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Quark and diquark fragmentation into mesons and baryons
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Quark and diquark fragmentation into mesons and baryons is treated in a cascade-type
model based on six coupled integral equations. An analytic solution including flavor
dependence is found. Comparison with experimental data is given. Our results indicate a
probability of about 50% for the diquark to break up.

I. INTRODUCTION

It is commonly accepted that quarks are con-
fined and fragment into jets of hadrons which are
observed in high-energy reactions. The properties
of these jets are usually described in terms of so-
called fragmentation functions. In the phenomeno-

logical picture which has been developed to under-
stand this process of hadronization (see, e.g.„Refs.
1 —3) the fragmentation of a highly energetic
quark into mesons proceeds by creation of quark-
antiquark pairs in the color field of the original
quark and recursive pairing of quarks with anti-
quarks starting with the original quark.

In quark jets also baryons are produced at a
rate of 5 —10%. This can be incorporated into the
phenomenological description by assuming that
also diquark-antidiquark pairs are created and a
quark together with a diquark forms a baryon.
%ith regard to color the diquark behaves like an

antiquark, but since it has a higher effective mass
than a quark, diquark-antidiquark pairs are pro-
duced less frequently. %hen a baryon is produced
in a quark jet an antidiquark continues the chain.
If the antidiquark acts as a single unit then the
next hadron produced in the chain is an antibaryon
(local conservation of baryon number ) and strong
correlations between the emitted baryon and anti-
baryon have to be expected. On the other hand,
since the diquark is a bound object it may also
break up. Then mesons are emitted before the an-

tibaryon is formed. In this case the strong correla-
tion between the baryon and the antibaryon is lost.

Besides quark fragmentation into baryons there

are further phenomena where the concept of a di-

quark plays an important role. In deep-inelastic
lepton scattering when a quark is knocked out
from a nucleon, the diquark is the main corn-

ponent of the target remnant responsible for target
fragmentation. Diquark fragmentation will occur
in large-pT hadron-hadron collisions, too, but there
the reaction mechanism is certainly more compli-
cated. Some of the diquark fragmentation func-
tions have already been determined phenomenologi-

cally; a recent calculation is given in Ref. 8. The
concept of the diquark also appears in the calcula-
tion of higher-twist contributions and, further-
more, it might be useful in baryon spectroscopy. '

In a proper treatment of quark and diquark
fragmentation it is necessary to simultaneously
take into account emission of mesons, baryons, and
antibaryons from the quark as well as from the di-

quark. This leads to a system of six coupled in-

tegral equations for the quark and diquark frag-
mentation functions. It is the aim of this paper to
investigate this system of integral equations and to
look also for other solutions besides a Monte Carlo
one. In order to include resonance decays, masses,
etc., a Monte Carlo simulation of the emission pro-
cess is certainly best suited for analyzing experi-
mental data, but it is also important to know about
exact analytic solutions or other approximate ones.
From a comparison with experiment one will then
learn about the role of the diquark in the process
of hadronization and whether it behaves as a
colored entity or not.

In Ref. 11 a mechanism for baryon production
in quark jets based on the chromoelectric-flux-tube
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fg(q )
(6)

and Bq(z) the probabilities of finding in a quark jet
a primary meson, baryon, or antibaryon, respec-

tively, independent of rank and with momentum

fraction z, and analogously Md(z), Bd(z), and Bd(z)
the probabilities to find a primary meson, baryon,
or antibaryon, respectively, in a diquark jet, the

following set of equations can be written:

Mq(z) =f)(1—z)+ f f)(ri)Mq
'dg z

+ (la)
~3(q)
(c)

FIG. 1. Elementary processes for emission of pri-

mary particles: (a) meson from quark, (b) baryon from

quark, {c)meson from diquark, (d) baryon from diquark.

model has been discussed. It relies on the SU(3)
nature of the color quantum number and does not
make use of the notion of the diquark. If the ideas
presented there turn out to be right, then our
model involving a diquark which can break up
could be considered a phenomenological descrip-
tion of baryon production although the diquark
would then be a less fundamental object.

In Sec. II we describe our basic system of equa-
tions for the fragmentation functions and draw
some general conclusions. In Sec. III we show
how to include flavor. An exact analytic solution

and an approximate one for the fragmentation
functions are presented in Sec. IV. In Sec. V we

compare with experimental data using a Monte
Carlo procedure and discuss our results.

II. THE MODEL EQUATIONS

The elementary processes for emitting a single
(first-rank) meson or baryon from a quark or di-

quark are shown in Fig. 1. We shall denote by

f~(rj) the probability for emission of a meson from
a quark jet [Fig. 1(a)] regardless of flavor when the
meson carries away the fraction 1 —g of the longi-
tudinal momentum of the quark and leaves
longitudinal-momentum fraction g to the rest of
the chain. Similarly f2(rj), f3(ri), and f4(g) are
the probability functions for emission of a baryon
from a quark, a meson from a diquark, and a
baryon from a diquark, respectively [Figs.
1(b}—1(d)]. In particular f3(ri)+0 means that a
diquark can split and the two quarks become part
of different. hadrons. If we then call Mq(z), Bq(z),

Bq(z)=f2(1 z}+f— fl(ri}Bq-'dg z

'dq
d

7l 7l

r

d'g
Bq(z) = f f i ( g )Bq

+ —""- .98d —',

(lb)

Md(z)=f3(1 —.)+ f "f (rj)Md

+ '"
nM, —'.

I

Bd(z)= f,(1 z)+ f f,(g—)8, —'dg z

(ld)

'dg+ "".98, —'.
fI

T

'dq — z

+ — 4&8q
z

(le)

Here we have made use of charge-conjugation in-

variance, i.e., 8&(z) =Bq(z},Bq(z) =B-(z), etc. The
right-hand side of Eq. (la) follows because the
emitted meson can be of rank one, or it can be of
higher rank, the first emitted particle being a
meson or being a baryon, giving rise to the first,
second, and third terms, respectively. In an analo-

gous way also Eqs. (lb} to (lf) can be understood.
Here transverse momentum of the emitted particles
is not taken into account, as we discuss
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(2b)

longitudinal-momentum distributions only. Equa-
tion (la) without the last term is just the equation
of Feynman and Field. ' Equation (lb) without the
last term has been used in Ref. 6. Equations simi-
lar to (ld) and (le) without the last term were used
in Ref. 8 as a model for diquark fragmentation.
This means that in Refs. 6 and 8 multiple-baryon
production has been neglected. Conservation of
longitudinal momentum gives the normalization
conditions

1f z[Mq(z)+Bq(z)+Bq(z)]dz= 1, (2a
1f z[Md(z)+Bd(z)+Bd(z)]dz =1

Bq(r) = h z(r) [1—g3(r )],6 r)

1
Bq(r) = h4(r)gg(r),

b, r

1
Md(r) = Ih3(r)[1 —g~(r)]

A(r)

+h)(r)gq(r)],

Bd(r) = h4(r)[1 —gl(r)],

1B(r)= h 2(r)g4(r),
b, r

(7b)

(7c)

(7e)

and these lead to
1

I z+ 2z dz=1,
1

f, [f3(»+f4(»]dz=1 .

(3a)

(3b)
b(r) = [1—g~(r)][1—g3(r)] g2(r)g4(r—) . (8)

One way to obtain a solution of Eqs. (1) .is by per-
forming a Mellin transformation. Defining mo-

ments as
1

Mq(r) = f Mq(z)z'dz

The inverse of the Mellin transformation of Eqs.
(7)

C+l oo

Mq(z) = f dr z " 'Mq(r), (9)

(5a)

(5b)

Eqs. (1) are transformed into

Mq(r) =h &(r)+g~(r)Mq(r)+g2(r)Md(r), (6a)

Bq(r) =h2(r)+g~(r)Bq(r)+g2(r)Bd(r), (6b)

8 (r)=g, (r)B (r)+gz(r)Bd(r), (6c)

and in an analogous way for Bq(r), Bq(r), M~(r),
Bd(r), and Bd(r) as well as

1

g;(r)= f f;(z)z"dz,

h;(r) = f f;(1—z)z "dz,

etc., are in general not obtainable in closed form.
In Sec. IV we shall discuss a special case where
this is possible. But some general remarks can al-
ready be made here. From Eq. (8) one can see that
h(r) vanishes when r~0 Conse. quently, the func-
tions Mq(r), Bq(r), etc., in Eqs. (7) have poles for
r~O. These poles then completely control the
z~0 behavior of the functions Mq(z), Bq(z), etc.
To see this more clearly we write

1

p;=g;(0)= f f;(z)dz, (10)

where from Eqs. (3), p ~+p2 ——1, p3+p4 ——1.

p& (p2) and p3 (p4) are the z-integrated probabili-
ties that a meson (baryon) is the first emitted parti-
cle from a quark or diquark, respectively. Then
one can show that

Md(r) =h3(r)+g3(r)Md(r)+g4(r)Mq(r), (6d)

B~(r)=h4(r)+g3(r)Bd(r)+gq(r)Bq(r), (6e)

Bq(r) =g 3 (r)8q(r)+ g4(r)8, («) .

The solution of Eqs. (6) is easily obtained as

1M (r)= Ih (r)[1—g3(r)]
b,(r)

lim Mq(z) = lim M~(z)=—1 pip4+p2p3
z~O z-+0 z

lim Bq (z) = lim Bq (z) = lim 8~(z)
z-+0 z~O z~O

1 p2p4= limBd(z)=-
z o z

with
1

p4 I z+ 2 z Jnzdz
1

p2 f, [f3(z)+f.(z)]inz dz .

(1 la)

(1 lb)

+g2(r)h3(r)], (7a)
This means that the height of the rapidity plateau
for a given particle type is the same for quark and



1064 A. BARTL, H. FRAAS, AND %'. MAJEROTTO 26

diquark fragments. The ratio of the plateau
heights for mesons and baryons is given by

Mq(z) Md(z) p & p 3
lim = lim = +
z o Bq(z) z o Bd(z) pz p4

(13)

than 20%. For z ~0.1, however, multiple-baryon
production is important.

III. INCLUSION GF FLAVOR

It depends only on the parameters p; and not on
the shape of the momentum-sharing functions
f;(z). Furthermore, in the scaling limit where Eqs.
(1) are supposed to hold, antibaryons develop a pla-
teau with the same height as baryons. These re-
sults also hold if flavor is taken into account [see
Eqs. (19), (23), and (25) to (29) below]. The quanti-
ties p; are the basic parameters of the model.

It is interesting to note that neglecting multiple-
baryon production, this means omitting the last
term in Eqs. (lb) and (le) (as was done in Refs. 6
and 8) does not lead to a I/z behavior of Bq(z) and
Bd(z) or, equivalently, not to a rapidity plateau for
baryons. Clearly, for z large enough multiple-
baryon production can be safely neglected. More
specifically, taking the parameters as obtained in
our phenomenological analysis in Sec. V, we have
found that for z & 0.2 omission of the last term in
Eqs. (lb) and (le) changes Bq(z) and Bd(z) by less

This can be achieved in a way analogous to that
of Ref. 1. Let us call y, the probability of creat-
ing a quark-antiquark pair with flavor a and y,b

the probability of creating a diquark-antidiquark
pair with flavor content ab. With the normaliza-
tions (2) and (3) we have

a ab

We call Mq (z) and Bq '(z) the probabilities that in
the jet of the quark with flavor q a primary meson
with quark content (ab) or a primary baryon with

quark content (abc), respectively, is produced with
longitudinal-momentum fraction z. Mq q (z) and

Bq "q (z) are the analogously defined functions for a

diquark jet of flavor q&q2. An analogous notation
for the antibaryons is used. We can then rewrite
Eqs. (1) as

'dg ab g 1d
M,'( )=~,.ybfi(1 )+ f —"f,(q)gy, M," —' + f (15a)

z
Bq '(z)= g 6q~yb~f2(1 —z)+ f f)(g) gy, B, ' —+ f

]abc I

Bq '(z)= f, "fi(n)gy, B,'" —' + f "f,(g)gy, /B,~"

r

f2(n) g y.y&,y"'—
Q f

r

(15b)

(15c)

' dgM,",„(z)=—,(~„.+~„.)ybf3(1 —z)+ f "f,(q) —,
' g y, M,", —'

e
I.

~ab
e

I

1

8,",,', (z)= g 5„.5„by,f4(1 z)+ f "—f,(rI) —,
' g y, B,'," —'

(15d)

(15e)

—abc+X.&q .'—
1

I gabe
e

(15f)

These are the basic equations for our study of quark and diquark fragmentation. Here and in the following

g(,b, )
means the sum over all different permutations of the quarks a,b, c (notice that in the convention used

the order of q& and q~ has to be kept fixed). In the following it will also be more convenient to work with
the Mellin transforms of Eqs. (15). Mq "(r), Bq '(r) etc., then denote the Mellin transforms of Mq "(z),
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(16a)

(16b)

Bq (z), etc., defined analogously to Eq. (4). Then, e.g., from the Mellin transformations of Eqs. (15a) and
(15d) we get

g y, M,
' (r)=y, ybh&(r)+g&(r) g y,M,' (r)+g2(r) g ygfMgf(r),

e e ef

yfMgf (r ) =y, yb h 3 (r )+g 3 (r ) g y, yf M f (r ) +g4 (r ) Q YAM (r )

ef ef e

Equations (16a) and (16b) together with Eqs. (6a) and (6d) lead to

gy, M, (r)=y, ybMq(r),
e

af abg yefMef(r) g j eyfMef( ) yaybMd(r) ~

ef ef

From Eqs. (6a), (15a), (17), and (18) one then obtains

Mq (z)=5q, ybf~(1 z)+y,—yb[Mq(z) f&(1——z)] .

From Eqs. (14) and (15d) one furthermore gets
r

g y [M q ( )+Mq ( )] ' [ (5q +5q )j b+ j j b]h3(r)

(17)

(18)

+ g3(r) g y, yfMf(r)+2g4(r) g y, M,
' (r)

ef e

Inserting this and Eqs. (17) and (18) again in Eq. (15d) and using Eqs. (6) gives

(20)

Mq, q, (r) = , (5q, , +5—q,,)yb, h3(r)+y, yb Md(r) , —h3(r)
1 ——,g ( ) 1 ——,g3(r)

Defining a function «(z) by

—,g, (r)I «(z)z"dz=
1 —,g3(r)—

the inverse Mellin transform of Eq. (21) can be performed leading to

Mq q (z) 2 (5q q+5q ~)yb[f3(1 z)+Jbr(z)]+y, yb[Md(z) f3(1 z) J~(z)]

with

Jbl(z)= J «(g)f3 1 ——' dq Z

z '9 7l

fn a similar way one obtains

Bq (z) = g I5q, y~f2(1 z)+y, yb, [Bq(z) f—2(1—z)]], —
(abc I

Bq/q2(z) rf I 5q/a5q2brcf4(1 z)+ 2 (5q[oyb+5q2bya)ycJB(z)
]abc I

+y, y& [Bd(z) f4(1—z)—J~(z)]j—

(21)

(22)

(23)

(24)

(25)

(26)

with

Jg(z)=2 f «(rl)f4 1 ——' dg z
z '9

(27)
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as well as

Bq '(z)= g ysyb~Bq(z),
(abc I

Bq~ q2
(z)= g yg yb~Bd (z)

I abcj

In analogy to Eqs. (17) and (18) the following equalities must hold:

(28)

(29)

(30)

(31)

y y,B, '(z)= y y y,B (z),
e I abc I

gy fBf (z)= gy, yfB f (z)= g y, yb, Bd(z)
ef ef Iabc I

By expanding Eqs. (21) into powers of —,g3(r) it can be seen that the terms JM(z) and Jz(z) in Eqs. (23) and

(26), respectively, come from such contributions where one of the quarks in the original diquark runs as a
spectator through the whole chain until the last emitted particle. Denoting the meson ab by its symbol M
and the baryon abc by its symbol B, the results for the fragmentation functions, Eqs. (19), (23), (25), and (26)
can be cast into the more convenient form

Dq «) =aM~q fi(1 z)+abI—B~[~q«) fi(1 z—)]-
Dq (z) =ag&q f2(1 z)+a9B—[Bq(z) f2(1 z—)], —

Dq q (z) =aMC&~&2 [f3(1 z)+J~(z—)]+aMB [Md(z) f3(1—z)——JM(z)],

Dq, q, (z) =aaCq, q,f4(1 z)+aaEq—,q,Js(z)+a~B [Bd(z) fq(1 —z) ——Ja(z)],

(32a)

(32b)

(32c)

(32d)

Where the COeffiCientS +q 5qapb and 8
are already listed, e.g. , in Table I of Ref. 1. Set-
ting y„=yd ——y, yg

——1 —2y, and yq Op for the
heavy quarks the quantities

M
Cq q,

-—-, (6q, ,+5q,, )yb

as well as

Cq', q,
= g ~q,.&q,by.

I abc )

and

1

Eq&q& 2 g (~q&a3 b+~q2bya )yc
Iabc)

can be calculated. They are listed in Tables I and
II (e.g., y=0.4 was taken in Ref. 1, y=0.44 in
Ref. 8). In order to compute

I abc)

TABLE I. Flavor coefficients for mesons in diquark jets. 0 is the mixing angle of iso-

scalar mesons.

CM

Mf

~+ p+

7T sP
0 0

K+,K'+

X0,@*0

K,E
x-,x*-

1

2y

0
—ys1n 0

2 ycos 0

1

2y

2y

2y
—(1—2y)
—(1—2y)

0
0

—ysin 0

2 ycos 0

y
1

2y
0

0
—ysin 0

2 ycos 0

y(1 —2y)

y(1 —2y)

y(1 —2y)

y sin 8+(1—2y) cos~8

y cos 8+(1—2y) sin28
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TABLE II. Flavor coefficients for baryons in diquark jets.

QQ QQ

Eq) q2

Qd

n, Ap

A, X,—X +
y

—(1—2y)

2y'

y(1 —2y) y(1 —2y)

y' 3y'

2y' 3y'

y(1 —2y) 3y (1—2y)

y+ y++

X,X
~p ~gp

~jfg
~+I

p lsa4

1 —2y
0

0
1 —2y

0

2y(1 —2y)
0

(1—2y)

0

0

y(1 —2y)

y(1 —2y)
—(1—2y)

—,'(1-2y)'

0

0
2y(1 —2y)

0

(1—2y)

3y (1—2y)

3y (1—2y)

3y(1 —2y)

3y(1 —2y)

y'

(1—2y)'

and

Iabcj

vor is done only in an iterative way up to third or-
der.

IV. SOLUTIONS OF THE MODEL EQUATIONS
an assumption about the probabilities yb, has to be
made. For the sake of simplicity we shall put

y& yby, T——he res.ulting coefficients As and 8
are given in Table III. Finally, the coefficient alai
takes into account the relative probability that a
pseudoscalar or a vector meson is made from the
quark pair (ab ). We shall assume az ——a~ ——0.5.
Similarly, uz measures the relative production rate

1 . 3of spin- —, to spin- —, baryons from the quarks abc

Again we shall assume ai~2 ——a3 f2 —0.5 if splil- —,

baryon production is possible, a~~2 ——0 and u3/2 —1

otherwise. Production of higher resonances is
neglected.

The treatment of flavor as presented here is ex-
act and the results of Eqs. (32) are obtained in
closed form whereas in Ref. 8 the inclusion of Aa-

From Eqs. (32) one can see that also in the case
of including flavor it suffices to know the solution
of Eqs. (1). Although Eqs. (1) look rather compli-
cated there are special cases which allow exact ana-
lytic solutions in a closed form being not only sim-

ple but also realistic and useful for practical pur-
poses. %e shall first present such an example and
then discuss a way of obtaining approximate solu-
tions for more general cases.

A. Exact analytic solution

The Mellin transforms of the solutions of Eqs.
(1) are already given in Eqs. (7) and the problem
would be solved if one could do the inverse Mellin
transformation [Eqs. (9)] analytically. For arbi-

TABLE III. Flavor coefficients for baryons in quark jets (notice that a slightly different
convention is used in Ref. 6).

p Q+

n, Ap

~,xp, —,
'r"

g+ giI'+

~p ~gp
~eel

laaal s Immi

g++

0

2y'

y( I —2y)

2y(1 —2y)
0

(1—2y)
0

0
0

q

d

2y'
y(1 —2y)

0
2y(1 —2y)

0
(1—2y)

0

0

0
0

2y(1 —2y)
2y(1 —2y)

0
0

(1—2y)'

3
3y'

3y'(1 —2y)

3y (1—2y)
3y (1—2y)
3y(1 —2y)
3y(1 —2y)

y3

(1—2y)'
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trary input functions f;(r)) this is in general not
possible. However, for the special case of a
power-law ansatz

&;(t))=p;(d;+1)r) ', (33)

we have

d;+1
r +Gfg+1

g;(r) =p;- (34)

I (d;+2)l (r+ I)
h;(r)=p; I (r+d;+2)

(35)

0.1—

and the problem is reduced to solving an algebraic
equation for finding all zeros of A(r) in Eq. (8) (be-

sides that one at r =0}. Specializing further we

put d& ——d4 ——1, d2 ——d3 ——3, i.e.,

z By(z)

fi(n}=pi2r)

f~(n }=p24n'

f3(n) =p34n'

f4(ri) =p'42m

(36a)

(36b)

(36c)

(36d)

o.or-

odor

z My(g)

which is suggested by counting rules' and we ob-
tain from Eq. (18)

r(r+2pz+4p4}
b, (r) =

(r+2)(r+4)
(37)

Inserting into Eqs. (7) the inverse Mellin transform

is obtainable in a straightforward way, giving

FIG. 2. Solid curves, exact solution for the fragmen-
tation functions M~(z), 8~(z), Mz(z), and Bq(z) of Eqs.
(38) with f;(ri} given in Eq. (36). Dashed curve for
comparison fragmentation function of Ref. 1. x 0 frag-
mentation functions obtained by the method of approxi-
mate inverse Mellin transformation, the length of the
averaged z interval as indicated.

Mq(z) = 8(pip&+p2p3) 1 2p& —8p,p4 —16p2p3 16pzp3+ + z'
2p2+4p4 z 2p2+4p4 —1 2p2+ 4p4 —3

8p2p3 z' —(2p, +4p4 —2}Q(z),
2p2+4p4 —4

(38a)

2p4 1 4p4 —1 4p4 —3 2p3Bq(z) =4p~ +
2p2+4p4 z 2p2+4p4 —1 2pz+4p4 —3 2p2+4p4 —4

12p2 2p2+4p4 —1

(2p2+4p4)(2p2+4p4 —1)(2p2+4p4 —3)(2p2+4p4 —4)
(38b)

1 1 1 z 2p2+4p4 —1

Bq(z) = gp2p4 +
2p2+4p4 z 2p2+4p4 —1 (2p2+4p4)(2p2+4p4 —1)

(38c)
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12(P3 2P2P3 P1P4) 4P1(P4 6P3)+ z
2p2+4p4 —1 2p2+ 4p4 —2

8 P1P4+PZP3) 1
Md z = +

2P3+4P4 z

4P3(1+2P1),
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FIG. 3. Diquark fragmentation functions following from Eqs. (32) and (38) with the flavor coefficients as given in

Tables I and II (y, =0.1, up ——u& ——u]/2 —cK3/2 —0.5), without resonance contributions. (a) uu ~mesons, (b) uu —+

baryons, (c) ud ~mesons, (d) ud ~baryons.
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with

Q(z) = 4P &5'3

(212+454)(272+4P4 1)(2p2+~p4 2)

96P2P3 2p2+4p4 —1

(2p2+4p4)(2p2+4p4 —1)(2p2+4p4 —2)(2@2~4p~ —3)(2p2+4p4 —4)
(39)

Note that by Eqs. (3) only p& and p3 (or p2 and p4) are independent parameters. As one would expect Bq(z)
[Bd(z)] vanishes when @2~0 [p4 —+0], but M~(z} and M~(z) vanish only if both p~ and p3 go to zero. We
have plotted zM~(z), zMq(z), zB~(z), and zBq(z) in Fig. 2. The parameters were chosen as p &

——0.92,
p 3 —0.5, as this corresponds also to the realistic situation when one compares with experimental data. For
comparison we have shown in Fig. 2 also zF(z) from Ref. 1 which is obtained with an input function

f, (ri) = 1 —a+3ag, with a =0.7. As one can see, the difference between zF(z) and zM~(z) is less than
20%, apart from the range z & 0.9 although rather different functions f;(z) are used.

Usually, the analysis of meson spectra in quark jets is done with a momentum-sharing function

f&(z) =p&(1 —a+3az ) as in Ref. 1. One can find an exact analytic solution to Eqs. (1}also in this case.
The resulting formulas are somewhat lengthy and, therefore, are not explicitly given here. For a =0.7 the
numerical difference to the solution (38) is less than 10%%uo.

In Figs. 3(a)—3(d) we plotted the fragmentation functions for uu and ud diquarks into primary pseudo-
scalar mesons and spin- —, baryons, following from Eqs. (32c), (32d), (38d), and (38e). From Eqs. (22), (24),
and (27) one can also calculate in this case

(c)
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FIG. 3. {Continued. )
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B. Solution by approximate inverse Mellin transformation

(43)

At each of the points

In the analysis of deep-inelastic scattering several methods were developed to approximately reconstruct
the structure functions of the nucleon from their moments. For arbitrary input functions f;(z) the moments
of the fragmentation functions are known from Eqs. (7). Thus, if an exact solution cannot be obtained one
can try such a method of approximate inversion here, too. We shall do this by following a procedure pro-
posed in Ref. 13 which uses the normalized Bernstein polynomials:

(N —k 11

!=0

zNk= dzb ' (z)z=(N, k) k+1
N+2

the average over the function Mq(z), for example, is calculated by

Mq(z~k)= J dzb' '"'(z)Mq(z),

which by Eqs. (43) is given as

(44)

(N+ 1)f N —k
( 1)1

1=0
(45)

Analogous expressions hold for the other fragmentation functions. The average values of the fragmentation
functions Mq(zz k), etc. , are directly obtainable from their moments [Eq. (7)]. The z interval b,~ k over

which the functions are averaged, is given by

N —k+1
(N+2)'(N+ 3)

For k =2,3, . . Nalso a cor.rection term to Eq. (45) can be calculated which is

1 (N+1)!(N—@+1) ~" ( —1)'(k+l)(k+1 —1) M
2 k!(N+2) (N+3) ( o l!(N k I)!——

(46)

(47)

For further details we refer to Ref. 13. With the
same input functions and parameters as for the ex-
act solution we calculated the fragmentation func-
tions according to Eqs. (45) and (47) for N = 12.
The results for zMq(z), zMd(z), zBq(z), and zBd (z)
are also plotted in Fig. 2, where the length of the
averaging interval, 6& k, is also shown. As one
can see, the method works well for Mq(z) and
Bd(z). For M~(z) and Bq(z) which vary more
strongly, deviations from the exact solution up to
40% occur. The corrections according to Eq. (47)
were less than 2%. It turned out that for N ) 15

I

the results become numerically unstable. As we
can compare with an exact solution, we have pro-
vided in this way a test of this method of approxi-
mate moment inversion.

V. COMPARISON WITH EXPERIMENT
AND DISCUSSION

An essential amount of the particles observed in
a jet is not directly produced but comes from reso-
nance decays. For a comparison with experimental
data it is therefore necessary to also include the



1072 A. BARTL, H. FRAAS, AND W. MAJERDTTD 26

Q.i-

005-

0.02-

0.0r—

0.005—

0.2 0.4 0.6 Q8 1.0

production and decay of resonances. This is most
conveniently done by simulating the generation of
a quark or a diquark jet by the Monte Carlo
method. Our procedure is an extension of that of

0.4
Ko+K

FIG. 4. Comparison of our model with p and p data
of the European Muon Collaboration (Ref. 14).
Theoretical curves obtained with f2 2pqg, f4=2p——4g;

p2 ——0.08, p4
——0.5. Solid curve, p production. Dashed

curve, p production. Here z =E~/v, and jet energy cor-
responding to ( W) = 13 GeV, ( Q ) = 15 GeV.

Field and Feynman by including particle produc-
tion involving diquarks according to Figs.
1(b)—1(d) in addition to Fig. 1(a). Without in-

clusion of resonance decay this is of course
equivalent to the analytic solution of the integral
equations (15), as discussed previously. As usual
the primary mesons are pseudoscalars or vectors in
the rato 1:1. For baryon production only the l =0

1 3
states with spin —, and —, according to the ratio 1:1
(except of course for Q, b, ++,b, ) are taken into
account. The two-particle decays are assumed to
be isotropic in their rest system and the three-
particie decays are supposed to go via two-particle
decays. For the created quarks and diquarks we

have included transverse momentum according to a
Gaussian distribution with o.

q
——

oqq ——330 MeV.
The actual value taken for oqq has practically no
influence on the longitudinal-momentum distribu-
tions.

It is not our intention to present detailed fits to
all available experimental data. Instead we shall
rather concentrate on characteristic examples to
discuss the main features and determine the
parameters. For this purpose we shall deal here
only with jets in neutrino and muon production be-
cause in this case one quark flavor dominates in
the interaction. These processes are therefore
better suited for the study of fragmentation of
light quarks and diquarks. At present we shall not
treat fragmentation of heavy quarks (c,b, . . .) as
the weak decays play an important role here.
Therefore, we shall for the moment not compare
with e+e data.

Choosing

f&(rj)=p~(1 —a+3ag ),
a =0.7,

I dhtC V')

0

O.l—

0 ---=

FIG. 5. Comparison with A and K +E neutrino-
production data of BEBC (Ref. 15). Theoretical curves
obtained with a quark or diquark jet energy of 3 GeV,
corresponding to ( W) =6 GeV.

f;=p;(d;+1)g '

for i =2,3,4 the parameters to be determined are

pl, p3, and the powers d;. The parameter

p2 ——1 —pl is given by the rate of baryon produc-
tion in quark jets. With the choice p2

——0.08 we

got a satisfactory description of proton production
by high-energy muons' as can be seen in Fig. 4.
As for the power d2 it turnmi out that the form
f2(ri) =2p2rl gave better agreement with data than
the counting-rule ansatz fz(r)) =4pzg . In particu-
lar with d2 ——3 the rate of antiproton production at
large z would be higher than for protons, which is
not seen in the data. (Notice that in Fig. 4 and in
Ref. 14 the variable z =E~/v and is therefore dif-
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FIG. 6. m.+ and m neutrino-production data of
BEBC (Ref. 17) compared to our model predictions.
Solid curve m.+; dashed curve rr Quark . or diquark jet
energy taken to be 3 GeV. f~ ——p& (1—a+3ag'),
a =0.7, p~

——0.92, f3 ——4p3g, p3 =0.5. For xz & 0 the
result corresponds within 10%%uo to the Feynman-Field
model (Ref. 1).
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FIG. 7. Comparison with proton (anti) neutrino-
production data of Ref. 18 in the target fragmentation
region. Solid curve, vp; dashed curve, vp. Model calcu-
lation including the leading-partic1e effect, with diquark
jet energy of 3 GeV.

ferent from the variable z used in our paper. ) With

f2 ——2p2ri and p2 ——0.08 also a good description of
A production by neutrinos' for xz & 0 (see Fig. 5)
was obtained. The flavor dependence is essentially

described by the parameter y, =1—2y. A compar-
ison with E +E production by neutrinos (Fig. 5)

suggests a value y, =0.1, smaller than that origi-

nally used in Ref. 1. Such a value for y, was also

found experimentally in Ref. 16 and used in Ref.
8. Moreover, it can be seen that the xF dependence

of K +E for xF & 0 is reasonably well repro-

duced. For the sake of completeness also a com-

parison with the forward ~+ and m neutrino-

production data' is shown in Fig. 6. Owing to the

value p~ ——0.92 this reproduces within 10% the

prediction of the Feynman-Field model.
In describing diquark fragmentation, the

momentum-sharing functions f3(ri) =4p3rl and

f4(r)) =2pqri reproduce satisfactorily the observed z

behavior. The remaining parameter is p3. With
the choice of p3 =0.5 we obtain fair agreement

with m.+, m, K +K, and A neutrino production
for xF &0 as can be seen in Figs. 5 and 6. The
rate of antibaryons produced in quark jets is also
directly proportional to p4 ——1 —p3 [see Eq. (38c)].
p3 ——0.5 also describes the p production by muons

(see Fig. 4) quite well.

We tried to determine more accurately the
parameter p3 which is a measure of the breakup of
the diquark. On the basis of the present experi-
mental situation we can only say that p3 has to be
in the range between 0.4 and 0.8. The case p3 —0
(no splitting of the diquark) seems to be excluded

because then the rates of m+ and m in neutrino

production would practically become equal for
xz & —0.5 contrary to the data (see Fig. 6). The
following quantities are sensitive to the value of p3.
the ratio of ~+ to m neutrino production for
xF &0, baryon productiori for xF ~0, in particular
the ratio D„„(z)/D„"~(z),and antibaryon production
in muon and neutrino scattering. More accurate
data on these processes are therefore necessary for
a better determination of p3.

With f&(z) as given above we could not repro-
duce the proton production by (anti)neutrinos of
Ref. 18 for xF & —0.6. It seems (see Fig. 7) that
the spectrum does not fall off as strongly as one
would expect from the fragmentation functions
shown in Fig. 2. A possible explanation for this
behavior could be that the backward protons show
the so-called leading-particle effect. A further in-

dication for this effect could also be seen in the
difference between forward and backward multipli-
cities in neutrino production. ' We simulated such
a behavior of the proton in the following simple
way which is most easily implemented into the
Monte Carlo procedure: if the final proton is pro-
duced as a rank-one particle, its momentum depen-
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FIG. 8. Model predictions for antineutrino produc-
tion of m+, ~, E +E, and A for quark and diquark
fragmentation with quark or diquark jet energy of 3
GeV. Data for m+ and n production from Ref. 18.
Solid curve, m (for x~) 0), and m.+—(for x+(0).
Bashed curve, m+. Dotted curve, E +E . Dashed-
dotted curve, A. H negative mesons, data from Ref.
18, positive mesons, data from Ref. 18.

dence is not given by f4(1 —z) =2pz(1 —z) but by a
function f(z) which for simplicity we take as
f(z)=2p46(z —0.5). The higher-rank protons are
distributed according to f4(r)). With this simple
method one gets reasonable agreement for
XF (—0.5 (Fig. 7).

In Fig. 8 we show the predictions of the model
for antineutrino production of m.+,m, E +K .
We compared them with the data of Ref. 18.
Whereas we got good agreement for the ~+ and

distributions, for E +E and A production
our results are too high. As our model agrees with
the neutrino-production data' of BEBC and one
expects practically equal fragmentation functions
D„" and Dd, we have no explanation for this
discrepancy. Further data are needed to draw final
conclusions.

Summarizing we can say that the treatment of
quark and diquark fragmentation within the sys-
tem of integral equations as discussed here pro-
vides a satisfactory description of meson, baryon,

and antibaryon distributions in the current and tar-
get fragmentation regions in leptoproduction. We
found an analytic solution including the flavor
dependence which shows the characteristic features
of the fragmentation functions and clearly exhibits
the dependence on the main parameters. The ex-
perimental baryon spectra suggest that in a quark
jet the first-rank particle is a baryon with about
8% probability. Moreover, we get better agree-
ment with the momentum-sharing function
f2(g)-ri than with the counting-rule behavior

f2(q)-q . By comparing with present data our
results also indicate that the diquark has an ap-
proximately 50% probability to break up. So far it
seems that the diquark forming a baryon in a
quark jet behaves in the same way as the diquark
responsible for target fragmentation. The only
difference could be the leading-particle effect of
the target proton which, however, can be incor-
porated quite easily.
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