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Exact solution of a rotating dyon black hole
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We present an exact solution of a rotating dyon black hole in the Tomimatsu-Sato-
Yamazaki space-time and study its special case, i.e., the exact rotating dyon solution for
which the space-time metric takes the Kerr-Newman form. This solution is characterized

by four physical parameters (mass M, angular momentum S, electric charge Q, and mag-

netic charge 4), represents a black hole, and reduces to the rotating monopole in the case
=0.

I. INTRODUCTION

Dirac pointed out that quantum mechanics does
not preclude the existence of magnetic monopoles. '

Furthermore, Schwinger proposed the dyon, i.e., a
pole possessing both electric and magnetic
charges. This dyon exists in Abelian theory.

On the other hand, in non-Abelian theory, the 't

Hooft magnetic monopole and the Julia-Zee dyon
were spherically symmetric classical solutions of
SO(3) Yang-Mills theory coupled with a triplet
Higgs field.

The solution of the Einstein-Maxwell equation in
Kerr space-time was obtained by Newman et al.
This solution corresponds to a rotating ring of
mass and electric charge. Tomimatsu and Sato
discovered the series of solutions for the gravita-
tional field of a rotating mass, following Ernst's
formulation on axisymmetric stationary fields.
Furthermore Yamazaki obtained the charged
Kerr-Tomimatsu-Sato family of solutions with ar-

bitrary integer distortion parameter 5 for gravita-
tional fields of rotating masses.

Recently, we found a static spherically sym-
metric Julia-Zee dyon solution in curved space-
time. In this paper we present an exact stationary
rotating dyon solution in Tomimatsu-Sato-
Yamazaki space-time, and study, in detail, both the
Schwinger' and the Julia-Zee" dyon exact solu-

tions in Kerr-Newman space-time, i.e., in the case
5=1. The solution is characterized by four physi-
cal parameters (mass M, angular momentum S,
electric charge Q, and magnetic charge 4), and

represents a black hole. '

In Sec. II we present an exact dyon solution with
the Tomimatsu-Sato-Yamazaki metric. In Secs. III

and IV, we take the Schwinger and Julia-Zee dyon,
respectively, as the matter fields in Kerr-Newman
space-time. In Sec. V we discuss the dyon black
hole in Kerr-Newman space-time. We conclude
with a short discussion in Sec. VI.

II. TOMIMATSU-SATO- YAMAZAKI- TYPE
SOLUTION

Let us consider the following Lagrangian densi-

ty, which describes the electromagnetic field in-

duced by a dyon in curved space-time (fi=c= 1):

1 v' —go+MD .
16~6

The field equation for g&„ is

~~ ——,g~ Z =8~GT~,

(2.1)

(2.2)

where the energy-momentum tensor of the dyon is
given by

Tpv 2 5W
v' —g 5g„
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(2.4)

where the relations among the Boyer-Lindquist
coordinates (t,r,8,tp), the Weyl coordinates (t,pp, tp),

Our stationary axisymmetric dyon solution is a
straightforward extension of the Tomimatsu-Sato-
Yamazaki solutions in Boyer-Lindquist coordinates
and is given by (see Refs. g and 13)

Bshsin 0
S2 dy2+ X d I92+ dy2

As
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and the prolate spheroidal coordinates (t~,y, tp) are

p=h' sin8= (x —1)' (1—y )'
6

z =(r —GM)cos8= xy,GMpo
5

r = x +GM, cos0=y,GMpcr

5

b =(r —"GM) ——(GM) —a — (Q +4 )
4m

2
GMpo

(
p 1)

5

(2.5)

(GMo)' 8
2 2 2 2 2 5—1 2 2 2 25 [(GM) —a —(6/4m)(Q +4 )] ' (GM) —a —(6/4m)(Q +4 )

(GMpo) =(GM) —a — (Q +4 ), p +q =1.
4m.

The parameter a is related to the angular momen-

tum S and the mass M of the dyon,
a=S/(GM) =GMqo, and 5 is an arbitrary integer
distortion parameter.

It is well known that the Tomimatsu-Sato-
Yamazaki metrics (5 & 2) have ring singularities on
the equatorial plane outside the nonsingular event

horizons, and that concermng the ultimate fate of
gravitational collapse, the space-time around a
black-hole may always be represented by the Kerr
metric. Following the Israel-Carter theorem, all

singularities in space-time are hidden behind the
nonsingular event horizon in the course of collapse,
i.e., the space-time must be represented by the Kerr
metric. Therefore we consider the dyon in Kerr-
Newman space-time in (2.4) (6= 1).

III. SCHWINGER DYON

We take the following Lagrangian density,
which describes the electromagnetic field induc'ed

by a Schwinger dyon':

(3 3)

An appropriate vector potential is expressed in

Boyer-Lindquist coordinates

A, = ( Qr+—4a cos8), A„=He ——0,1

AX

«»n'~+ & — cose
Q . 2 C r'+a'

4oX 4~

(3.4)

A~(8=m. ) =4/2m .

X=r +a cos 0,
in the case 5= 1 in (2.5}, the space-time indices

p,vp = t, r, Ig,tp.

The presence of a Dirac string in our solution
may be seen from Az in (3.4). In fact the 4& term
in A+ does not vanish on the semi-infinite line
8=m of the symmetry axis:

g gag F F

where

Fq„——BP,—Bgp+*6„„,
and *G&„ is the Dirac string term. ' The field
equation for A& is

(3.1)

(3.2)

Correspondingly the Dirac string term *G„„is
chosen to be nonzero at 0=a. Using differential
forms, one can express *6&, in a compact form as

G =
2 *Gpvdx" A, dx

r +a
1 —— cose d p

4m X

The energy-momentum tensor of the electromag-
netic field is given by

8( —cos8}d q&,
2

2' (3.5)
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where 8 is the step function, and d y does not
vanish only on the symmetry axis. Since *6of
(3.5) is independent of a, it is identical to the 'G in
the spherically symmetric case a=0. In this spe-
cial case a=0, the A~ takes the same form as in
flat space-time:

F„'„=a„A'„a—P„'+e~.„A„'A'„,

D„P'=B„P'+em,s,A„"P',

V(P) = , (y'-y')' , u—'(—y'y'),

u =p/A, ,

(4.2)

A„=C&(1 cos—8)/4n .

It will be discussed in the next section that Q and
4 have the physical meaning of the electric and
the magnetic charge of our dyon solution, respec-
tively. The magnetic charge 4 obeys the Dirac
quantization condition eg=n/2 (4'—:4n.g), where e
is the electric charge of a test particle around our
dyon solution. '

IV. JULIA-ZEE DYON

We consider SO(3) Yang-Mills-Higgs theory in

curved space-time described by the Lagrangian
density"

where u = (P ) determines the vacuum expecta-
tion value of the triplet Higgs field P'. Since
gauge fields act as a source of the gravitational
field, it is apparent that nontrivial topologies can
be generated by the interaction of the Yang-Mills
field, the Higgs field, and the associated gravita-
tional field. The equations of motion for the
Yang-Mills field A& and the Higgs field P' are

D.« gg~g"—F~)+& gg""«—.s O'D.0'=0
(4.3)

D,« gg""—D.0') & g—~l(—A") O'I0—'=0,
where the isospace indices a, b,c=1,2,3. The
energy-momentum tensor of this system is given by

T"„= (g" gi'~F—'+',
~
—, 8'~i g ~—F~F'&)

(g~Dpo'D—0' i &A~D—po'D 0')

with

g[ ,g"'g—" F„'—P—'

, g""D„$'D—P' A, V(P)j,—(4.1)

+O'PV(P) . (4.4)

For the Yang-Mills field A„' and the Higgs P', in
order to obtain an exact rotating Julia-Zee dyon
solution with the Kerr-Newman metric, we assume

(A,',A, ,A, ) = (sin8 cosy, sin8 sing, cos8),
eX

A„'=0,

(A s,A s,A a) =—(sing&, —cosy, 0),2

e
(4.5)

(A &,A ~,A ~ ) = (N si nc8 soy, N sin8 sing&, P),
~y

(P',P,P ) = (sin8 cosy&, sin8 sing, cos8),
eX

where 8, D, N,P, and U are functions of r and 8. When the angular momentum parameter a is zero, the
functions 8/X, D, N/X, P/X, and U/X reduce to J/r, 1 K, (1 K)cos8, ———(1—K)sin 8, and H/r, respec-
tively. Hence we call (4.5) an extended Wu-Yang-'t Hooft-Julia-Zee ansatz for the fields A„' and P'. '~

In order to obtain the Kerr-Newman-type solution of our dyon, we can choose the following particular
solutions for B, B, N, P, and U:

8 =br —a cosO, D =1,
N =(r +a )cos8 bra sin 8, P = (r —+bra cos8)sin—8,
U =+CX,

(4.6)
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where b is a constant, and C =e u .'
From (4.5) and (4.6), we can compute the electric and magnetic fields as follows:

(E„,Es,E&)=(F„,Fg„F«}= 2 ( —P, —ya sin8, 0),1

eX

(B„,Be,B+}=(Fs&,F+„,F„s)= 2 (y(r +a )sin8, —pa sin 8,0),1

eX

where 't Hooft's electromagnetic field is

(4.7)

and

pO
P

i i

P 3 Eabcl &pl Dvl

p—:—2ra cos8+b (r a—cos 8),

y:— 2bra co—s8 —(r —a cos 8) .2 2 2

The electric and magnetic fields of (4.7) in the asymptotic rest frame's have the following components'

(Ep, Ey,E-)= —,0,0 ~ —,0,0
b

er' '
eT

(B,-,By,B )= y 1
,0,0 ~ —,0,0 (4.8}

as r~ oo. In the case a=0, the arrow signs should be replaced by equalities. Thus b/e and——1/e have

the physical meaning of the electric and the magnetic charge of our dyon solution, respectively,

b 1
Q = 4n, 4—=——.—4~—,e' e

' (4.9)

i.e.,

4~(b'+1) 1

4'
For the Schwinger dyon, we can similarly derive (4.8) using (3.4). The combination Q + 4 is both gauge

invariant and duality-rotation invariant, and arises from the factor p + y, which appears in the calculation

of our T":
P'+y =(b'+ I )&'

(see next section).

V. DYON BLACK HOLE

Our stationary axisymmetric dyon solution with the Kerr-Newman form is given in the case 5= 1 in (2.4)

b 13

A, =p x +q y —1= X—G 2Mr — (Q2+C&~)
(GMo ) 4~

1
Bi = px+ + 2„2

(GMo. )
(5.1}

C|———px ——o +—=— 2Mr — (Q ~+ 42)1 1 crG 1

2 o 2(GMo ) 4m
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where

b, = (r —GM) — (GM) —a — (Q2+ 42)
4m

X=r +a cos 8
(5.2)

1/2

r =6M+ (GM) —a — (Q +4 )
2 2 G

4m

Thus our dyon solution represents a black hole

provided that

a'+ (Q'+4') & (GM)' .6
4n.

(5.3)

We have checked that Eqs. (3.4) and (5.1) satisfy
the equations of motion (2.2) and (3.2) for the
Schwinger dyon' and that Eqs. (4.6) and (5.1)
satisfy the equations of motion (2.2) and (4.3) for
the Julia-Zee dyon. "

Since we have the metric (2.4), i.e., (5.1), we can
show, from (5.2), in the Boyer-Lindquist coordi-
nates that there exists an event horizon at

I

We call it a dyon black hole. Furthermore the in-

finite red-shift surface under (5.3) is given by

r =GM+ (GM) —a cos 8

The structure of the space-time is schematically
shown in Fig. 1. We can see that our dyon black
hole is smaller than the Kerr-Newman black hole.
The black hole shrinks as the number of physical
conserved quantities increases.

From (3.3), (3.4), and (5.1) for the Schwinger
dyon and from (4.4), (4.6), and (5.1) for the Julia-
Zee dyon, we obtain the same following nonzero
components of the energy-momentum tensor T&

in the Boyer-Lindquist coordinates:

T f ——T

(5.4)

f

tained an exact rotating dyon solution with the
Kerr-Newman metric (5=1). Our solution
represents the gravitational, electric, and magnetic
fields of a ring of mass M, electric charge Q, and

magnetic charge 4 rotating about its axis of sym-

metry. It is a black-hole solution provided that
Eq. (5.3) is satisfied, and reduces to the rotating
monopole in the case Q=O (see Fig. 2 for various
limiting cases). Our dyon solution leads to "a
black hole with four hairs. "

Both the Abelian (i.e., Schwinger) and the non-

Abelian (i.e., Julia-Zee) dyon solutions have the
same metric (5.1). From this point of view, we

note that our solution (4.6) for the Yang-Mills and

Higgs fields can be obtained from the Schwinger
dyon solution A„'=A„"I3,P'=uI3 [see (3.4) for the
expression for A&'] as a special case of our extend-

ed Arafune-Freund-Goebel singular gauge transfor-
mation':

The energy-momentum tensor is traceless. Note
that for the Julia-Zee dyon we have neglected in

(5.1) and (5.4) an irrelevant constant cosmological
term due to the nonvanishing Higgs potential

V(P) =—u /4 at its minimum U=+CX. In fact,
we can take a new Higgs potential V(P), given by

V(P) =—[(P'P') —u ]4

for which V(P) =0 with U=+CX.' Then the
cosmological term does not appear in our theory.
Furthermore if we discuss our theory in the
Prasad-Sommerfield limit A,~O, ' the cosmological
term does not appear. In this limit we can take
U=b'X with b' an arbitrary constant.

VI. CONCLUSION

We have presented an exact dyon solution with
the Tomimatsu-Sato- Yamazaki metric, ' and ob-

+2 @2
[r2+a (1+sin 8)],

32m. X

n +@' ~ 0'+4' gT' = — (r +a )a sin 8, T~, =
16m X 16m X

T"= Ts=Q+4— 1

32m X
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Static Monopole

( N, 4 )

Rotating Monopole

( N, S, 4 )

Static Dyon

( M, Q, 4 )

Rotating Dyon

( Ni Qi S. @ )

Schwarzschild

( M )

Kerr

( N, S )
r S

Reissner-Nordstrom

(M, Q) ( Ni Qi S )

w =exp( iqrI3 )exp—( —i:-I2)exp(iyI3 ),

A~ =wA~w — (B~w)w, /=we w
e

(6.1)

FIG. 1. The structure of the space-time in the
Boyer-Lindquist coordinates. The dashed lines and the
solid hnes denote the infinite red-shift surfaces r+ and
the event horizons r+, respectively,

r+ =@+i@—a cos 0—v )'~',

ro~ +(+2 &2 P)1/2

where p=GM, v =G(Q +P )/4n. , and rs (=2@) is

the Schwarzschild radius.

FIG. 2. The relation of our gravitating and rotating
dyon solution (characterized by four physical parame-
ters; mass M, angular momentum S, electric charge Q,
and magnetic charge 4) to other solutions is illustrated.

ing dyon solution in flat space-time. Furthermore,
in the case a=0, it reduces to the spherically sym-
metric dyon solution. ' In particular, the
Schwinger dyon solution then reduces to the spher-
ically symmetric solution

(A„A„As,A~) = —,0,0, (1—cos8)
4m.r' ' '4m

where Az ——I,A„' and P =I,P' are the Julia-Zee
dyon solution, and:" is a function of r and 0, by
replacing ==8 in (6.1). If we take the condition
:-(r,8=0)=0 and:-(r, 8=m) =n, the equality
4= —4m/e (n = —2) in (4.9) then guarantees that
the resulting 2& is free of a Dirac string. Our
Julia-Zee dyon has no topological stability and will

decay into a monopole of strength
g(=+/4m. = —I/e) possessing such a stability. '

Taking G=O in (2.4) and (5.1), the metric
reduces to flat space-time. ' We then have a rotat-
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