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S-matrix approach to the theory of hadron structure functions
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We argue that the factorized long-distance part of the hadron cross section can be con-

strained by S-matrix techniques. Specifically, assuming (i) that the low-pz multiplicity,

being a by-product of a multijet production mechanism generated by iteration of the
standard hard-scattering cross section in the QCD framework, increases indefinitely with

energy, and (ii) that the hard hadron cross section is a logarithmic power of the energy

asymptotically, we get a unique prediction for the hadron structure function.

Although the study of hadronic processes in-

volving hard excitation of partons is not the most
appropriate method to test quantum chromo-
dynamics (QCD), due to the complexity of
hadron-hadron collisions, it may lead to a strong
constraint for the hadron structure functions if we

employ the properties of the hadronic S matrix. In
this work we show that, in fact, the study of a par-
ticular mechanism for multijet production in
hadron-hadron collisions may lead, under some
fairly general assumptions, to a solution for the
hadron structure function 6 (x,Q ) which is con-
sistent with perturbative QCD.

In a hard process involving parton subcollisions
with large subprocess momentum transfers one is

usually interested in studying inclusive hadrons

emerging from the hadronization of a hard parton
(jet) in order to clarify the fundamental properties
of parton interactions within the framework of
large-pz physics. On the other hand, there exists a
whole class of multijet production diagrams, given

by iteration of the standard hard-parton-scattering
mechanism' [Fig. 1(a)], in the framework of QCD,
which generate inclusive hadrons with low trans-
verse momenta [Fig. 1(b)]. These inclusive pro-
cesses represent a well-defined component of low-

pz physics, which is characterized by long-
rapidity-range correlations, due to the presence of
hard partons in the final state. These processes are
distinct from those involving the production of
only low-pq hadrons, which are analyzed within
the framework of Reggeon field theory.

The basic quantity needed to build up the above
production mechanism is the contribution of the
hard parton scattering (one-gluon exchange) to the
total hadronic cross section' [Fig. 1(a)],
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FIG. 1. Inclusive production of low-p~ hadrons from
a class of tree graphs involving hard quark scattering
and high-p~ jet production. (a) Standard (lowest-order)
graph: Two-jet production--with any low-p& hadrons.
(b) The lowest-order graph is iterated once to give rise to
four high-p& jets plus inclusive production of one central
low-p& hadron. (c) The standard hard-scattering
mechanism coupled to Reggeon exchange.
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Vb($)= f dxc f dXb f dt G(xc, —t)G(Xb, —t)

where G (x,Q ) is the hadron structure function and d &Idt the differential cross section of the subprocess.
The hard cross section (I) may play the role of a Mueller propagator in the inclusive diagrams [Fig. 1(b)] if
we assume that the joint probability G (xb,x, ; t,—d) appearing in the one-particle-inclusive cross section

dQ do gb c
dx, dxbdt, bdx, dxddt, dG(x„—t,b) ~ G(xb,x„' t,b,—t,d—) G(xd, t,d)—

is factorized as follows:

G(Xb~X c~ tab~ cd) G(Xb~ tab)G(Xc~ tcd)

This assumption is motivated by the general prop-
erties of the parton model and the fact that the
probing momentum transfers t,b, t,d for the two
partons b and c are independent.

Hence, the semi-inclusive cross section for the
production of q hadrons with rapidities

y~,y2, . . . , yq and small momentum transfers to-
gether with a hadronic missing mass of 2(q+ I)
hard jets and any number of soft hadrons is given

by the factorized form

dq in

4'14'2 ' 4'q

=K(yA yq)K(yq y—, 1) K—(y( —yB) .

I

for the semiexclusive propagator Ko(y), in terms of
the semi-inclusive one K(y).

We may now use QCD in order to factorize the
large- and short-distance parts of the propagator
K(p). From Eq. (I) we obtain

.K(p)= f dtG (pQ )C(pQ ), Q = t, —

where G(p, Q ) is the usual moment of order p of
the structure function

G(p, Q )= f xPG(x, Q )dx,

and C(p, Q ) is defined by

—z s ~ do s
C(p, Q )= e p'0 —+t dz, z—:ln—

2 dt $0

The Mueller propagator in (3) is identified with the
hard cross sect'on (I), i.e., K(y; —y; 1)=ob($;;

From the densities (3) we may extract the sem-
iexclusive propagator Ko(y; —y; 1) which generates
the factorized semiexclusive distributions, i.e.,

dq ex

dy)dy2 . .
dyq

=Ko(yA y )Ko(yq yq —1) KO(yl yB) ~

(4)

Equation (4) gives the cross section for producing q
soft hadrons with rapidities y~,y2, . . . , yq plus any

large-pT hadrons. If we introduce the Laplace
transform

K(p) = f e PPK(y)dy, (5)
0

we obtain the representation

C+i oo

K()(y)= . f eP Kp(p)dp,
27Tl

G( Q2) G( Q 2) y(P)g(Q2, QO~)
(9)

where y(p) is calculable in perturbative QCD and

Qo' Q'(=in ln In
A A

is the usual evolution variable. From (7) and (9)
we obtain

«p)=G (p Qo )&(p Qo»
where the factor

Q
2

Z( Q ')= f ' dte'""""'"C( Q')

(10) /
/

(10a)

Ignoring, for simplicity, the flavor content of the
structure function and employing the renormaliza-
tion-group equation for the moment G(p, Q ), we
may write

with

1
Kp(p) =

K '(p)+ I

depends on the short-distance properties of the
quark-gluon interaction and it is calculable in per-
turbation theory, whereas the moments of the
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structure function G (p, Qo ), at the initial value

Qo, belong to the unknown sector of the theory
and they cannot be calculated in perturbative
QCD.

Equation (10) shows that any attempt to con-
strain the Mueller propagator E(p), by studying
the component (3) of hadronic production within
the framework of S-matrix theory, offers at the
same time a method to constrain the structure
function G(x, Qo ) at the initial point Qo without
referring to the controversial space-time properties
of QCD at large distances (confinement). Motivat-
ed by these last remarks we focus our discussion to
the one-dimensional classical fluid in rapidity
space defined by the densities (3). One can prove
the following theorem:

If in the fluid defined by Eqs. (3), E(y) -y
for yah oo and the average multiplicity (n )~ oo

for Y~ oo ( Y—:yz —ys ), then 0 & i) & 1 and

Eo(p)=exp( bp' —") with b &0.

Im[E(p)] = 2E(0)ImE(p),
p-+0

where

E(0)= I, E(y)dy

(12)

is finite for il & 1. Hence, from Eqs. (11) and (12)
we find

lim (n)=2E(0) .
F~ao

The assumptions of this theorem simply express
the general belief that for any hadron-production
mechanism, the cross section behaves asymptotical-

ly as a logarithmic power of the energy and the
average multiplicity grows indefinitely with energy.

First, we show that the exponent q is restricted
in the range 0 & i) & 1. The wide range of values

g & —2, allowed by the Froissart bound, is reduced
to the range of positive values, il & 0, since other-
wise the densities (3) with —2 & il & 0 violate posi-
tivity (o„&0). On the other hand, it can be easi-

ly shown that if il & 1 the average multiplicity (n )
of the production mechanism is constant for
s~ 00, contrary to our assumption. Indeed, the
factorized form (3) leads to the following represen-
tation for the average multiplicity:

E(Y)(n ) = . I [E(p)] ei'"dp, Y=ln-
277l c —i oo Sp

(11)

The discontinuity of [E(p}] near the branch point
p —+0 has the form

For completeness, we note that the marginal value
g=1 is also excluded since the corresponding pro-
pagator, E(y)-y ', violates unitarity when cou-
pled to ordinary Reggeons in the Mueller graphs
[Fig. 1(c)].

To complete the proof of the theorem, we note
that our previous work on the properties of the
Feynman-Wilson fluid renders the following state-
ments obvious:

(i) The production mechanism, defined by the
densities (3) with

E(y)-y " (yahoo, 0&i) &1),
satisfies Koba-Nielsen-Olesen scaling,

(n )o„/cr,=f(n/(n )),
and the scaling function behaves asymptotically
like

~1/g1((x)-e " (x~oo, a&0) .

(ii) The generating function (grand partition
function} of the system,

Q(z, Y)= g z"o„(Y)/cr,(Y),
n=0

has a normal thermodynamic (Regge) behavior

Q(z, Y)-e "i'" for Y~oo and the pressure-
fugacity relation is

(13)

p (z) = —lnz
1

b

1/(1 —q)

b—= 1

(1—rl )c

1 —q a
'9

(14)

which completes the proof of our theorem.
Using now Eq. (6) we determine the inclusive

propagator E(p), which is directly related to the
hard processes with multijet production, shown in
Fig. 1, namely

The constant c is related to the rise of the average
multiplicity with energy, i.e., (n ) -cY'

The factorized form (4), interpreted in the con-
text of the hadronic fluid dynamics, defines the
nearest-neighbor interaction potential U(y) through
the Boltzmann factor as follows: e '~'=Eo(y).
On the other hand, in one-dimensional classical
systems with nearest-neighbor interactions, the La-
place transform of the Boltzmann factor is simply
z (p) if the pressure p is identified with the La-
place variable conjugate to y. We thus obtain

Eo(p) =e



26 S-MATRIX APPROACH TO THE THEORY OF HADRON. . . 103

E(p) = (~"s —1)

We may now determine the hadron structure func-
tion G(x, QO ) using the propagator (16), which
was found from the study of the hadronic S ma-

trix, in the framework of the Feynman-Wilson
fluid dynamics. From Eqs. (10) and (16) we obtain

G(p, QO )=JR(p, QO )[—1+exp(bp' ")]J
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Using the results of perturbative QCD for the
evaluation of the quantity R (p, QO ), ' with a
steepest-descent expansion of the inverse transform

FIG. 2. Fit to the hadron-structure-function data
(from Ref. 10) with the model described in the text.

c+i oo

G(x,QO )= . f x i'tR(p, Qo )[—1+exp(bp' ")]I '~ dp, (18)

[(1—rl }bl"
2"(i~ —1)(ln 1 /x )"

G(x, Qp )=g(Qo, g, b, A) ln— (x - 1, a = 1/i} ) .

we find that the behavior of G (x,Qo ) near the end point x =1 is (see also Ref. 9}
—(3m+1)/2

(19)

The constant g (Qo, A, g, b) in the solution (19) de-

pends on the parameters of the model. We note

that x and b have their origin in the hadronic fluid

dynamics (S matrix), whereas Qo and A are the
basic parameters of the quark-gluon dynamics (per-

turbative QCD}.
The form (19}shows that the threshold behavior

near the point x = 1 is controlled by an essential

singularity, contrary to the popular power behavior

G(x, Qo )-(1—x)~ used in phenomenological stud-

1es.
Although the expression (19}is exact only in the

limit x —+1, we have checked that including more
terms in the steepest-descent expansion of the in-

tegral (18), we can have a good approximation for
smaller values of x (e.g., x )0.3). The model fails

near x =0, since the perturbation expansion for the
anomalous dimension y(p} breaks down near the

point p =0 and one does not have a reliable

behavior of the quantity R (p, QO ) in Eq. (17}near

this point. We have applied this approach to a
phenomenological study of the hadron structure
functions and in Fig. 2 a simultaneous fit to the
data' for nucleon, pion, and kaon structure func-
tions is illustrated. The Q dependence of these
structure functions required by perturbative QCD
can easily be incorporated in the model.

Finally, we note that although the hadronic pro-
pagator K(p), which plays a central role in our
model, manifests itself in the longitudinal region, it

I

bares strong memory of its hard origin. Its most
fundamental property is that it implies a charac-
teristic energy threshold, beyond which a new con-
tribution to hadron scattering switches on. Indeed,
inverting Eq. (16) we find a rising component to
the hadronic cross section which is the solution
for the hard cross section (1), i.e.,

—(z+ 1)/2

~i, (s)-—ga
S

Sp

(20)
(a —1)(lns/so)"

The expression (20) is exact near the threshold of
the mechanism s=sp, which is related with the
transverse-momentum cutoff —t;„.=Qo =so/2,
beyond which perturbative QCD is applicable.

The coupling of the propagator IC(p) with ordi-

nary Reggeons in the Mueller graphs [Fig. 1(c)]
gives rise to long-range effects in the hadron multi-

plicities and correlations. These phenomena have

already been studied" in the framework of the
critical Feynman-Wilson fluid and it has been

shown that the data support the relevance of the

propagator K(p) to hadron physics.

We are grateful to E. Zevgolatakos for invalu-

able help with computer facilities. This work was

supported in part by Alexander S. Onassis public
benefit Foundation.



N. G. ANTONIOU AND S. D. P, VLASSOPULOS

S. M. Berman, J. D. Bjorken, and J. B. Kogut, Phys.
Rev. D 4, 3388 (1971);J. Kogut and L. Susskind,
Phys. Rep. 8C, 75 (1973); S. D. Ellis and M. B. Kis-
linger, Phys. Rev. D 9, 2027 (1974); R. K. Ellis, H.
Georgi, M. Machacek, H. D. Politzer, and G. G.
Ross, Phys. Lett. 78B, 281 (1978); Nucl. Phys. B152,
285 (1979).

2See, e.g., A. J. Buras, Rev. Mod. Phys. 52, 199 (1980).
R. P. Feynman, talk presented at Argonne Symposium

on High Energy Interactions and Multiparticle Pro-
ductions, 1970 (unpublished); K. Wilson, Cornell Re-
port No. CLNS-131, 1970 (unpublished).

4N. G. Antoniou, C. B. Kouris, and G. M. Papaioan-
nou, Phys. Lett. 52B, 207 (1974).

5N. G. Antoniou, C. B. Kouris, and G. M. Papaioan-
nou, Phys. Rev. D 14, 264 (1976).

N. G. Antoniou, P. N. Poulopoulos, C. B. Kouris, and
S. D. P. Vlassopulos, Phys. Rev. D 14, 3578 (1976);
N. G. Antoniou and S. D. P. Vlassopulos, Lett. Nuo-

vo Cimento 20, 285 (1977); Phys. Rev. D 18, 4320
(1978).

7Mathematical Physics in One Dimension, edited by E.
H. Lieb and D. C. Mattis (Academic, London, 1966);
T. D. Lee, Phys. Rev. D 6, 3617 (1972).

B. L. Combridge, J. Kripfganz, and J. Ranft, Phys.
Lett. 70B, 234 (1977); R. Cutler and D. Sivers, Phys.
Rev. D 16, 679 (1977); 17, 196 (1978).

N. G. Antoniou, C. Chiou-Lahanas, S. D. P. Vlassopu-
los, and E. Zevgolatakos, Phys. Lett. 93B, 472 (1980).
A. Bodek et al., Phys. Rev. D 20, 1471 (1979); C. B.
Newman et al., Phys. Rev. Lett. 42, 951 (1979);J.
Badier et al., work presented at XXth International
Conference on High Energy Physics, Madison,
Wisconsin, 1980, Report No. CERN/EP 80-148 (un-
published).
N. G. Antoniou, C. Chiou-Lahanas, X. N. Maintas,
and S. D. P. Vlassopulos, Lett. Nuovo Cimento 24,
339 (1979); Nuovo Cimento 56A, 97 (1980).


