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The gauge formulation of conformal gravity with the conformally invariant vacuum is discussed.

I. INTRODUCTION

II. CONFORMAL GRAVITY
WITH THE CONFORMALLY INVARIANT VACUUM

In order to make spontaneous symmetry breaking
of K transformations unobservable we extend mani-
fold xP into the eight-dimensional space {x",z~).
The corresponding general coordinate transforma-
tion group acts in this space and thus we should,
in principle, start with the very extensive group

K'=C'o' DlffR (2.1)

In this paper we discuss the question whether it
is possible to generalize the gauge approach to
conformally invariant gravitation theory presented
in Ref. 1 (further denoted by I) in such a way that the
local K transformations are not reduced to L, and D
transformations as in I. In other words is it possible
in the conforms. case to avoid spontaneous symmetry
breaking with respect to the K transformations,
i.e., to avoid the presence of the Goldstone fields
s'(x) but to preserve our interpretation of the local
P transformations as translations in the tangent
space?

As already mentioned in I we cannot simply in-
clude K, in the stability group of the vacuum since,
in that case, the standard method of nonlinear re-
alizations is not applicable. We, therefore, pro-
ceed as follows. We leave K, in the quotient space
but we shall not treat the coset parameters as-
sociated with K, as fields but as new independent
coordinates.

We have seen in I that in the Poincare case
there is no spontaneous breaking of the symmetry
of the vacuum corresponding to the local P trans-
formations due to the genuine coincidence of the
Goldstone parameters y'(x) with the coordinates

In other words it is always possible to put
(2.39) in I, i.e., to glue the tangent space with its
base. Since P, and K, appear symmetrically in the
conformal algebra it looks natural to apply the
same mechanism again and to make the spontaneous
symmetry breaking of the corresponding K trans-
formations "unobservable, " too. This will be dis-
cussed in the next section.

x& =5."y'(x, z), z& =5."s'(x, z) (2.3)

so that there arise certain relations between func-
tions of coordinate transformations (2.2) and gauge
functions of C'". As a result, K,' is realized on

(x& z~) in the following way:

Eo. bx~ = c"(x) —a"„(x)x"—x'b" (x)

+ 2x "x'b,(x) —t(x)x

bz~ =b'(x) —a&„(x)z

(2.4)

—2[b,(x)x"5'„—b'(x)x„ + b„(x)x']z"+ t(x)z' (2.5)

[upper and lower indices are connected by con-
stant tensor q'"=diag(l, —1, —1, —1)]. On the gauge
fields, Ko acts so that these fields transform with

instead of (4.2) in I; here C"'is localized on the
whole space (x~, z~}. Fortunately, for our pur-
pose, it is sufficient to consider not the whole
group Diff'' but its special subgroup with the fol-
lowing "flag" structure:

bx~ =»(x) bz~=~'&x)=~+q'(x) (2 2)

where X~(x), y~(x), and p~(x) are arbitrary func-
tions. This subgroup is the minimal subgroup of
DiffR' including both the ordinary general trans-
formations of x]' and the constant parameter con-
formal transformations of x", zp given in Appendix
A [formulas (A2)-(A5)]. Since x" form an invar-
iant subspace with respect to (2.2), we may re-
gard gauge transformations of C"' and correspond-
ing gauge fields to depend solely on points of the
g space as before. The additional coordinate -['

will appear only in the Cartan forms.
Now, we shall proceed as follows. First we con-

sider the realization C"' on the coset C'"j
(ISOD(3, 1))"'with the parameter fields y'(x, z),
s~ (x, z). They transform under the global con-
formal group just as coordinates x', z~ in Appendix
A. Their local transformations are obtained by
replacing constant parameters in the global trans-
formation laws by arbitrary functions of x". Fur-
ther, the minimal subgroup K,' mixing the tangent
space C/IS SO(3, 1) with the (x, z} space is found
as the group K, [the invariance group of condition
(2.39)] in I; namely, we identify the coordinates
x",z~ with the coset parameters y'(x, z), s~(x, z):
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Qf course, the constant parameter subgroup of
(2.4), (2.5) is the ordinary conformal group. Now

we turn to construction of invariants of Qp.
The covariant Cartan forms are obtained by us-

ing the decomposition

G '(x, z) [d + igA„(x)dx" ]G(x, z)

=i(D'[P](x}P,+ g(('&[K (jx, z)K, +i(D(D](x, z)D

+- ~"[L](x,z)L„-=a(x,z),
2

where A, (x) is given by

A„(x) = e'„(x)P,+f' (x)K, +g„(x)D+ —,'0'„(x)I.„

(2.6)

(2.7)

and G(x, z) in (Al). Explicitly, they are written
as (recall that z =q„„z",z =q "z„, etc. )

&d&'[P] = [6'„+ge'(x)]dx" =—((&'„[P](x)dx", (2.8)
I

respect to the lower vector index as world vec-
tors with parameters 5x]& (2.4) and with respect
to the upper, tangent space indices, according
to (4.3)-(4.14) in I, with parameters contained in
(2.4) and (2.5).

One may easily check that the Lie bracket of two
arbitrary transformations (2.4) and (2.5) can again
be written in the same form, i.e. , transformations
(2.4) and (2.5) indeed constitute a closed group.
While the Lie structure of initial gauge conformal
transformations satisfies the ordinary commuta-
tion relations of the algebra of conformal group
(4.1) (see I), the structure of Ko is more compli-
cated. It is schematically described in Appendix
B. For instance, the Lie bracket of two K,' trans-
formation with parameters b,'(x), b,' (x) is the Ko
transformation of the same kind with the bracket
parameter

b,(x) = (2x'x' x'q'") —[b"(x)s,b,'(x) —b()(x)» "(x)] .

with the notation

A„[D](x)=g.(x) —2f'„(x)x. , (2.12)

A'„'[I](x) =0'„'[L](x)+2[f'„(x)x' f', (x)x-'],

(2.13)

e'„(x) = e', (x) —A'„'(x)x, —g„(x)x'

+ 2f g~(x)x p' —x'f'„(x) . (2.14)

The transformations (2.4) and (2.5) are induced
by the group multiplications of cosets G(x, z) from
the left,

g(X)G(X Z) G(X Z )e&N&xrdzg&De ((I &IF (Xzdzg)L()()

(2.15)

where g(x) is an arbitrary element of C)" with the
parameters c"(x), a""(x), b'(x), or [&(x). The func-
tions u(x, z, g) and u"(x, z, g) reduce to t(x) and
a"(x) when we restrict ourselves to transforma-
tions from the little group, to zero for P trans-
formations, and finally to (A6) with b (x) instead
of b for infinitesimal g transformations.

The forms (2.6)-(2.11) transform under (2.15)
according to the law

zi'[zz]=z;dz"zdIl'„(x)zz z)„'[D]&x)zz d, [z](x)

2 1
+ z'z, -rz', [Z'](x) ——z'rz'„[P](x)jdx'

= 6'„dz" + (D'„[K](x,z)dx", (2.9)

2 ~rz[D] =did„[ZZ](x) +—z'rz, .[Z'](x)j dx" =- rz, [ZZ](x z)dx":

(2'.10)

rz" [Z.] =Z Id". [Z](x) +-( rz'„p'](z)z' —rz'„[Z']&z) z')
j
d""a

—= (D'„'(Lj(x, z)dx', (2.11}

~ (X Z
'& — i e( gxzd)rDge(i/2)u (xzzzg)Lrz(re(X )Zei ( ((zzrz) zgDe( I ()u2"(xzdzg)L(d[)
I

fd~(X Z g)D+e((/2)u [)(zzzdrg&L()()de &il2)ud (xidzg)L()(r-
y pV (2.16)

and the gauge field form A„(x)dx& according to

A.'(x') dx" = qx) A.(x)dx ~g-'(x) + —. g(x) dg-'(x) .1

(2.17)
For completeness we write the infinitesimal trans-
formation laws corresponding to (2.16),

6L(D'(P] = —a'"(x) (D„[P](x),

6L(D'[K] =—a'"(x) &D [K](x),
(2.16)

6~(D[D] =0,
bd'&D~"[L] =-a '(x) &D"[L] —a"'(x) &D~[L] —da~"(x} '

6~D(D'[P] = 6D(D'[Kj = 0,

6D" (D [DJ = 6*(D"[L]= 0

5,*(D'[P]= —t(x) (D'[P],

6D&D'(K] = t(x) (D'[K],

6D*(D(D] = -dt(x),

60(Dg)n[L] —0 .

(2.19)

(2.20)
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bzau~'[P] = 2 [box)x'+ b'(x)x "]~„[P]+2b'(x)x, ~'[P],
6+~'[A] =2[b "(x)x'- b'(x)x "]~„[&]-2b (x)x ~'[&j,

9 9, ~„[D](x,z) =0, .~'„'[Lj(x,z) =0 (2.26)

6*(d[DJ =2d[b "(x} x„],
6„*(d "[L]=2[b'(x)x —b (X)x'](d,"[L]

—2[b'(x)x"- b "(x)x'j&u, [L]
—2d[b.(x)x —box)x-];

(2.21}

b*n"'(x z) =-- n'" ——n"'8 6x }' 8 5g ~

p g&v p

(2.22}

In accordance with this general rule,

&*~'„[ff'](x,z) = ~'"(x) ~„[IC](x,z)

(2.23)

6 aba ~ao(x) q ba 095z ~

ub gzu P
(2.24)

where the matrix part of the transformations acting
on upper indices and defined by (2.18)—(2.21) is
denoted by &"(x). Relation (2.24) demonstrates the
self-consistency of our scheme.

Let us discuss the role of coordinates z]' in
transformations (2.18)-(2.21), (2.23), and (2.24).
Variation (2.6) contains the inhomogeneous term
b (x) and therefore the different coefficients in

the expansion of the forms with respect to ~ are
mixed under K transformations. However, the
coefficients ofdh„ in all forms undergo with respect
to their upper and lower indices transformations
which depend only one]'. If we take into account that
s/sz' transform purely homogeneously,

where an asterisk denotes the total variation
A'(x', z')-A(x, z). Coefficients of dx, in all forms
except e'[K] transform also as covariant world
vectors with respect to indices associated with
dx", with parameters bx (2.4). The form uP[K]
has xth as well as zth coefficients and therefore
the coefficient of dg transforms in a more com-
plicated way. The coefficients of general differen-
tial form defined on space (x, z),

A(x, z, dx, dz) =0„'"'(x,z)dx" + 0"'(x,z)dz",

transform under general coordinate transforma-
tions of this space according to

ba+[D] =0 (A=A„dx")

6~A' [L]=0, (2.27)

we could exclude z dependence in the manner used
in the Appendix for arbitrary matter field y, (x, z) [cf.
(A16)]. There is, however, an important differ-
ence with an arbitrary matter field —we may treat
the coefficients in its expansion with respect to
z" as we want provided it does not contradict with
the transformation properties of the field in con-
trast to the Cartan form where these coefficients
are fixed in terms of the initial gauge fields by
(2.6). The conditions (2.26) are, therefore, too
rigid. It follows from (2.10) and (2.11) that they
are satisfied only in the ease ~'„[Pj(x)=0. Thus
the dependence of the form on z" plays a very
essential role. Notice that lower coefficients in
z expansion of any form transform through higher
ones so that the higher coefficients in this expan-
sion always transform among themselves, i.e. ,
appear to be covariant. This fact will be used
later when constructing an invariant Lagrangian.
Let us also note that there is an analogy with
superfields —the superfields are polynomials in
Grassmann variables and forms (2.8)-(2.11) are
polynomials in z&. However, in the superfield
case the polynomial character is traced to the
nilpotent property of the Qrassmann variable,
whereas in our case it is traced to special proper-
ties of commutators of the conformal algebra.

Let us recall that in Sec. IV of I when we discussed
gravity based on the Weyl little group the forms &u' [D]
and ~'„'"[L]were considered as gauge fields under D
and L transformations since they are connected
with the initial gauge fields g„(x) and 0'„'(x) via
the canonical transformation. In the present case
this interpretation is impossible since forms (2.9)-
(2.11) explicitly depend on auxiliary coordinate

p
It is natural to identify the dil atation and I.o

rentz gauge connections with the parts of (2.10)
and (2.11) independent of z, i.e. , with the fields
A„[D](x) and A'„'[L](x) defined by (2.12) and (2.13)
and to leave f'„(x) as the gauge field associated
with the special conformal transformation. In
contrast to g„(x),0'„'(x) the new gauge fields
A„[D](x),A'„'[L](x) transform under p transforma-
tions only with respect to p, indices [bx~ = e~(x)]:

(2.26) be~a 0

then it might seem at first glance that the z depen-
dence of these forms is not essential. For instance
by putting the covariant conditions

ba~'[P](x) =0.
These fields transform under local D and K trans-
formations as
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b,*A[D)(x) = —dt(x),

b+A"[L](x) =O,

b*f'(x) =t(x)f'(x),

5*co'[P](x) = —t(x) &'[P](x),

(2.28)

brA[D)(x) = ——(b'(x) (u, [P](x) —d[b'(x)x, ]),(2.29)
2

6„*A"[L](x)= ——d [b'(x)x' —b'(x)x']2

+—[b'(x) ~'[P](x) —b'(x) ~'[P](x)]

—2 [b'(x)x, —b,(x)x')A"[L](x)

—2[b'(x)x, —b,(x)x~]A"[L](x),
(2.3o)

5*f' (x) = ——db'(x) —b'(x) A[D](x)
1

E

(5*5„*—5*5~$A[D](x) =-—c'(x) & b'(x) ~,[P](x)
2

+—d[c'(x) a„b'(x)x, )
2

+-d[b'(x) c,(x) ] .2 (2.33)

Here on the right-hand side we have K transforma-
tion with parameters c"(x)a b'(x) and D transfor-
mation with parameter -2[b'(x) c,(x)].

It follows from (2.29)-(2.32) that K transforma-
tions are realized linearly on gauge fields and do
not reduce to D and L transformations although
those appear in (2.29)—(2.32). In fact it is impos-
sible to redefine the fields in such a way that K
transformations are completely of the form of D
and L transformations as in Sec. IV of I since
there is no field with the transformation law which
would start with parameter b„(x), i.e., the Gold-
stone field s'(x). As we see, the nontriviality of
E transformations is revealed when constructing
the invariant Lagrangian. Since the forms A[D],

—V(x)A', [L](x)

+ 2b'(x)xj'(x)
—2[b'(x)x —b (x)x']f (x), (2.31)

br~'[P)(x) =2b (x)x ~'[P](x)
—2[b'(x)x„- b (x)x')~ [P](x) .

(2.32)

It can be checked that these transformation laws
have the group structure indicated in Appendix B.
For instance

A"[L], f', and &u'[P] are invariant under P trans-
formations it is clear that there is no difficulty
with this invariance in contrast to Ref. 2.

Let us now construct the invariants. First we
need as usual to construct covariant curls of the
Cartan forms (2.8)-(2.11). The curls have more
components then in Sec. IV of I since we now have
two types of world indices associated with dx~ and
dz . The indices connected with Ch& will be denoted
by p,„and those with dr~ by p, All possible co-
variant curls are of the form

R', [P]= a„(u,'[P](x) —a, (u'„[P](x)

+ ~,"[L)(x,z) ~,„[Pj( .x)

—~'„"[L](x,z) ~, ,[P](x)

+ ~'„[P](x)~, [D](x,z)

—~; [P](x)&u„[D](x,z), (2.34)

R'„, [K7
= a, ~,'[K](x,z) —s, .&u' [K](x,z)

+ ~,"[L,](x,z) ~„[K)(x,z)

[L](x,z) ~„[K](x,z)

—~'„[K](x,z) ~, [D](x,z)

+ ~,' [K](x,z) &u„[D)(x,z), (2.38)

R'„,[K]=-R' „[K]
= a, &u,

' [KJ(x, z) —&u', ,[L](x,z) 5'„

+(u, [D)(x,z)5'„, (2.36)

R „" [L]= a „&u, "[L](x,z) —&, &u,
"[L](x,z)

[L]&u'"[L)—(m —n)), (2.37)

Rmn [L]— Rmn [L]—a &m$x z) (2.38)

R„[D]=& a, [D](x,z) —&, u [D](x,z), (2.39)

R [D) =-Rp „[D]= 8 (u [D](x,z) . (2.40)

The other components are equal to zero either
because of z independence of &u' [P](x) or the ab-
sence of z components in the corresponding forms
[only uP[K] in (2.9) contains such a component].
Curls (2.34)-(2.40) transform under gauge trans-
formation with respect to upper indices as the
corresponding forms, i.e., according to (2.18)-
(2.21), however, without inhomogeneous terms
and with respect to lower indices in accordance
with the general rules (2.22).

Let us expand these curls in z, . We see that all
z dependence in torsion (2.34) is completely com-
pensated:

R'„[P]=
&Su, [P](x) —S, ~, [P](x)

+A [L](x)~,„[P](x)
—A'„' [L](x)~ [P](x)+ &' [P](x)A [D](x)

—~; [P](x)A„[D](x). (2.41)
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Curl R'„[K]contains powers of z" up to the third
one —the coefficients at higher powers are identi-
cally equal to zero. The nonvanishing coefficients
at lower powers of z]" are

has the following transformation law:

8
6*V„(x,z) =-, „6x V,(x, z), (2.50)

(2.44)R &'&; [Kj=(z'q'. —z'z.)R;„[P],
where R "' ' is the ordinary Einstein curvature

i xi'x
tensor constructed by means of fields A~&[L](x).
Curl R;, [K] is identically equal to zero,

R'„, [K]=0. (2.45)

Before discussing the structure of other curls let
us note that it is useful to replace the world in-
dices by the indices from the tangent space by
contracting tensors with vierbeins in order to have
the same transformation law under gauge trans-
formations for all indices. However we have to
be careful because of the presence of world in-
dices of two types. For example, if we take two-
component quantity [V„(x,z}, V, (x, z)] whichtrans-
forms under (2.4) and (2.5) according to (2.22)
then one-component quantity

V'(x, z) = ~'"* [Pj(x)(V„(x,z)

—~„[K](x,z) 6:V, (x, z)) (2.46)

(~'"[P]-the reciprocal vierbein) transforms under
D and K transformations according to

6*V'(x, z) =f(x) V'(x, z) —af (x)x V'(x, z)

—2[b'(x)x" —b (x)x'] V (x, z), (2.47)

i.e. , as the field with dilation degree d=1. In this
manner we can replace the usual derivative 8„
which is transformed through B„by the covariant
derivative

v(„) =(u'""[P](x)(s, —co~ [K](x,z)6"s, ] (2.48)

which transforms through itself according to (2.47}.
It is possible now to define tensors which transform
with respect to world indices as usual, i.e. , ac-
cording to (2.9) of I and not to (2.22). Really the
quantity

V.(x, z) = V„(x,z) —~„[K](x,z) 6':V, (x, z)

(2.49)

R&:& [K]=s,f,'(x) —s, f'„(x)+A [L](x)f,„(x}
—A'„' [I.](x)f„(x) f ', (x)—A, [D](x)

+f,'(x)A„[D](x), (2.42)

R""[K] =z (q 'fs A, [D](x) —8 A [D](x)j+R"'~'

+ 2f cu,
' [P]f, (x) —&)'„([P](x)f,"(x)

—&u, [P](x)f', (x) + ~"„[P](x)f', (x)J

f~,' [P](x)f„,(x) —&d', [P](x)f, ,(x))),

(2.43)

where 6x&) is taken from (2.4). By using (2.49) we
can define curls which transform as ordinary worM
tensors with respect to the lower indices, i.e. , ac-
cording to (2.50):

R:.[P] =R'„„[P],
R'„[K]=R', [K] [due to (2.45)],

R„"[L]=R " [L]—v„& [K]6P)&R "„[L]
+~,' [K]6;*R,". [L],

R„,[D]=R„[D]—~,) [K]6';R, „[D]
+ ~,' [K]6;*R, [D].

Now it is not difficult to show that

(2.51)

(2.52)

(2.53)

(2.54)

R ',' "[L]= R "„'""+2p' (x) &d,"[P](x)-f ",(x) (d, [P](x)j
—2ff„(x)~"„[P](x) f„"(x}&d, [Pj(x—)},(2.55)

(2.56)R(&)mn[L] 0

R (2)wn[L ]
—0

R.".'[Dj =R.".'+ 2&f &x)~..[P](x)

(2.57}

—f,(x) ~ .[P)(x)j,
R„",'[D] =2z,R'„„[P], (2.59)

R('„)[D]=-0. (2.60)

Thus the nonvanishing curls are R'„„[P],R'„[K],
R&'„&~"[L], R&'„'[D], and R",'[D]. We see thatR'„[P],
R( '"[L], R„'0,"[K], and R„"„'[D]have the same
structure in terms of fields uP, [P](x), f '„(x),
A„[D](x), and A'„'[L] as the curls (4.15)-(4.18) of
I in terms of initial gauge fields. However,
since the corresponding gauge fields transform
differently, transformation properties of both the
systems of the curls are completely different.
While the old curls R'„,[P],R",,[Lj transform
among themselves and the remaining curls ac-
cording to (4.19)-(4.30) of I, the new curls
R'„[P] and R„'o,' " transform purely homogeneous-
ly, i.e., each through itself. Therefore we can
set

R'„[P]=0 (2.61)

which is a covariant condition. From (2.61) we can
express A"[L](x) in terms of fields &d'„[P](x),
A.[D](x):

A [L](x)=A,(o"'[L](x)+(~"[P](x)~'.[P](x)
—&u"[P](x)&u', [P](x)JA, [D](x),

(2.62)

where A(o"&'[L](x) is expressed in terms of
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&0' [P](x) and 0'&2[P](x) via (2.33) of I. Owing to
(2.61) curl R'0,'[D] in (2.59) vanishes and curl
R&0&[D] becomes a covariant (remember that

R,"„'[D]transforms through R„",'[D]). The compon-
ent of torsion R&„'„"[K](2.44) vanishes, too, and
as a consequence curl R"„"[K]defined in (2.43) is
covariant. It can be written in the form

R"„'[K]=-z (q"R„"„'[D]+R"„)™'[L]j
The gauge fieM f'„(x) can also be eliminated be-

fore using the equation of motion by putting the
manifestly covariant conditions

R,'[L]= R „,[L]&D" [P](x)=0. (2.64)

By solving this equation we find the same expres-
sion for f'„(x) as in Ref. 2, namely,

f (x} {R(0) l R(0)&0 [P](x)]

Then the curl R„"„[L](2.55) can be written as

R"[L]=R (0)"--,& (R(0)2«'[P] -R(0"~'[P]

(2.65)

R «&2&D [P]/R «& &D2 [P])
—-', R"'(&D'„[P]&D'„[P]—&D'„[P)&D„'[P]).

(2.66)

The simplest invariant action can be taken in the
form

S=y d'x~"""~' R,"„~L R,",,', L . (2.67)

It is invariant under all symmetries of the theory
since in constructing the curls and in eliminating
the nonpropagating fields we have used only a
covariant recipe. Inserting (2.66) into the action
we obtain

S=y d'&det~ P ~R(')R«»& —' R«» 2 68

This Appendix is devoted to the nonlinear reali-
zation of the global conformal symmetry in the
coset space C/I()0SO, (3, 1). The parameters of this
coset space will be considered as independent co-

i.e., the well-known Acyl action but derived quite
differently and more adequately than in Ref. 2.

'Thus the dynamical role of the E transformations
consists in extracting the combination (2.68} of
two invariants which are equally allowed from
the point of view of D and L transformations.

As already mentioned in Ref. 2 the field A„[D]
(x) does not actually appear in the action (2.68);
A, [D] dependence in its two terms is mutually
compensated. However, we can add an indepen-
dent term -R„"„'[D]R"'0"[D] to Lagrangian (2.68)
which is invariant in itself and produces the kinetic
term for A„[D].

APPENDIX A

ordinates. The parameters connected with P will
be denoted by x' and those connected with K„by
z'.

The group C is realized by means of left multi-
plication of cosets C/I&ISO, (3, 1),

G(X Z)- S'u' ge("Zg gG(X Z)

g(xy z I')s(u(n, god)D s(i/2)u (u, g,d)Lg2 (AI)I

where g is an arbitrary element of C. If gc I
&8) SO0(3, 1) the coordinates (x,z] transform linearly
and homogeneously,

AD@'= —tx', 5Dz"= tz"
(A2)

i.e. , coordinate z remains invariant. The special
conformal transformations are realized nonlinear-
ly

bzx'= 2x'(x ~ b) -x'b', (A4)

b„z'= b' —2z'(x ~ b)+ 2x'(z ~ b) —2b'(x ~ z) . (A5)

Moreover

u(x, z, bg)= -2(x ~ b),
u "(x,z, bg) = 2(b x" —b"x ) .

The Cartan forms are defined as usual by

G '(x, z)dG(x, z) = 2~""[P]P.+ 2~(0"[K]K.

+ Z&D
0 [D]D+ &D(0&mn[L] L

2 mn

(A7)

and transform according to

(C -ldG) g eiuDe (i/2)umnL mn(G-ldG )S-(i/2)umnL m e iuD-
+ e(i/2)umnLmndg "(i/2)umnL mn ld D ~ (A8)

By using commutation relation (4.1) in I it is not
difficult to find the explicit expressions of the
forms

&D""[P]= dx',

&D(0"[K]=dz'+ 2(dx z)z'-z'dx',
&D")[D]=2(dx z),
&D(0)mn[L] —2(dxmz n dxnzm)

(A9)

The fields defined on the coset space C/I SO,(3, 1)
transform under Q according to the repre-
sentations induced by little group I&8)SO0(3, 1),

(XI Z I) edu u(e(i/2)u nI, mn) V)b(X Z) (A10)

where L „ is a matrix representation of the gener-

where a", t are the corresponding constant group
parameters. Under the usual. translations

(A3)
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&d&0&m [L](L ) pb(x z) (A11)

In the considered nonlinear realization it trans-
forms as the field p, (x,z) itself. It is natural to
regard the coefficients in decomposition (All) in
forms ~&o"[P], co&o"[K] (i.e. , the covariant differ-
entials of coordinates x' and z') as the covariant
derivatives

uq, (x,z}=&&'„&y,(x,z)&d,"&[P]+&&,&y,(x,z)&d "&[K],

(A12)

V&„&p.(x,z)=—y.(x,z) —2z z —p, (x,z)
eXb

28+z' —y.(x, z)

-2i (zL~),„«(&, x)+z2z' d, y, (x,z),
(A13)

ators of the group SO,(3, 1) and d„ is the dilatation
degree of the field. Upon restriction to the trans-
formations from the little group, quantities u and

u " coincide with the group parameters; for the
infinitesimal K transformations they are defined
by (A6).

The covariant differential of field y, (x,z) is
given by

n&&,(x,z)=dy, (x,z)+d, ~&o&[D]«.(x,z)

where D is the "matrix" part of generator D (D =
—id, I).

It follows from the form of the covariant deriva-
tive (A14) that the condition

&&', &&o.(x,z) =—„V'.(x,z) = o
b

(A16)

is covariant under the action of the whole group.
Moreover, from the transformation properties
(A2)-(A4} it is seen that coordinates x„ form the
invariant subspace in the coset space C /IS SO, (3, 1).
The fields qr, can therefore be considered as
independent on z. Thus the transformation
law (A10) reduces to the standard conformal
transformations of fields in the Minkowski space.

APPENDIX B

Here we shall write down the results of the
bracket operation to the various transformations
(2.4) and (2.5). Denoting the variation with para-
meters c&(x), a'„(x), f&" (x), and t(x) by P, L, K,
and D, respectively it appears that all bracket
operations have the general structure

[K,K]cK, [P,P]cP, [K,L]cK+L,

[P,L]cP+L, [D,D]cD, [D, L]cD+I, , (Bl)

[P,D]cP+D, [K,D]cK+D, [P,K]cK+P+D+L.

(A14)

Let us note that the covariant derivatives satisfy
the following commutation relations:

[V(„»V&'„&]= 0

[v&', &, v&', &]= 0,
[V&'„&, V&' &]= 2i(L" + &)—"D),

This algebra differs from the initial gauge algebra
of group C which is of course connected with the
fact that the transformations now mix the tangent
space with the x space. Its restriction to g-in-
dependent parameters coincides with the ordinary
conformal algebra. Notice that the bracket op-
erations of generators of the minimal groups,
in Sec. II of I have a similar structure. This is in
accordance with the fact that K, is a subgroup of
the above discussed group.
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