according
to a horizontal vector representation. Moreover,
since the extended hypergluons have to belong to
the adjoint representation of SO(10}H their classifi-
cation according to the SO(6}H hypercolor vector
representation is unique. With the usual ferrnions
necessarily being hypercolor singlets, hypercolor
conservation then forces the hyperfermions to also
be in the vector representation of SO(6}H if they
are to couple in W at all. Thus the very existence
of the interaction of Eq. (4.1} is seen to be a highly
nontrivial property of the model since we had al-
ready been obliged to introduce the vector 10 in
the classification of the fermions according to the

g;= +A&fj, (4.7)

we can completely rediagonalize W as

gH g Eai(gi}jPa +a}AEi) .
ai

(4.8)

From Fig. 1 the interaction of Eq. (4.8) leads to a
light-fermion mass matrix

3 (A )ikAkj
gfi~ijfj =gH MHF gfi —

2 fj .
ij ijk Mk

(4.9)

From Eq. (4.5) we see that

[m],j gH MHF [(B) ']——ij (4.10)

to thus relate the ferrnion mass matrix to the
gauge-boson squared-mass matrix. This is a par-
ticularly useful relation since the gauge-boson
squared-mass matrix 8 is given directly by the
symmetry-breaking mechanism. In terms of the
basis of Eq. (4.7) we can also write the fermion
mass matrix as

With this diagonalization the interaction of Eq.
(4.1) is replaced by

~=gH +~A ') jE j(f }'j.& II )'jj")—
alJ

(4.6)

In terms of a new basis for the usual fermions
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with the mass eigenvalues mk satisfying

3

mk =gH —
2

Mk
(4.12)

Thus we see that in our model the spontaneous
breakdown of SO(4)H leads not only to light-
fermion masses but also to fermion mass mixing,
and necessarily so in fact since the four generations
are all in the same irreducible representatio~ of
SO(10)II to thus share a common group theory.
The light fermions mix through the same angles as
do the gauge bosons according to Eq. (4.7) while

the diagonal light-fermion masses stand in the
same ratios as the gauge-boson inverse-squared
masses according to Eq. (4.12). The model thus
provides an in-principle mechanism to calculate in-
tergenerational mass splittings and the generalized
Cabibbo angles which mix the generations.

We shall refer to the eigenstates of Eq. (4.7) by
the sets of generations (u, d, e,v, ), (c,s, jtI, ,v„),
(t, b, r, v, ), and (h, l,o,v ). The masses of Eq. (4.12)
are the so-called weak-interaction current masses
and wrltlng out Eq. (4.12) 111 detail, we see tllat tile
masses satisfy

gH MU =m„M, =m, M, =m, M, =m„M, ,2 3 2 2 2 2

g& MD ——mdM~ ——m, M2 ——mbM3 ——mIM42 3 2 2 2 2

(4.13)

g~ ME ——m, M~ ——m&M2 ——m, M3 ——m M42 3— 2= 2= 2= 2

gH MIv m(v, )MI ————m (vz)M2 ——m (v, )MI

=m(v )Mg

with each generation having its own associated
mass scale Mk . Hence the generations w&11 be
reasonably separated in mass.

Typical mass scales can be inferred from the lep-
ton masses. With ME of order 1 TeV and g& of
order unity we expect M~ to be of order 1000 TeV,
M2 of order 100 TeV, M3 of order 10 TeV, which
suggests M4 is of order 1 TeV. With m„and md

thought to be in the few-MeV region, we find ML)

and MU to both be of order 1 TeV (but not equal
to each other as we discussed in Sec. III). Conse-
quently we also take M~ to be of order 1 TeV.
With these mass values we can now estimate the
other fermion masses. From Eq. (4.13) we obtain
many mass formulas. The most interesting ones
involve the charged fermions of the three so far
observed generations, viz. ,

We will discuss the validity of these relations
below after we discuss Cabibbo mixing in detail.

In the neutral fermion sector the right-handed
hyperneutrino acquires a Majorana mass KING (»
from the b,II condensate. [For simplicity we set

AL, ——0 in Eq. (3.2)]. Through the radiative corrm-
tions of Fig. 1 the four ordinary neutrinos then
also acquire right-handed Majorana masses which
are diagonal in the same generation-space basis as
the Dirac masses of Eq. (4.13) and are given by

gH'[~a(» j'=~a(ve)MI'=~II (vt, )MI'

=XII(v,)M3 =ALII(v )Mg

For each ordinary neutrino its Dirac and right-
handed Majorana masses will mix in its mass rna-
trix to induce a left-handed Majorana mass. As
noted in Sec. III, b,II (v, ) is in the GeV region
[since b II (» is in the TeV region] and so these fi-
nal observable left-handed Majorana masses such
as bL (v, ) will typically be of order 1 eV (see, e.g.,
Ref. 13). This is many orders of magnitude larger
than the value of perhaps 10 eV expected in the
usual treatment of the SO(10)I theory where

EII(v, ) is in the 10' -GeV region. ' Hence our
model differs from the standard SO(10)v picture in
its predictions for both EII(v, ) and 51 (v, ).

We turn now to a discussion of Cabibbo mixing
in our model. As we have already noted the very
fact that SO(4)H is spontaneously broken forces
the fermions to mix, and indeed if we had a de-
tailed knowledge of the gauge-boson squared-mass
matrix 8 we could determine all the mixing angles
directly from Eq. (4.10). In the absence of such
knowledge we must instead make some assump-
tions, and though we shall make what we regard as
reasonable assumptions ouI analysis should only be
taken as illustrative of the mixing phenomenon.
To simplify we shall restrict ourselves to the first
two generations of quarks by taking E

&
and E 2

to be heavier than E 3 and E 4. In this case E
~

and E~2 mix through an angle p so that fl and f2
also mix through the same angle P according to
Eq. (4.7).

To determine the gauge-boson mixing angle P
we need to make a model for the gauge-boson mass
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(4.16)

For the two quartets the most general breaking
pattern in the E ], E 2 sector of interest is

P'=a (1,0,0,0),
Ps=b(siny, cosy, 0,0) .

(4.17)

In terms of the parameters a, b, and y we can
determine the eigenvalues and eigenvectors of the
gauge-boson mass matrix as

2

M, '= [(a2+b2}+v A ],
2

(4.18a}

M2 —— [(a +b ) ~A],
2

(4.18b)

tang = V A —a'+ b'coszy

b sin2y

where A =a +b 2a b cos2y—. From Eqs. (4.18)
we can obtain the useful relation

(4.18c)

2

tan P= (1+Y),
M2

(4.19)

where

(a b2) [(a b—) ~A ]-
2a b2sin y

(4.20)

Finally, recalling that P is also the d-s mixing an-

gle P», we find from Eq. (4.14) that

matrix. The simplest possibility is to break SO(4)H
in the quartet representation by fundamental Higgs
fields in the requisite 1000-TeV region. (The
dynamical hyperfermion condensates only act at
the 1-TeV level. ) Since we are dealing with two
generations we shall need two quartets which we
label P; and P; (i =1, . . . , 4). To implement the
breaking we note that the extended hypergluons are
minimally coupled to the 10 of SO(10)H which
contains the 4 of SO(4)H, so that the gauge-boson
mass matrix is obtained as

2 2

XE.;C,' + X&.;O,'
a i l

numerical value for P», . However we now note
some unusual features of the structure of the mix-
ing matrices. From Eq. (4.14) we observe that
M2 /M~ is a very small number since m, &&m&.
Hence from Eqs. (4.18) we see that

a 2b 2cos2y

(
2 b2)2

2 2
~= 2. 2

b —a
Q siny

(4.22)

(4.23)

Now there are four ways of satisfying the con-
straint of Eq. (4.22) and they lead to differing
values of K Specifically they are

(i) a bsi-ny»b cosy; Y-O,
(ii) a »b siny-b cosy; Y- 1,
(iii) a »b siny»b cosy; Y- 1,
(iv) a »b cosy»b siny; Y»1

{4.24)

(cases in which b »a are equivalent). All of cases
(i) through {iii) lead to

2 md
tan P», =0 «1

ms
(4.25}

tan P„,= (1+Y)
m

(4.26)

while only case (iv) can make P», large. Without
further knowledge of the structure of the Higgs
potential which produces the set of expectation
values of Eq. (4.17) we cannot make any further
statement. However, we note that case (iv) [and
also case (iii)] requires that there be a hierarchy of
two separate scales of breaking, while cases (i) and
(ii) only require one such hierarchy. Since all of
the Higgs expectation values are to arise from one
single potential we regard it as perhaps unlikely
that case {iv) could emerge. Hence, we can reason-
ably expect Y to be of order one, so that Eq. (4.25)
is a realistic expectation for our model.

While Eq. (4.21) is an encouraging result we note
that since the hyperfermions are generation singlets
an analogous relation also exists in the u-c sector
where the mixing angle satisfies

tan2$», = (1+Y) .
ms

(4.21) according to Eqs. (4.19) and (4.14). Thus from Eq.
(4.14) we obtain

The d-s mixing angle is thus expressed completely
in terms of the parameters of the gauge-boson
mass matrix.

With the parameter F being completely un-
known we cannot use Eq. (4.21) to extract out a

(4.27)

Thus the extended-hypercolor contributions to the
weak-interaction current mass matrix mixing are
the same in the d-s and u-c sectors. Consequently
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an identification of Pd, -P„, with the observed Ca-
bibbo angle would lead us to conclude that there
would be no Cabibbo mixing in our model. How-
ever as we noted in Ref. 9, (Pd, —P„,) as deter-
mined from Eqs. (4.21) and (4.26) is not necessarily
the observed Cabibbo angle since further mixing
contributions can also come from strong-inter-
action chiral-symmetry breaking.

Specifically with four quarks the QCD Lagrang-
ian possesses a global chiral flavor SU(4)1
X SU(4)~ symmetry. This symmetry is spontane-
ously broken by the color dynamics and gives
Goldberger-Treiman masses mg, md, ms, and mc

0 0 0 0

to the quarks to contribute an extra diagonal piece
to the quark mass matrix. In the event that QCD

spontaneously breaks SU(4)L X SU(4)z down
beyond SU(4)i +~ not all of these strong-
interaction masses are degenerate, so that the actu-
al observable quark mixing angles are only ob-
tained after a simultaneous diagonalization of both
the weak and strong contributions. In the d-s sec-
tor for instance we can express the full mass ma-
trix [m'j] in our initial f;, fj basis as

Pf™i'jfj = g f™jfj+ftf& md +f2f2 m,
'

(4.28)

according to Eq. (4.9). Expressing m;j in terms of
its eigenvectors and eigenvalues yields

m~+mdcos P+m, sin P
sill/ cosf(mg —mg )

sing cosy(m, —m, )

m, +mdsin P+m, cos P
(4.29)

tan20gs —— sin2$

(kd, +cos2$) '

where

0 0
nts —~d

kds
(m, —md)

Similarly in the u-c sector we obtain

sin2$

(k„,+cos2$)
'

where

0 0m —mC Q

(m, —m„)

(4.30)

(4.31)

(4.32)

(4.33)

Thus, finally, the observable Cabibbo angle is given

C =ds —6'uc

= —, tan
1 sin2$

kd, +cos2$

I——, tan-' sin2$

k„,+cos2$
(4.34)

where P is given in Eq. (4.19).
%hile the above discussion of the influence of

where P is still the extended-hypergluon mixing an-
gle and md and m, are still given by Eq. (4.13).
The mixing angle associated with [m,j] is readily
calculated to be

tPld
tan ec=

ms
(4.35)

where we recall that m~ and m, are the weak-

QCD on Oc is straightforward we note that such
an analysis is not customarily made in the litera-
ture as it is always assumed that I„,md, ms, and

m, are all equal; i.e., it is always assumed that
QCD only breaks SU(4)r, XSU(4)~ down to
SU(4)i. +q. As far as we are aware such an as-

sumption has not been justified in the literature
and in fact demands further study as a problem in
its own right even independent of our work here,
especially since it affects what we even mean by
the Cabibbo angle. Further, the possible breaking
of the strong-interaction chiral symmetry beyond
SU(4)L +~ is directly amenable to experimental
testing. As we noted in Ref. 9 there would have to
exist some observable scalar Goldstone bosons in
addition to the familiar 15 pseudoscalar Goldstone
bosons such as the pion and we advocate a vi-

gorous search for such particles. On the
phenomenological side we also take note of the de-
tailed study of Das and Deshpande' using a par-
tial conservation of the axial-vector current
(PCAC) analysis. They found that there are good
indications that SU(4)l +~ is in fact broken spon-
taneously, and moreover quite a lot, although
SU(3)I +z apparently survives intact as an unbro-
ken symmetry. Hence we can effectively take m,
equal to md and I, very large. Then in the case
where Y' is zero we obtain finally from Eq. (4.34)



26 HYPERCQLQR, EXTENDED HYPERCQLQR, AND THE. . .

interaction contributions to the quark masses. We
are not of course asserting that Eq. (4.35) is strictly
obeyed, by only that it constitutes a reasonable esti-
mate of the smallness of the Cabibbo angle.

Since the quark mass pattern that we have used
is somewhat different than the conventional one we
would like to comment on the general determina-
tions of the quark mass parameters. In the days
before the discovery of charm the chiral symmetry
of the strong interaction was taken to be
SU(3)L, XSU(3)ii and the conventional PCAC
analysis indicated that it was broken down spon-
taneously only to SU(3)I +z so that m„, md, and

m, are all equal, with a typical value of 300 MeV
then usually being taken for these masses. The
same PCAC analysis was also used to estimate the
weak-interaction current masses m„, md, and m,
with typical values of 5, 10, and 200 MeV, respec-
tively, being found for them. The reliability of
these numbers is still open to question since apart
from anything else there is quite a big continuation
to the kaon mass shell. The full constituent
masses of the quarks which make up the hadrons
are then given by combining m; and m; (i =u, d, s)
perhaps geometrically. With the discovery of
charm the above picture had to be extended to
SU(4)L X SU(4)~ and it became necessary to know
how to distribute the 1.5 GeV constituent charm
mass between m, and m, . The conventional so-
far-unjustified approach is to take rn, simply equal
to m„, md, and m, [so that SU(4)L+ii remains un-

broken] while taking m, very large. Instead we are
suggesting that rather it is m, that is large and
that m, might be much smaller than previously
anticipated. Further, if the QCD effects are not
SU(4)I +it flavor invariant, then QCD itself will

also make radiative contributions to m„, md, m„
and m, . With m, large we might thus expect m,
to undergo a big renormalization so that the m, as
measured in PCAC for D mesons may no longer
satisfy the relation m„/m, =md/m, of Eq. (4.14).
Moreover, there are even further potential renor-
malizations of the weak masses in our model. It is
possible that the fourth generation of fermions
might have masses as heavy as the Weinberg-
Salam gauge bosons or even some of the the six
flavor-changing SO(4)H generators. They would
then make radiative corrections to the self-energies
of the light fermions to cause some further devia-
tions from Eq. (4.14} (so that for instance md/m,
would no longer be equal to m, /m„). Thus we
should only take Eq. (4.14) as a guide to the light-
fermion masses, and not as exact mass relations.

To conclude this section we remark again that

by exploiting the group-theoretical correlation be-
tween hypercolor and the generation problem we
have been able to construct a realistic theory of ex-
tended hypercolor which gives a reasonable estima-
tion of the Cabibbo angle. We would also like to
note that the pattern of masses and mixings we
have discussed in detail is assuming that the
extended-hypercolor mechanism is the only source.
One might also use an appropriate Higgs system
instead or in conjunction with the extended hyper-
color within the framework of our model.

V. THE GGLDSTGNE AND PSEUDG-GQLDSTGNE
BGSQNS GF THE MGDEL

We turn now to the classification of the varioUs
Goldstone and pseudo-Goldstone bosons associated
with the hypercolor dynamics of our model. The
Lagrangian of the coupling of the (4,2, 1;6, 1, 1)
and (4*,1,2;6, 1,1) hyperferinions to the
(1,1,1;15,1, 1) hypergluons which is effective in the
TeV region possesses an SU(8}L XSU(8)z
XU(1)l +„global chiral symmetry in the
U;,D;,E,X space. [Technically there is also an ax-
ial U(1)L z symmetry, but this is destroyed by in-

stantons. ] Each SU(8) contains seven SU(3)c
color-singlet currents, four color octets, and eight
color triplets. Thus SU(8)L X SU(8)ii XU(l)l +~
contains 15 color-singlet currents altogether. We
shall not concern ourselves with the color-
nonsinglet piece in the following since any associ-
ated Goldstone or pseudo-Goldstone bosons will be
confined.

We break the global chiral symmetry with the
b,z, AL, and X condensates of Eq. (2.9). The
right-handed Az breaks as Xz CXz and thus spon-
taneously breaks three right-handed currents,

N~y~X~, Nzy~E+, and Ezy~X& which are all
color singlets. Similarly, the left-handed AI breaks
the three color-singlet currents XLy~2VI„, XL HEI,
and EI y~X&. The Dirac mass 7 gives different
masses MU, MD, Mz, and M~ to the hyperfer-
mions. It thus breaks all 63 axial-vector currents
and also breaks 44 vector currents leaving unbro-
ken only the 20 vector currents Xy~X, Ey~E,
U;yi„UJ, and D;yiDJ (ij =R, G,B). Of these last
20 there are 4 color singlets, Xy~X, Ey~E,
g U;y&U;, and gD;y&D;. Thus X breaks 11 sing-

let currents altogether, of which 4 are vector
(XyxE, Eye%, g U;AD;, and gD;y&U;) and 7
are axial-vector [Nyiy5N, Eyiy5E, Xyi,y5E,
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&}'O'P' g U)'x}'5U g Uax)'sD g&)'~}'sU,
and g D;yqysD;, then minus the U(1)L

current]. Consequently hz, b,I, and X together
break a grand total of 12 linearly independent
color-singlet chiral currents. The dynamical poten-
tial thus produces 12 light spin-zero particles.

In our grand unified model we give a local ex-

tension to the 45 gauge bosons associated with the
SO(10)z subgroup of the chiral SU(8)L, X SU(8)~
XU(l)1 +~. Within the SO(10)~ there are alto-
gether 7 color-singlet currents which form the
SU(2)1. XSU(2)q XU(1)L+z group studied in detail
in Sec. III. Since one of its gauge bosons is to be
the photon we see that only 6 color-singlet gauge
bosons acquire masses by the Higgs mechanism.
Hence, out of our initial 12 spin-zero particles
above we see that 6 are removed by the Higgs
mechanism while the other 6 remain in the spec-
trum. These latter 6 bosons can only acquire
masses by radiative corrections involving the gauge
bosons of the standard model and become relative-

ly light pseudo-Goldstone particles with masses of
order eM~, i.e., of order perhaps 20 GeV or less.
Such pseudo-Goldstone particles are typical of
minimally gauged theories such as SO(10)z where

the gauge sector has a lower symmetry than that
of the potential. In maximally gauged theories on
the other hand the full SU(8)L, XSU(8)~ XU(1)I +g
group would be gauged with all twelve spin-zero

particles then being removed by the Higgs mecha-
nism to leave no observable pseudo-Goldstone par-
ticles at 811. Thus we do not regard the pseudo-

Goldstone bosons of our SO(10)~XSO(10)& model

with too much concern, as they can all be removed

if necessary by embedding the grand unified theory
in an appropriately large-enough gauge group.

VI. CONSTRAiNTS FROM RARE DECAYS

In this section we analyze the Aavor-changing

rare decay processes which occur in our model due

to the generation mixing. The various possibilities
we consider are tree-level single-SO(4}~-gauge-
boson exchange, box-diagram extended-hypergluon

exchange, pseudo-Goldstone-boson exchange, and
tree-level Pati-Salam-SU(4) q-gauge-boson exchange.
As we shall see a mass scale in the 1000-TeV re-

gion will suffice to provide sufficient suppression
to keep all rare decay processes within current ex-

perimental bounds.
The single-gauge-boson exchanges yield tree

graphs such as that of Fig. 2 with an effective cou-

pling

FIG. 2. A single-gauge-boson-exchange graph. The
exchanged gauge bosons belong to the adjoint represen-

tation of SO(4)~.

Sy
2

Vp ——

M
9 (6.1)

ignoring quantum numbers for the moment. The
exchange of a pair of (1,1, 1;6,2,2) extended hyper-

gluons gives the box graph of Fig. 3. Here the ex-

changed fermions are the same hyperfermions as
those of Fig. 1. We evaluate the box graph by cut-

ting off the internal momentum at MzF as in Fig.
1 to obtain

, M~F'
~i .-Sa

MEHG

which we can reexpress as

2
Nl

box M 4
HF

(6.2)

(6.3)

FIG. 3. Box diagram involving the exchange of hy-
perfermions and extended hypergluons.

using Eq. (4.2}. Thus Vb,„ is a number whose
magnitude can be estimated independently of g~
and ME~6. To evaluate the contributions due to
the pseudo-Goldstone bosons, to be labeled P, we
note that they only couple to the ordinary fermions
via the hyperfermions and the extended hyper-
gluons to give the effective Yukawa coupling of
Fig. 4, viz. ,
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(6.7)

FIG. 4. Pseudo-Goldstone-boson effective coupling.

We must now change the fermion basis to that of
the eigenstates of the fermion mass matrix. We in-
troduce the notation d', s', u', c', ... to denote the ex-
act mass eigenstates of the full [m;J] of Eq. (4.28)
which includes both extended-hypergluon and
QCD contributions. In terms of the convenient
d, s, ... basis which diagonalizes the extended-
hypergluon-induced mass matrix [m,j ] of Eq. (4.9)
alone we can write

2

~y-&ga
~EHO

(6.4)

8 =8 coso!+s sin&,

s = —8 sinA+s coscx

where a, the pseudo-Goldstone-boson —hyperfer-
mion coupling constant, was introduced in Sec. IV.
Using Eq. (4.2) and the hypercolor Goldberger-
Treiman relation we can reexpress Eq. (6.4) as

u'=u cosp+c sinp,

c'= —u sinp+ c cosp . (6.9)

PlVy- —, (6 5)
sin2$

2
(kq, '+ cos2$ }

where I' is the hyperpion decay constant. Again
we see that the strength of the interaction can be
estimated. Finally pseudo-Goldstone-boson ex-

change leads to the graph of Fig. 5 with an effec-
tive strength

2
7tl

I' Mp
(6.6}

I
I

E s

I
I

f

I

I
I
I

FIG. 5. Pseudo-Goldstone-boson exchange.

where Mp is the pseudo-Goldstone-boson mass.
To evaluate the effects due to all these processes
we must now put in all the appropriate quantum
numbers.

We discuss first the tree graphs due to the ex-

change of the SO(4)H generators, the (1,1, 1;1,3, 1)
and (1,1,1;1,1,3) gauge bosons. To match our pre-

vious notation of Eq. (4.1) we shall label these

gauge bosons E,J (i,j,= 1,...,4, i &j). These gauge
bosons connect fermions of different generations to
each other and are thus flavor changing even in

the symmetry limit. In terms of our original

(4,2, 1;1,2,2) fermion basis f; we have couplings of
the form

tan2P= sin2$

(k«+ cos2$ )

(6.10)

=gaE&2[(~ YA ~ Yx& )+iree ey~-
+(e Yg1l —0 Yxc )

+vy, Yx&e —~e 'Vx&p] (6.11)

[the lepton basis is that of Eq. (4.13)]. Thus Fig. 2
leads to typical effective interactions such as

2

~T= 2(s 1'A —~ Yxs )(i)

X (s 'Yxd' —d 'Yxs') (6.12)

where M, 2 is the mass of E&2 and (1) and (2)
denote the two vertices of Fig. 2. In the direct

and k~, and k«are defined in Eqs. (4.31) and
(4.33), respectively. [Eq. (6.10) differs from Eq.
(4.30) because we have expressed d' in terms of g,
and not in terms of f~ as previously. ] Thus we can
express Eq. (6.7) in terms of mass eigenstates.

As far as the first two generations of fermions
are concerned we note that the antisymmetric ver-
tices of Eq. (6.7) are left invariant by the Cabibbo
rotations used to diagonalize ihe fermion mass ma-
trix. Thus Eq. (6.7) leads to flavor-changing ver-
tices of interest of the form
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channel [where we construct a I(. meson by con-
tracting s ' in (1) with d' in (1)] the couplings are
pure vector, and hence the pseudoscalar mesons
cannot couple to the quarks at all. Thus there are
no direct-channel contributions to both the Ez-Kl
and Ds-DL mass differences or to K and D decays
into lepton pairs at all due to Fig. 2. There is,
however, a vector Km vertex so that E~~pe does
occur in the direct channel. This process is then
sufficiently suppressed if M, 2 & 5 TeV. Stronger
constraints are found from the cross channel where
we can construct a E meson by contracting s ' in
(1) with d' in (2). Unlike the direct channel this
channel does possess pseudoscalar projections. The
effective strangeness-changing vertices of interest
are of the form

2
ga IWr —

2 (s (1)ysd (2)s (2)ysd (1)

(,)yss'(2)d '(3)y&'(1) ) (6.13)

BZlfr gH

M»f» M12
(6.14)

2 2
gH 2

—
2 gH 2 2, «o +&o )=,«s &I. ) . —

M„2

This yields a Es KI. mass d-ifference hill» of the
orm

theoretically' to satisfy

AMD
3

——10 TeV
MD fD

(6.15)

2

+gH X XEij~j
a,i j

(6.16)

For simplicity we shall ignore mixings with the
third and fourth generations by taking

i''=a (1,0,0,0),

and is thus well suppressed by a 1000-TeV mass
for Ei2. Since there are no lepton-pair decays pos-
sible in the crossed channel we see that this one
scale suppresses all flavor-changing processes due
to the SO(4)H horizontal gauge bosons.

The value we have found for M&2 is very en-
couraging since it is of the same order as M&. It is
thus very tempting to generate both these masses
by the same Higgs mechanism. Indeed we can
give all six SO(4)H generators a mass by breaking
according to four SO(4)H quartets. At the same
time this would give masses to all 24 of the
(1,1, 1;6,2,2) extended hypergluons by breaking
SO(10)H to SO(6)H in one step. Specifically with
four quartets P';, P;, P,', and P; we obtain a mass
term [analogous to Eq. (4.16))

~mass =gH g g Eaigi
a, a

where f» is the usual kaon decay constant. Exper-
imentally the left-hand side of Eq. (6.14) is less
than 10 TeV . Thus with gH of order 1 we re-

quire M~2 & 1000 TeV. Similarly the tree graph
contributes to the D~-DI mass difference. Though
this has yet to be measured it has been estimated

(t) =b(siny, cosy, 0,0),
(()'=c (0,0, 1,0),
il) =d(0,0,0, 1) .

This yields [using Eqs. (4.18)]

(6.17)

~mass g(MI E~) +M3 E~2 +gH c E~3 +gH d E 4 )+gH (a +b2)E)23+g 3(c3+d2)E

+gH [a E13 +c (E13 +E )23+b'(E 3 i)syn+E 33scyo) ]

+gH [a E14 +d (E14 +E24 )+b (E, slny+E cosy)2] . (6.18)

Thus we find that

M12 gH (a +b )=——M) +M2 (6.19)

according to Eq. (4.18), so that indeed M)2 can na-
turally be 1000 TeV in our model. Finally using
Eq. (4.13) we can reexpress the Es-El mass differ-
ence as

hMg m,

M»f»' Mz'
(6.20)

to order m, /m&, so we see that in our model it is
m, being small which suppresses the tree-graph
contribution to EMIt-. In Sec. VII we shall study
further this interesting connection between the
various mass scales.
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The second type of rare decay processes that we
need to consider are the extended-hypergluon box
graphs of Fig. 3. Some simplification comes by
noting that since SO(10)v)& SO(10)lr is an orthogo-
nal group the coupling at each vertex in Fig. 3 is
antisymmetric in the fermion indices. Thus after
contracting the internal fermion lines the graphs
will be symmetric in the external fermion lines.
For instance contracting (dD Dd) w—ith (sD Ds—)
yields (sd+ds). Thus the box diagrams only cou-
ple to E~ in the direct channel. Analogous to our
discussion of the crossed-channel structure of Fig.
2 we thus see that there are no extended-

hypergluon box-diagram contributions to EL ~pe
at all, although there are both direct- and crossed-
channel contributions to the Eq-EL mass differ-
ence.

To evaluate these contributions explicitly we find
it convenient to first classify the graphs according
to the eigenstates of [m,j] of Eq. (4.9) since this is
the basis in which the extended-hypergluon mass
matrix is diagonal, and then only at the end make
the @CD-induced rotation to the final quark basis
of [m,j] of Eq. (4.28). Using Eq. (4.8) we find the
box graphs yield an effective action of interest,

4md 4m, mdm,
~bo =

4 (dysd) + 4(syss) + 4 (dy5s+sysd)
MD MD MD

Padme 4Ptlg mp mdm~+ 2 z (dy5d)(ey5e)+ 2 z (sy5s)(py5p)+ — —

z (dyss+sy&d)(ey5p+pyse)
Mg) ME Mg) ME MD ME

(6.21)

with an analogous expression in the charm sector. Changing now to the final d', s' basis of Eq. (6.8) yields

(me +m, ) m~m,
sin 2a+ ~ cos 2a (d'yss'+s'y51')

Mg) MD

2 sln2cx
(d 'yss'+s 'ysd')(mdm, ey&e m, m„p y—sp)

MD ME

cos2a(d 'yss'+s 'y5d')(ebs+ py, e ) .
MD ME

(6.22)

We note that since the rotation of Eq. (6.8) is real the above interactions still only involve Es in the direct
channel. For the Es El mass diffe-rence Eq. (6.22) yields

Allis (me +m, )sin 2a+mdm, cos 2a

~ref&' MD"
(6.23)

With m, =200 MeV and Mz ——1 TeV the box-graph contribution is then at least an order of magnitude
smaller than the experimental value. Further, Eq. (6.22) leads to a muon-number-violating Es~lj, e decay.
However, the branching ratio is found to be of order 10 and is thus essentially unobservable. The analo-
gous charm-changing effective interactions are of the form

(m, +m, ) . 2 m„m,
sin 2@+ 4

cos 2P (u 'y, c'+c 'y5u')2
U U

2 sin2P
2 (u ysc +c Ysu )(m„m', eyrie m, m&py&p—)

U E

mcmp+ 2
"2 cos2p(u 'y5c'+c 'y5u')(ey5p+py5e)

MU ME (6.24)

so that the Ds-Dl mass difference is well below the estimate of Ref. 16. Thus the box diagrams are also
sufficiently suppressed.

The third type of decay processes that we need to consider are the pseudo-Goldstone-boson exchanges of
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Fig. 5. The Yukawa couplings of Fig. 4 give an effective interaction of interest of the form

Wr —— (—mddy5d+m, sy5s+ m, ey5e+m&Pyys+m„uysu+m, cysc)p (6.25)

which is flavor diagonal in the d, s, ... basis since the hyperfermion condensates are flavor singlets. Thus at
this stage there are still no flavor-changing processes associated with Fig. 5. Rotating to the final d', s', ...
basis of Eqs. (6.8) and (6.9) however yields a flavor-changing interaction of interest,

Wr ———
t (m, —md )sina cosa(d 'yss'+s 'y5d')+(m, —m„)sinpcosp(u 'ysc'+c 'y5u')

p

+meeyse+m pPysp] ~ (6.26)

Thus we obtain

(mg —m, )'sin'a cos'a

Mafia' ~'Mp'

EMD (m, —m„) sin Pcos P

MDfD F Mp

The Ez-KL mass difference will thus only be
suppressed enough if

Mp & sin2a

(6.27)

(6.28)

EMg) (mq —mg) slli Hccos Hc

MD fi) F Mp
(6.29)

Taking m, =m„m, /md-100 MeV then requires
Mz to be of order at least 20 GeV, which is just

in TeV mass units. Thus even with a as small as
8~, Mq would have to be at least 500 GeV. How-
ever P is a pseudo-Goldstone boson and is thus
perhaps as light as a few GeV. Thus the only way
to suppress the P exchange enough is to take +=0,
i.e., to set k~ ——0. However we have exactly ar-
gued in Sec. IV that k~ is in fact zero since
SU(3)L, +~ is left unbroken after QCD breaks the
global chiral SU(4)L, XSU(4)z symmetry of the
strong interactions. Thus the symmetry relation

m, =m~ completely suppresses pseudo-Goldstone-0 0

boson-exchange contributions to the Ez-EL mass
difference. Then with a=0 Wr leads to no Es
leptonic decays either. Thus the global SU(3)L, +it
invariance of the strong interaction suppresses all
strangeness-changing processes due to Fig. 5 in our
model.

Since SU(4)L+x is broken by m, being unequal
to m„, md, and ms, there will instead be charm-
changing processes. Indeed with m, very large,
k„, '=0 so that p=p. According to Eq. (4.34) p
is 8& in this limit, and so we take p=OC. Equa-
tion (6.26} then yields

our previous estimate of Sec. V. Given the uncer-
tainties in estimating hM~ and Mz theoretically
the pseudo-Goldstone-boson exchanges do not ap-
pear to pose any difficulties at present. Of course
experimental improvements in the charm sector
(there are currently no bounds on leptonic decay
modes) would considerably tighten the current free-
dom in the model.

The fourth and final class of exchanges that we
must consider are the tree-level Pati-Salam-
SU(4)i-gauge-boson' exchanges. As we noted in
Sec. II this SU(4)i group contains an SU(3)c
X(B—L) subgroup and six other generators (to be
denoted generically as leptoquarks [LQ]) which
transform as a 3 8 3' under SU(3)c and hence cou-

ple quarks to leptons. Additionally the SU(4) z La-
grangian also possesses a global 3B+L fermion-
number invariance. Thus SU(4) i breaking can po-
tentially lead to proton decay or lepton pair rare
decays. With regard first to proton decay we note
that in the symmetry limit the [LQ]-exchange dia-

grams lead only to elastic q+1—+ q+1 processes
and not to q+I —+ q+q. Thus there will be no
proton decay unless baryon number is explicitly
spontaneously broken at the SU(4) v level. Since
breaking SU(4) i in the 10 (i.e., as Nz CNz as in
Sec. III) breaks SU(4) i down to SU(3)c while only
breaking (B L}and (3B+L—) in the right-handed
neutrino sector, and since breaking SU(4) i in the
15 (i.e., as NN) breaks SU(4) i down to
SU(3)c X (B—L}while not breaking the global
38+4 symmetry at all, we see that we can break
down to the standard model without needing to
break baryon number at the SU(4) i level at all.
Hence we can, and will, give masses to the [LQ]
gauge bosons which are much less than the 10'-
GeV grand unification mass scale.

With regard to Aavor-changing processes we
note that the SU(4)i generators are SO(4)H singlets
and thus even in the symmetry limit connect
quark-lepton combinations of different generations.
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~=[LQ]gf (e)fi(~» (6.30)

Specifically, in terms of our original (4,2, 1;1,2,2)
fermion basis f; we have couplings of the form

suppress all the rare decay processes which occur
in our model, so that these decays do not present
us with any problems at all.

where f;(q) denotes a quark in f;, and f;(I) a lep-
ton. When the SO(4)~ symmetry is broken the fer-
mions mix. As we noted in Eq. (4.7) the
extended-hypercolor-induced mixings are the same
for quarks and leptons. Hence in terms of the
basis of Eq. (4.13) the interaction of Eq. (6.30)
yields flavor-changing vertices of the form

~=[LQ](de+st+ br+ Io+ u v,

+CV~+ tv~+/l V~) (6.31)

Thus in the crossed channel [LQ] exchange leads
to both E~ and EL decays into pe. The current
bound of 2)(10 on the EL ~pe branching ratio
then requires that the [LQ] masses be at least of
order 50 TeV. Thus a mass scale of only 50 TeV
suppresses all SU(4) ~-induced rare decays, enabling

SU(4)~ to be a relatively low-lying symmetry.
Also, and most intriguingly, we see that this lepto-
quark mass scale is again typical of the horizontal
mass scales we have just found. Consequently, we

can anticipate that all of these gauge bosons ac-
quire their masses from a common origin. As we

shall show in detail in Sec. VII, the leptoquark

gauge bosons can also get their masses from the
SO(4)& quartets of Higgs fields of Eq. (6.17). In
such a situation we find that the [LQ] mass is at
most of order of M~. Then we obtain a lover
bound on the muon-number-violating EL —+ pe de-

cay

I (KL ~pe)
10—18

I (KL ~ all)
(6.32)

While this number is too small to be practical its
significance (and also that of the box-diagram rate
for Ks~pe presented earlier) lies in the fact that
it is a lower rather than an upper bound on a rare
decay. Qur ability to bound LI.~pe from below
is due to the fact that the extended hypergluon
masses are bounded from above by the observed
lepton masses. It is amusing to note that the
present lower bound on EL ~pe obtained here is
of the same order of magnitude as that obtained in
an SU(4)L, XU(1) weak interaction model where the
gauge-boson masses were bounded from above by
the observed rate for CP violation. '

Finally, to conclude this section we remark again
that a single 1000-TeV mass scale is sufficient to

VII. THE MASS SCALES OF THE MODEL

10' 10=1+45+54,

16@10=16+144,

16)& 16= 10+120+ 126,

16y16' =1+45+210,

(7.1)

we see that breaking in the (54, 1) 6 (1,54) repre-
sentation of SO(10)v XSO(10)~ will not give a
mass to any of the fermions of our model, since
they are only allowed to have Majorana masses at
the SO(10)v XSO(10)~ level. On the SO(10)~ side
we note that no gauge boson can get a 10' GeV
mass according to our analysis of Sec. IV and thus
the discrete symmetry between SO(10)y X SO(10)~
is broken spontaneously at the 10' -GeV level.
Thus in the primary stage of breaking we break
SO(10)~XSO(10)~ according to the (54, 1) 6 (1,54)
representation to reduce the symmetry to SU(4) ~
X SU(2)1. X SU(2)g X SO(10)~.

Before we discuss the second stage of breaking
at 1000 TeV we take note of some constraints on
the model due to asymptotic freedom requirements.
The standard renormalization-group analysis gives
a lowest-order P function of the form

Out model possesses a variety of scales and in
this section we classify all of them. With regard
first to SO(10)q we recall that, like its SU(5) sub-

group, this group is baryon-number violating in the
Lagrangian, i.e., in the symmetry limit, through
the exchange of the (6,2,2;1,1, 1) gauge bosons.
Consequently they must acquire masses of the or-
der of 10' GeV to keep proton decay within ex-
perimental bounds. This value for the grand unifi-
cation mass scale also leads to an acceptable renor-
malization of the Weinberg angle. Hence we first
break SO(10)~ by some fundamental Higgs field at
10' GeV. This Higgs breaking is required to leave
SU(4) y XSU(2)l X SU(2)R unbroken [or possibly
SU(4)&X SU(2)l X T~ only since the charged gauge
bosons of SU(2)z play no role at all in the subse-

quent breaking to the standard-model phenomenol-

ogy given in Sec. III]. The easiest way to break
SO(10)v down to SU(4)yXSU(2)L, XSU(2)z is with
a single 54 representation of SO(10), as it contains
exactly one singlet under the subgroup. Moreover,
since



1152

»C2 T(z) T(z)
12m

(7.2)

where C2 is the contribution of the adjoint,
T(R)/2 that of each irreducible representation of
two-component spinors, and T(R)/8 that of each
real irreducible representation of scalars. For the
adjoint representation of SU(N the value of C2 is
X, for the fundamental T(R) is —,, and for the

symmetric and antisymmetric second-rank tensors
T(R) is {%+2)/2 and (N —2)/2, respectively.
We calculate first the value of P for SO(10)z
X SO(10)H. An easy way to do this is to decom-
pose SO(10) according to SU(5), viz. ,

tations contains the following hypercolor singlets:

(1 1 1'1 2 2) (1 1 1 1 2 2!9 9—9 9 9 9 9—9 9 9—9 ~ 9

(15 1 1 1 2 2) (1 3 1 1 2 2)9 9

(2011122) (113122)9

(6 2 2'1 2 2) (1 3 3 1 2 2)9 9 9 9 9 9 9 9 9 9

(622'122! .9 9 9

(7.7)

(1 1 1'1 2 2) (1 1 1'1 2 2) 9

(15 1 1 1 2 2} (1 1 3 1 2 2) .
(7.8)

Gut of these a set of four is of particular interest,
Vlz. 9

(7.3)

to give C2(45)=8, T(16)=2, T(10)=1, and
T(54)=12. Thus for the adjoint gauge bosons, the
(16,10) and the (10,16) fermions, and the
(54, 1) 8 (1,54) scalars we obtain for either

SO(10)v or SO(10)~,

3
3

PouT = (22 —10—8— ) (0 .
12~'

(7.4)

3

P„yp-— (11—18)
12

(7.5)

which is positive. The reason for this change of
sign is that we have reduced the number of gauge
bosons but not the number of fermions compared
with Eq. (7.4). Thus the only way to retain

asymptotic freedom for the hypercolor group is to
freeze out some of the fermionic degrees of free-
dom. We thus give the (10,16) fermions (which
have so far played no role in this paper) large
masses so that after they condense out only the
(16,10) fermions survive. These latter fermions
alone then yield

Phyp
—— (11—8)

12
(7.6}

which is now nicely asymptotically free.
In order to give the (10,16) fermions a mass we

note that the product of a pair of (10,16) represen-

Thus as we noted in Ref. 8, ' our SO(10)~
XSO(10)H model is asymptotically free despite its
large fermionic content.

We now study the renormalization for the sub-

groups. For SO(6)H the same analysis gives [ignor-

ing now the superheavy (54, 1) 8 (1,54) scalars as

they play no role at low energies]

This set of four is just sufficient to break SO(10)&
all the way down to SO(6)H on the horizontal side,
while breaking SU(4)&XSU(2)1 XSU(2)z down to
SU(3)c X (&—I- ) X SU(2)L X T~ on the vertical side
as required in Sec. VI. Further with these same
four representations we can also give masses to all
of the (10,16) fermions. While the fourth repre-
sentation in Eq. (7.8) gives masses to the charged
gauge bosons of SU(2)z it leaves the neutral sector
alone, which, as we already noted, is sufficient for
subsequently obtaining the usual Weinberg-Salam
phenomenology. It is thus remarkable that the set
of representations of Eq. (7.7) contains just the
right set of fields with just the right quantum
numbers to yield the set of Eq. (6.17), which is
precisely the set we used to be able to control all
the rare decays with one common scale. Thus with
four fields which transform as in Eq. (7.8) we can
simultaneously give common 1000-TeV region
masses to the 160 (10,16) fermions, the 24 extend-
ed hypergluons, the 6 SO{4)H generators, the 2
charged gauge bosons of SU(2)z and the 6 lepto-
quark [LQ] gauge bosons of the Pati-Salam SU(4) ~
group. While we shall use Higgs fields to explicit-
ly do this it is extremely tempting to speculate that
the (10,16) fermions undergo dynamical symmetry
breaking through some new 1000-TeV dynamics-
or perhaps, more economically, through hypercolor
exchange itself. [This is not so unreasonable since
we have seen that some of the extended hyper-
gluons associated with the third and fourth genera-
tions have masses in the 1-to-10-TeV region. Also
the group-theory factors associated with hypercolor
exchanges are quite different for the 6 and 4 hy-
percolor representations so that the (10,16) con-
densates could anyway have different scales than
the (16,10) condensates even while both are bound
by the same hypergluons. ] We feel that the
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mechanism for giving the (10,16) fermions their
masses needs to be explored in detail in the future,
as we appear to have uncovered a new scale at
1000 TeV characteristic of unified theories. Thus
the desert is beginning to bloom.

With the (10,16) fermions now frozen out at
1000 TeV the hypercolor group is asymptotically
free at lower energies so that the (16,10) fermions
can condense and dynamically break SU(3)c
X(8 —L)XSU(2)I X&g XSO(6)z down to
SU(3)c XU(1)EM XSO(6)II as we discussed previ-
ously in Sec. III. As we continue down in energy
from 1000 TeV there would at first appear to be a
possibility that QCD could break its global sym-
metry before SO(6)~ does. This is nicely avoided
on our model however, since we note that the com-
plete (16,10) contribution to the SU(3)c renormali-
zation is

—g 33
3

Pc —— ( —, —10)
122

(7.9)

which is positive, not negative. Thus as we contin-
ue down below 1000 TeV only Ps„„is negative so
that SO(6)H causes dynamical symmetry breaking
first in the TeV region. After this happens the hy-
perfermions freeze out leaving only the four gen-
erations of ordinary fermions. Their contribution
to QCD alone gives

—3
33

IBc= ( —, —4)
12

(7.10)

which is now negative again, so that below the hy-

percolor threshold only the ordinary fermions are
operative allowing QCD to finally spontaneously
break the strong-interaction chiral symmetry in the
GeV region.

Having now identified the various breaking
scales we can now calculate the observable low-

energy parameters of our model. Unlike the usual
SO(10}z extrapolation from the grand unified mass
scale M down to an ordinary mass scale m we note
that in our theory we have to go through various
dynamical thresholds to get to the low-energy re-
gion. At these thresholds highly nonperturbative
effects are taking place which we do not know how
to calculate. Thus without a detailed theory of
dynamical symmetry breaking we are actually un-
able to do anything. %e note that the usual
renormalizatioo-group analysis actually provides
two different types of information, namely, explicit
low-energy values, g3(m), g2(m), and g~ (m) for the
SU(3)c XSU(2)L, XU(1)w, coupling constants, and
second, a low-energy value for sin 8~(m). Because
we go through all the dynamical thresholds and

freeze out fermions at different energies we do not
believe that the standard renormalization-group ex-
trapolation for g3(m), g2(m), and g&(m) is reliable
in our model and hence we shall make no attempt
to evaluate these quantities. However we recall
that sin 8~(m) only depends on the difference
[g~(m) —g2(m) ]. In this difference all fer-
mionic contributions to the appropriate P functions
drop out and so this difference is presumably not
sensitive to threshold effects. Consequently the
standard renormalization-group analysis should
hold in our model for sin 8~(m).

In explicitly evaluating the renormalization of
the Weinberg angle we note first that the (16,10)
and (10,16) fermions contribute in the standard
manner to yield sin 8~(M) = —, at the grand uni-

fied mass scale. The low-energy value for
sin 8~(m) depends on which subgroup of SO(10)y
is light. If only SU(2)L XU(1)ws is light we obtain
the standard relation

sin 8~(m}= —, — In
55e (m) M

96m'
(7.11)

Now, it was noted in the third reference cited in
Ref. 7 that this same relation is obtained if
SU(2)I. X &~ XU(1)L, +~ is light, with the relation

( )
3 Ile(m)

I
M

m
48m' m

(7.12)

obtaining if the full chiral SU(2)I X SU(2)z
X U(1)I +z is light. With the standard low-energy
values for sin 8~(m) and e (m) we find that Eq.
(7.11) requires M-10'5 GeV while Eq. (7.12) leads
to a completely unacceptable value for M. Now
we recall that in our analysis of the mass scales of
our model given above we precisely found that

SU(2)z should not be a light subgroup but rather
only TR. Thus that analysis dovetails nicely with
the analysis of sin'8s (m) leading us to Eq. (7.11)
and grand unification in the 10' -GeV region. Fi-
nally, we note that this value for M leads to a pro-
ton lifetime in the standard 10 yr region. How-
ever, because we are unable to extrapolate g3(m),
g2(m), and g&(m) back to the grand unified scale
we cannot give an exact value for the lifetime, but
only an order-of-magnitude estimate. Hence in our
model even though sin 8~(m) is not sensitive to
the details of the dynamical symmetry breaking,
the proton lifetime is, and thus remains a little un-
certain.

Thus we identify the three main scales of our
model, a primary superheavy breaking at 10' GeV
and then two sequential low-lying breakings at
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1000 TeV and then at 1 TeV. For convenience we

display the complete pattern in Fig. 6. We note
that there emerges a very attractive approximate
low-energy SU(4) v X SU(4)Ir symmetry which is
broken in the 1000-TeV region only and is other-
wise good up to the grand unification mass scale.
Thus the hypercolor group emerges as an approxi-
mate horizontal counterpart of the Pati-Salam
color group.

Vertical
l015 GeV

Sp (l0)
' ' = SU(4)y x SU(2)L x SU(2)R

=SU(3)C x SU{2) x T x {8-L)

Horizontal

SO (10)
l000TA' = SU(4)

H

DYNAMICAL SYMMETRY 8REAKING

y
SU(3) xU(1)

FIG. 6. Symmetry breaking, ' mass scales.

With quarks and leptons as the fundamental fer-
mionic entities, the occurrence of repeated fermion-
ic generations poses a serious and difficult problem
for the program of grand unification of the strong,
weak, and electromagnetic interactions. Attempts
in the literature to construct a multigenerational
grand unified theory based on a simple group and
satisfying some physically reasonable constraints
have proved quite unsatisfactory. The problem is
made more acute because of a recent demonstra-
tion by Tosa and Okubo who show under very
general assumptions that SU(5) and SO(10) are al-

most unique as unitary and orthogonal group can-
didates for a grand unified theory. But both of
these lead to a single generation of the basic fer-
mions. Accommodating more than one generation
in such theories is accompanied by a large number
of free, adjustable parameters. If simple groups
cannot provide the needed framework, the next
simplest alternative is a semisimple group structure
with a discrete symmetry imposed so as to ensure a
single coupling constant. From this point of view

we have studied in this paper a grand unified
theory based on SO(10)y XSO(10)H.

The semisimple group structure is forced upon
us for another reason. The problems in theories in
which fundamental scalars bring about the spon-
taneous symmetry breaking have been discussed so

often in the literature that it is not necessary to re-
peat them here. The alternative to the Higgs
mechanism is the so-called dynamical symmetry
breaking which requires forces that become strong
in the TeV region. Since the QCD forces described
by SU(3) color symmetry become strong in the
GeV region, according to the prevailing ideas on
how renormalization-group equations govern the
strength of the coupling constant, the required su-

perstrong group must be larger than or equal to
SU(4). This requirement along with some others
which have become standard rules of the game
cannot be met within the framework of a simple
group. ' As we have seen they are met in our
semisimple grand unified model, however.

The model discussed in this paper has indeed
some very attractive features from a group-
theoretic point of view. The "vertical" SO(10)v
describes each family of ordinary fermions and
hence incorporates automatically all the good
features of the grand unified theory based on
SO(10)v. The "horizontal" SO(10)H contains hy-

percolor, extended hypercolor, and horizontal in-
teractions. The irreducible representation —an
unusual combination of spinor and vector represen-
tations, namely (16,10) 8 (10,16)—is almost
uniquely selected out. The ensuing particle spec-
trum and quantum numbers allow the existence of
all the needed interactions, unlike other hypercolor
models where one has to introduce such interac-
tions from the outside. Further, the model satis-
fies the criteria for renormalizability and asymptot-
ic freedom. It has a.nontrivial generation structure
of four conventional fermionic families.

The important relation M~ ——Mzcos8 can be sa-
tisfied to any desired degree of accuracy provided
the hypercolor dynamics satisfies certain criteria.
These criteria are not unique to our model; they
are shared by other theories. The masses of the or-
dinary quarks and their mixings come out satisfac-
torily, although much more work is necessary to
establish them on a quantitative basis. In this re-
gard we take an unconventional view concerning
the mass matrix of the usual fermions in the low-
energy region. It appears that in the literature one
either neglects or implicitly assumes that strong
forces preserve an SU(X)L++ symmetry while
breaking the SU(E)1.XSU(X)z global chiral flavor
symmetry when considering the mass matrix. The
entire mass matrix is then the current quark mass
matrix generated either through Higgs or an ex-
tended hypercolor mechanism. We propose that
this is not necessarily the correct procedure. The
QCD forces could break part of the vector flavor
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symmetry as well. On that basis, our results con-
cerning masses and mixing angles are encouraging.
Also our analysis of the rare decay modes shows
that no serious difficulties are encountered there.
This is due to a fortuitous combination of group-
theoretic features of the model, which constrain

the effective exchanges of single bosons in their

couplings to E and D mesons. There are definite

predictions concerning the rare decays of the

charmed particles. When experimental informa-

tion concerning these decays becomes available the
model can be further tightened.

Perhaps the most unsatisfactory feature of the
model is the use of more than one primary Higgs
mechanism to cause the initial symmetry breaking.
The discrete symmetry which fixes the group
structure and the fermionic representation has to
be broken right away. Nonetheless, an attractive
feature emerges, namely that there is a surviving

correspondence between Pati-Salam SU(4) color in

the vertical sector and the SU(4) hypercolor in the

horizontal sector. In the TeV region the dynami-

cal symmetry breaking takes over with no further

need for fundamental scalars. Clearly a great deal

of further work is necessary to clarify and establish

many features of the model. It does however con-

tain many realistic features and has a rich struc-

ture which merits further study.
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If we identify SO(8) itself as the hypercolor group,
it would imply that the (16,10) $(L0, 16) represen-
tation contains two ordinary generations, while the
(16,16) representation contains no ordinary fer-
mions at all. This choice is thus excluded phe-
nomenologically.

(2) SO(10)H~ SO(7)XSO(3). Here

16=(8,2),
10=(7,1}+(1,3) .

(A2)

(A3)

[In SO(N), Cz N 2 for——the —adjoint, and T(R)=1
for the vector representation. ] The decomposition
is thus asymptotically free and therefore provides a
viable phenomenological alternative, and is worthy
of further study. We did not pursue it here only
because the hypercolor group is orthogonal rather
than unitary. Though there is no compelling
reason to use a unitary hypercolor group, we note
that only unitary groups have a nontrivial topolog-
ical structure, which could provide an origin for
quantum number confinement.

(3) SO(10)H —+ SO(5)XSO(5). Here

With SO(7) as the hypercolor subgroup, we see that
the (16,16) representation contains no hypercolor
singlets. The (16,10) 8 (10,16) representation con-
tains three hypercolor-singlet generations which
transform like the vector representation of SU(2).
This is then the horizontal fiavor-chiral version of
the Wilczek and Zee model. The hypercolor P
function contribution due to the (16;7,1) fermions
1s

APPENDIX

16=(4,4),
10=(5,1)+(1,5) .

(A4)

16=(8,1)+(8',1},
10=(8,1)+(1,2) .

(Al}

In this paper we have considered in great detail
the decomposition SO(10)H —+ SO(6) XSO(4), identi-

fying the SO(6)-SU(4) subgroup as the candidate
for the hypercolor group. In this appendix we

briefly consider other possible subgroups which
could serve as candidates for hypercolor and

analyze the hypercolor content of the (16,10}
6 (10,16) and (16,16) representations for each
case.

(1) SO(10)~~ SO(8) XSO(2). Under this decom-

position

With SO(5) as the hypercolor group, we see that
the (16,16}representation contains no ordinary fer-
mions; the (16,10) 6 (10,16) representation con-
tains five generations. The hypercolor P function
due to the (16;5,1) fermions is given by

(A5)

Though P is negative, it is so small that it is un-

likely to lead to dynamical symmetry breaking in
the TeV region.

(4) SO(10)Ji~ SU(4) XSO(2). Here we identify
SU(4) as an SO(8) subgroup using the standard
connection between SO(2N) and SU(N) groups.
Then
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10=(4+4*,1)+(1,2) .
(A6)

16=(3+1,2)+(3*+1,2'),

10=(3+3',1)+(1,4) .
(A7)

The (16,16) representation then provides only two
generations of ordinary fermions and hence can be
set aside phenomenologically. The (16,10) repre-
sentation also contains only two generations; how-

ever, the (10,16) representation contains some hy-

percolor singlets. Thus the representation
(16,10) 8 (10,16) contains altogether two ordinary
[SO(10)z spinor] and two extraordinary [SO(10)v
vector] fermionic generations. It leads to the top-
less model of Georgi and Glashow. If this
decomposition is to be viable experimentally (to ac-
commodate the b quark), both the (16,10) and

(10,16) representations of the fermions must be
light. But then, however, the hypercolor P func-
tion is positive [see Eq. (7.5)]. Further, currently
available experimental information favors b-quark
assignment to an ordinary family. Qn these
grounds one may reject this possibility.

(5) SO(10)H~ SU(3)XSO(4). As in the previous

case, here we identify SU(3) through its connection
with SO(6). Then

Now the (16,16) representation contains four gen-
erations as in the preferred case discussed in the
paper. However, the hypercolor P function due to
the (16,16) fermions is

p= — ( —,—g)g 33

12' (A9)

This is again unrealistically small and so must be
rejected.

Thus we see that there are only two choices al-

lowed if we take into account the requirements of
asymptotic freedom and consider it as established
that more than two generations exist. These are
case (2) and the case considered in the main body
of the paper. The latter is the only case which
gives a unitary hypereolor group.

P= — ( —,—16),g 33

12+
which is not asymptotically free and so must be re-

jected. The (16,10) representation contains four
generations, while the (10,16) representation this
time also contains four generations. With altogeth-
er eight generations of light fermions, the hyper-
color group is not asymptotically free as previously
note in Sec. VII. With only the (16,10) fermions
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