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It is shown that the Bekenstein limit, S/E < 2R, for the enuopy-to-energy ratio of
matter confined by a box of size R is not needed for the validity of the generalized second
law of thermodynamics. If one attempts to slowly lower a box containing rest energy E
and entropy S into a black hole, there will be an effective buoyancy force on the box
caused by the acceleration radiation felt by the box when it is suspended near the black
hole. As a result there is a finite lower bound on the energy delivered to the black hole in
this process and thus a minimal area increase which turns out to be just sufficient to en-
sure that the generalized second law of thermodynamics is satisfied. By reversing this
process, we can “mine” energy from a black hole. The nature of these processes is also
analyzed from an inertial point of view, and the mechanism by which energy is transport-
ed into and out of the black hole is explained. Analogous effects for accelerating boxes in

flat spacetime are also analyzed.

I. INTRODUCTION

One of the most intriguing aspects of both the
classical and quantum theory of black holes is the
relationship between the laws of black-hole physics
and thermodynamics. Classically, black holes are
found to obey laws which are analogous to the or-
dinary laws of thermodynamics.! When quantum
particle creation processes are taken into account,
this relationship becomes more than just an analo-
gy: A Schwarzschild black hole of mass M is
fou112d to emit like a perfect blackbody at tempera-
ture

Tow=k/2m=1/8aM , (1.1

where k=1/4M is the surface gravity of the black
hole. We use natural units such that i=G =c
=k =1 here and throughout the paper.
Furthermore, it has been conjectured that a sys-
tem consisting of ordinary matter interacting with
a black hole will obey the generalized second law of
thermodynamics,3 which states that generalized en-
tropy S’ never decreases. Here S’ is defined by

S'=S++4, (1.2)

where S is the entropy of ordinary matter outside
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the black hole and 4 is the area of the black hole.
If the generalized second law is valid, then it is
very plausible that the laws of black-hole physics
are nothing more than the ordinary laws of ther-
modynamics applied to a self-gravitating quantum
system. On the other hand, if the generalized
second law can be systematically violated, the anal-
ogy between black holes and thermodynamics
would break down. Thus, it is of considerable in-
terest to determine if the generalized second law
holds.

The generalized second law was first proposed
by Bekenstein® in the context of classical black-
hole physics. In a classical context, two basic pro-
cesses are known by which a violation of the gen-
eralized second law can be achieved.

(1) One could immerse the black hole in a radia-
tion bath at temperature T, < Tyy,. Classically, the
black hole is a perfect absorber but does not emit,
so one would get a flow of energy from a cold
body (the radiation) to a hotter body (the black
hole) and hence a violation of the generalized
second law.

(2) One could put matter with energy E and en-
tropy S into a box and lower it towards the black
hole. The energy € delivered to the black hole
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when the box is finally dropped in (or the box door
is opened) will be decreased from E by the red-
shift factor X =(1—2M /r)!/2,

e=XE, (1.3)

and can be made arbitrarily small by letting the
dropping radius approach 2M. As shown by Bek-
enstein, if one lowers the box to a proper distance
R from the black hole such that

R <S/27E (1.4)

then the area increase 64 gives a black-hole entro-
py increase of

8Syp =184 = 78(16mM?)
=8rMe="Ty, ‘e (1.5)

which will not be large enough to compensate for
the decrease of S in ordinary entropy. Thus the
generalized second law will be violated.

Classically, these violations will be of no conse-
quence as they can never be used to run a perpetu-
um mobile of the second kind since one cannot
ever cause the classical black hole to return to its
original state. However, the above two possible
ways of violating the generalized second law be-
come important once quantum processes near the
black hole are taken into account. Then the black
hole can both increase in size by absorption of en-
ergy and decrease by the emission of radiation by
quantum processes as has been described by Hawk-
ing.2 If one can still violate the generalized second
law once these quantum effects are taken into ac-
count, one could imagine running a perpetuum
mobile by decreasing the total generalized entropy
by one of the above processes and then allowing
the black hole to return to its initial state by means
of its quantum evaporation.

As is well known, the first proposed violation of
the generalized second law is easily resolved when
this quantum particle creation process is taken into
account.? If T, < Ty, the black hole will emit
more energy than it will absorb, and no violation
of the second law will occur. Indeed, since a black
hole responds to incoming radiation exactly as an
ordinary blackbody,* any method for producing a
violation of the generalized second law with black
holes by sending in matter or radiation from infini-
ty should also produce a violation of the ordinary
second law using ordinary blackbodies. Thus, we
can be confident that no violation of the general-
ized second law can be obtained by using the black
hole as an “input-output machine” for any form of

matter and radiation which is allowed to fall freely
into the black hole from infinity.

However, the situation with regard to the second
proposed violation of the generalized second law is
far less clear. A black hole of large mass and thus
low temperature should behave essentially classical-
ly, so it would seem that the second of the above
classical arguments leading to a violation should
remain valid; the effects of Hawking radiation on
the process of lowering a massive box into a mas-
sive black hole should be completely negligible.
Bekenstein>> has proposed a resolution of this dif-
ficulty involving not the quantum properties of the
black hole but the quantum properties of the
matter being lowered into the black hole. He con-
jectured that any box of size R, energy E, and en-
tropy S must satisfy

S/E <2nR . (1.6)

If this Bekenstein upper limit on S/E were satis-
fied, then no violation of the second law should be
produced by lowering the box towards the black
hole because the physical size of the box would be
too large to permit one to lower it as close to the
black hole as would be necessary. Recently, Beken-
stein® has given arguments for the validity of Eq.
(1.6) for a variety of physical systems.

However, there are several disturbing features of
this proposed resolution. First, Eq. (1.6) cannot be
a fundamental law applicable to all conceivable
physically reasonable systems. In particular if we
imagine increasing the number of species n, of
massless particles in nature, then we could make
the S/E ratio arbitrarily large for a given R.
Indeed, the arguments of Bekenstein® in favor of
Eq. (1.6) break down if n >100. [Note added in
proof. Bekenstein (private communication) has
pointed out that this is incorrect if each species has
a minimum energy E,. If so, one motivation for
this work is removed, but our conclusions remain
unchanged.] Thus, Bekenstein’s proposed resolu-
tion suggests that the validity of the generalized
second law depends in an essential way on the fact
that a reasonably small number of species of mass-
less particles exist in nature. A related point is
that the simple resolution of the first of the classi-
cal ways of violating the second law is obtained us-
ing only the quantum properties of black hole em-
ission, with no assumption necessary about the en-
tropy of physical matter going into the black hole.
Even if Eq. (1.6) holds for all matter that is found
in nature, it is somewhat disturbing that we would
need to use this fact to rule out the second propo-
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sal when we do not need to use any corresponding
assumption to take care of the first. Finally, as
pointed out to one of us by Thorne,® if one uses a
rectangular but noncubic box, the relevant dimen-
sion of the box for the lowering argument is the
shortest length. However, the arguments of Beken-
stein® have established Eq. (1.6) for several physical
systems where R is the largest length. Thus, even
if the arguments of Bekenstein for Eq. (1.6) were
valid for all physical systems, one still should be
able to violate the second law by using a rectangu-
lar box with one side much shorter than the other

two.
The main purpose of this paper is to show that

the second of the proposed methods of violation of
the second law will not work because of the ac-
celeration radiation a box lowered slowly toward
the black hole would feel. No assumptions such as
Eq. (1.6) need be made on the entropy of matter
within the box, and thus the nature of our resolu-
tion is very similar to the resolution of the first
proposal. Our results lend strong support to the
validity of the generalized second law of thermo-
dynamics. In addition, our argument shows that
the existence of acceleration radiation is vital for
the self-consistency of black-hole thermodynamics.
The basic ideas of our argument are as follows:
Consider a black hole surrounded by a thermal
bath which is in equilibrium with the black hole.
We show in Sec. II that, for such a black hole, a
static object outside the horizon will respond as
though it were in a thermal bath of temperature
T =Ty, /X. Here X =1/g0o=(5,£%)"?, where £ is
the static Killing vector field. [Our metric signa-
ture is (4+ — — —).] Far from the black hole this
bath would be interpreted as that due to the “real”
Hawking radiation coming out of the black hole
and the radiation from the surrounding heat bath.
Very near the black hole, however, this tempera-
ture would be ascribed to a cause similar to that of
the acceleration radiation which an accelerated ob-
server in flat spacetime would feel.” This accelera-
tion radiation is a purely quantum phenomenon
and is a result of both the quantum state of the
field near the horizon of the black hole and the
state of acceleration of the object. For example, a
freely falling object near the horizon would feel
essentially nothing, while an object with the same
acceleration but at rest outside of a static star
would feel nothing if the field were in its vacuum
state. We will call the thermal radiation seen by
our static object “acceleration radiation” since we
are primarily interested in the region near the ho-

rizon. The physical effects of this radiation are
crucial to our rescue of the second law.

Now, for “real” radiation, the condition 7" < 1/X
is precisely the condition needed for hydrostatic
equilibrium as was shown by Tolman.® Thus, a
box of matter lowered towards the black hole
(whose reflecting walls play the role of particle
detectors and thus feel this radiation) would react
the same way as if lowered into a real star com-
posed of thermal radiation. There would be an ef-
fective buoyancy force on the box resulting from
the higher temperature and thus higher pressure
felt by the face of the box closer to the black hole.
Consequently less work is delivered to infinity by
the rope supporting the box during the process of
lowering the box, and hence more energy is
delivered to the black hole in this process than
would occur classically. The energy delivered to
the black hole is minimized when the box is
dropped from its “equilibrium point,” i.e., when
the tension in the rope is zero. By the Archimedes
principle’—rederived in Sec. II—this occurs when
the energy of the box equals the energy of the dis-
placed acceleration radiation. This minimum ener-
gy delivered to the black hole is found in Sec. II to
increase the black-hole entropy by an amount equal
to the entropy of the displaced acceleration radia-
tion. However, the entropy contained in the box
cannot be greater than the entropy of the displaced
acceleration radiation since thermal radiation max-
imizes entropy at fixed energy and volume. Thus,
the total generalized entropy cannot decrease.

Although our argument satisfactorily resolves
the question of violating the second law by this
process, it raises a number of rather puzzling new
issues. Instead of simply dropping the entire box
into the black hole in the above process, we could
instead open the box door at the “floating point”
of the energy inside the box and then pull back the
open box to infinity. The energy-balance calcula-
tions show that, again, energy would be delivered
to the black hole. What is puzzling about this is
that if the box is filled with thermal radiation and
the box door is opened at the equilibrium point,
absolutely nothing should happen since the radia-
tion in the box will be in equilibrium with the ac-
celeration radiation. This becomes even more puz-
zling when it is realized that by reversing this
process—i.e., lowering in an open box, closing the
door, and pulling the box back to infinity—energy
is extracted from the black hole. By what mechan-
ism does the energy transfer into and out of the
black hole occur?
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A second, related issue concerns the physical na-
ture of the acceleration-radiation pressure. By us-
ing it to calculate a force on the box, we have, in
effect, ascribed a large stress energy to it. Howev-
er, the true stress energy of a quantum field near a
black hole is negligible small.!> Does this mean
that the box produces an enormous disturbance
near the black hole resulting in a large stress ener-
gy of the quantum field? Alternatively, must we
ascribe an observer-dependent stress energy'® to the
acceleration radiation?

The above issues are resolved in Sec. IV where
we analyze this process from an inertial point of
view. Using a two-dimensional model calculation,
we show that for a closed box with perfect reflect-
ing walls, energy actually flows out of the box as it
is lowered toward the black hole on account of a
“radiation by moving mirrors” effect. This ex-
plains how the energy is delivered to the black
hole. Similarly, in the reverse process energy is ex-
tracted from the black hole by transfer of negative
energy into the black hole as the closed box is re-
moved. This also yields an alternative viewpoint
on the acceleration-radiation buoyant force which
is consistent with the negligibly small true stress
energy present near the black hole: Less force is
needed to hold up the box not because of an accel-
eration-radiation buoyant force but primarily be-
cause the box has actually become lighter by
transferring its energy into the black hole. We re-
gard the existence of these two alternate view-
points—which differ greatly in interpretation but
agree completely in all physical predictions—as
one of the most aesthetically pleasing aspects of
our analysis.

Finally, analogous effects to those described
above occur for an accelerated box in flat space-
time. These analogous effects are discussed in Sec.
V.

II. ACCELERATION RADIATION RESCUES
THE GENERALIZED SECOND LAW

In this section, we show that the effective buoy-
ancy force provided by acceleration radiation is
just sufficient to prevent a violation of the general-
ized second law when one lowers a box of energy E
and entropy S toward a black hole. Taking ac-
count of this buoyancy force, we shall calculate the
work W done at infinity by lowering the box, and
hence the energy e=E — W which is delivered to
the black hole. The resulting change in black-hole
entropy is given by Eq. (1.5) and we shall show
that it is always greater than the matter entropy S

contained in the box. For simplicity we shall carry
out our analysis only for a Schwarzschild black
hole but we anticipate no difficulty in generalizing
our results to an arbitrary stationary black hole.

Our first task is to spell out more precisely what
we mean by “thermal radiation” and the properties
we assume it possesses. By definition, the distribu-
tion of matter and radiation confined to a volume
V will be said to be “thermal” if its entropy S is
maximum for the given energy E and volume V.
At fixed energy density

e=E/V (2.1)

we assume that the entropy of thermal radiation is
proportional to V (for large V, at least),

S=sV (2.2)

i.e., that the entropy is additive. The thermo-
dynamic properties of thermal radiation are deter-
mined by specifying the entropy density s as a
function of energy density e,

s=s(e). (2.3)

We shall place no limit on how large s can be. In
particular, in our analysis we shall permit thermal
or other distributions of matter and radiation to
violate the Bekenstein limit, Eq. (1.6).

The temperature of thermal radiation is given by

1 ds

T 4 - 2.4)
From the first law of thermodynamics, we have

d(eV)=Td(sV)—PdV . (2.5)
This yields

P=sT —e¢ . (2.6)

Differentiating Eq. (2.6), we obtain a special case
of the Gibbs-Duhem relation!!

dP =sdT (2.7)

Thus, for thermal radiation, the pressure and tem-
perature gradients are related by the proportionali-
ty factor of entropy density.

Our next task is to determine precisely how a
particle detector (such as the reflecting walls of a
box) would behave if held in a stationary position
near a Schwarzschild black hole. We can classify
the free-field radiation modes around a
Schwarzschild black hole into two classes:
“white-hole modes” and “past- infinity modes.” By
definition, the white-hole modes are those which,
in the maximally extended vacuum Schwarzschild
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solution, would have zero initial data on past null
infinity. Thus, white-hole-mode radiation would
appear to an observer to emanate from the black-
hole region of the spacetime. Similarly, the past-
infinity modes have vanishing initial data on the
white-hole horizon and would appear to an ob-
server as having originated as ordinary radiation
coming in from infinity. The answer to how a sta-
tionary particle detector would behave is already
known in two limits. If the past-infinity modes
are empty (i.e., in their vacuum state), and if the
detector is far from the black hole, it will see
Hawking radiation, i.e., a thermal distribution of
white-hole modes at temperature 7' =Ty;,. On the
other hand, if the detector is very near the black
hole’ it would react as it would in flat spacetime in
the vacuum if it were undergoing the same ac-
celeration a =« /X =2wTy, /X, where k is the sur-
face gravity of the black hole and X =(£%,)'/? is
the red-shift factor. Thus, a static detector very
near the black hole would see a thermal spectrum
at temperature T =a /27 =Ty, /X.

The exact answer to what a static detector would
see at any radius can be found as follows. From
the previous analysis of the Hawking effect for
free fields,'? it can be seen that, with respect to an
“out” Fock space defined using “positive frequen-
cy” with respect to the Killing field coordinate
time, if one starts with the “in” vacuum state, the
complete state of the system at late times is pre-
cisely a thermal density matrix with respect to
white-hole modes and the vacuum state with
respect to past-infinity modes. [This can be seen
from Eq. (4.22) of Ref. 12 for the two-particle am-
plitude. When one “traces out” over the “early
time” states 7; and €,, one produces precisely a
thermal density matrix for the white-hole modes
A;. Further “tracing out” over the “late time hor-
izon states” o;, of course, yields the previous result
that the state of the system at future infinity is
described by a thermal density matrix of white-
hole modes.] The Killing parameter time times the
red-shift factor X is the relevant notion of time for
the behavior of a stationary detector, just as the
Rindler time is the relevant time for the behavior
of an accelerating detector in flat spacetime. Thus,
a repetition of the analysis of Ref. 7 shows that a
stationary detector near a Schwarzschild black hole
will respond as though placed in a thermal bath of
radiation at temperature

T =Ty/X (2.8)

with respect to the white-hole modes, but it will

see no radiation in the past-infinity modes. [This
reduces to the previous result in the limit where
the detector is close to the horizon because there
the white-hole modes dominate over the past-
infinity modes—i.e., the black hole subtends almost
the entire sky—so Eq. (2.8) becomes valid for
essentially all of the modes.] If thermal radiation
at temperature Ty, is sent in from past infinity, a
stationary detector would respond as though in a
radiation bath given by Eq. (2.8) for all modes.
Thus, if the black hole were placed in a box with
perfect reflecting walls and allowed to come to
equilibrium, Eq. (2.8) would hold exactly for all
modes. For simplicity we will consider this case of
a black hole in thermal equilibrium in our analysis
of the attempt to violate the generalized second
law. It is not difficult to see that having the black
hole radiate into empty space only makes it more
difficult to violate the generalized second law be-
cause of the entropy increase due to Hawking radi-
ation into empty space during the time the box is
lowered, and because of the extra work done on the
box by the Hawking radiation. In any case, if the
black hole is very massive, the Hawking radiation
will be negligible and there will be essentially no
difference in the analysis of a black hole in ther-
mal equilibrium and a black hole radiating into
empty space. Finally, we should point out that Eq.
(2.8) has been derived only for free fields, but we
shall assume that it continues to hold for interact-
ing fields.

As noted previously, for real thermal radiation
in a static spacetime, the condition

T=Ty/X (2.9)

is precisely the condition that the radiation be in
hydrostatic equilibrium.® For a static spacetime,
the hydrostatic equilibrium equation, derived from
VT, =0 for a perfect-fluid stress-energy tensor, is

b $a
V,P=(e +P) % Vi |5
— (e +P)%Va)( . (2.10)

Substituting the thermodynamic relations (2.6) and
(2.7) into Eq. (2.10), we obtain

SVQT:—(ST)—)%VGX , (2.11)

from which Eq. (2.9) follows immediately.
Let us now put entropy S and energy E into a



box in our laboratory at infinity and slowly lower
the box toward the black hole. We will not assume
that the matter in the box satisfies the Bekenstein
limit, Eq. (1.6). The only fact we shall use is that,
at fixed volume and total energy, thermal radiation
maximizes entropy. Thus the total entropy .S con-
tained in the box must satisfy

S<Vs(E/V), (2.12)

where s (e) is the entropy density of thermal radia-
tion. In our analysis, we shall neglect the mass of
the box and string. As discussed further in Sec.
II1, this is not a reasonable assumption since large
stresses will be required when we lower the box
near the black hole, and thus large energy densities
of the box and string will be needed if the energy
conditions are to be satisfied for the materials that
make up the box and string. However, if instead
of dropping the box and/or string into the black
hole we merely open the door of the box and then
pull it back to infinity, the extra work done when
lowering the mass of the box and string will be
compensated by the work done in bringing them
back to infinity. Thus, the energy-balance calcula-
tions in this case would be the same as if one
neglected the mass of the box and string and
dropped both of them into the black hole. Of
course, if the box and string are given mass and
are dropped into the black hole, the black-hole area
will be increased and it will become more difficult
to violate the generalized second law.

The final fact we shall need in order to do our
energy-balance calculation is that if a locally meas-
ured force F),. is exerted by the end of the string
near the black hole then, neglecting the mass of the
string, the corresponding force F that must be
exerted on the end of the string in our laboratory
at infinity to keep the string stationary is

F_=XFp. , (2.13)

where X is the red-shift factor. Equation (2.13)
follows from the fact that the “energy at infinity”
E _ is related to the locally measured energy E)
by the same red-shift factor E , =XE),.. Thus the
work done at infinity in moving the string must be
smaller by the factor X than the locally measured
work done on the box by the string. Since the dis-
tance moved is the same, the forces must satisfy
Eq. (2.13). Equation (2.13) also can be derived by
integrating the local conservation of energy-
momentum for the string, V, 7% =0, and setting
the mass density of the string to zero.

In the following analysis we shall assume that
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the box has a height much less than its distance to
the horizon. This implies that the changes in X
and dX /dl across the box are much less than their
average values. If this condition is not satisfied,
we have to consider the detailed distribution of en-
ergy within the box. This would complicate the
analysis, but we believe it would not affect the va-
lidity of our results.

Let us now tally up the forces that need to be
exerted at infinity in order to hold the box station-
ary. Classically, a local force

Floc =FEa = E";_ %
would need to be exerted to hold the box in posi-
tion, where a is the proper acceleration of the box,
and / is a coordinate measuring proper length in
the direction of the string. Thus, the classical
force at infinity is

F, =XFIOC:Ed—X . (2.14)

dl

However, this classical force is not the only force
acting on the box. The walls of the box must be
made out of a reflecting material in order to hold
the matter and radiation put into it, and these re-
flecting walls will “feel” the thermal acceleration-
radiation pressure discussed above. Assuming, for
simplicity, that the box is rectangular in shape and
aligned with the string, we find that the front wall
closet to the black hole will feel a local force
AP (), while the back wall will feel a force
AP (l,), where A denotes the area of these faces.
Thus, an “extra” force F, (opposite the direction
of F,) will have to be exerted at infinity in order to
counteract the acceleration-radiation pressure,
where F, is given by

Fy=X(1,)AP(l,)—X(1;)AP (1)

d(XP)
~AR————
dl

d(XP)
=py—— .

a (2.15)
where R denotes the proper height of the box, and
V the volume of the box. Thus, the total force ex-
erted at infinity is

dX d(XP)
F =F+F,=E———+V——— . .
© 1 +F; 4l + dl (2.16)
Consequently, the work done in lowering the box
down to height / (i.e., the energy gained at infinity)
is
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W=[F,dl=(EX+VXP)|]
—E—(E+PVX]|,, (2.17)

where we have neglected the buoyancy pressure at
infinity (or, equivalently, have taken into account
the work done in bringing the box into the
radiation-filled cavity containing the black hole).
This differs from the classical expression by the
term —PVX.|;, which is the work done by the
buoyancy force of the acceleration radiation. Note
that this term dominates the classical term EX as
one approaches the horizon since T— oo, and
hence we have

P=fsdT—>oo .

Originally, we started with the energy E in the
box in our laboratory at infinity. An energy W
has now been recovered by lowering the box to
height /. Let us now drop the box into the black
hole. It is interesting to consider what happens
when we release the box. If the dropping point sa-
tisfies F, >0 (so that the gravitational attraction
dominates the buoyancy force) we would expect the
local acceleration of the box to decrease to zero,
and the box should fall directly into the black hole
since it no longer “feels” the acceleration radiation.
On the other hand, if F_ <0 (so that buoyancy
dominates and the box has been “pushed” in), then
the box should actually move away from the black
hole initially when it is released. However, our
analysis of the buoyancy force applies only in the
static or quasistatic limits, so we cannot analyze
the dynamical behavior of the box after release.

(In addition, radiation reaction forces will act on
the box walls when the acceleration changes with
time. The nature of these forces as well as the
stress properties the box must satisfy in order to
withstand the forces acting on it when it is pushed
beyond the floating point will be discussed in Sec.
V.) For the purposes of the discussion below, we
shall assume that the box eventually “turns
around” and falls into the black hole. In fact, as
mentioned above and also discussed at the begin-
ning of Sec. III, we can avoid the issue of the
dynamical behavior of the box entirely in our
Gedankenexperiment by opening and closing doors
in the box rather than releasing the box.

By conservation of energy, the energy € delivered
to the black hole in the total process of lowering
the box and dropping it into the black hole must
be the difference between the original energy E and
the work W done at infinity during the process of

lowering. Using Eq. (2.17), we obtain
e=E—-W=(E+PV)X, (2.18)

where the right-hand side of Eq. (2.18) is evaluated
at the dropping point. In order to minimize the
increase in black-hole entropy, Eq. (1.5), we wish
to minimize €. The condition which minimizes €
is simply

de dX d(XP)

=25 __F —_E£2 _yp

dl ® dl d ~’
i.e., the box is dropped from its floating point.
Since the acceleration radiation satisfies the hy-
drostatic equilibrium Eq. (2.10), we have

(2.19)

d(XP) dXx
=—e—— . 2.20
dl i 2.20
Thus, the floating-point condition is simply
E =eV, (2.21)

i.e., the box displaces its own weight of accelera-
tion radiation. This principle has been noted pre-
viously in the other contexts.’

Substituting this result in Eq. (2.18), we find

€min="(eV +PV)X
=VTXs(E/V)
=TywVs(E/V), (2.22)
where Eq. (2.6) was used in the second line and Eq.

(2.8) was used in the third. Hence, the minimum
entropy increase of the black hole is

1
S, = — .
( Sbh)mm Tbh €min

=Vs(E/V), (2.23)

i.e., the black-hole entropy increases by at least the
entropy of the displaced acceleration radiation at
the floating point. Thus, the total change in gen-
eralized entropy in the process is

8S'=—S +8Su
>—-S+Vs(E/V)>0, (2.24)
where Eq. (2.12) was used to get the final inequali-
ty. Thus, the buoyancy force of the acceleration

radiation prevents one from achieving a violation
of the generalized second law.
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III. MINING ENERGY FROM A BLACK HOLE

In the calculation of the previous section, we
neglected the mass of the box and string. In fact,
large stresses will be placed on the box and string
as we lower the box close to the black hole. Thus,
if the box and string are composed of matter satis-
fying, say, the weak energy condition, they must be
given a large rest mass. (Indeed, if we require
J <cp with ¢ < 1, where .7 is the string tension
and p is its mass per unit length, then we also
must “taper” the string at its end near the black
hole in order to keep it from breaking under its
own weight.) The large rest mass of the box will
prevent us from coming close to the maximum en-
tropy limit, Eq. (2.12), and the rest mass of the
string will alter our energy-balance calculations.

In order to avoid these difficulties as well as our
inability to analyze the dynamics of the box after
it is dropped, we can dispose of the contents of the
box into the black hole by opening a door on the
lower face of the box at the appropriate point and
allowing the matter within the box to fall into the
black hole, and then withdrawing the opened box
to infinity. If we assume the box walls have negli-
gible volume and thus displace a negligible amount
of radiation, the box will no longer feel any buoy-
ancy force while it is being withdrawn. In this
case one will maximize the entropy increase of the
black hole by opening the door at the point where
the energy of the radiation displaced by the box is
equal to the energy of the material contained
within the box, not including the energy of the box
itself. The energy gained at infinity from lowering
the mass of the box and string will be just equal to
the energy lost in pulling the box and string back
to infinity.

Now, suppose we fill the box with thermal radi-
ation at infinity, lower it to the radius where its
temperature equals the temperature of the ambient
acceleration radiation, open its door and return it
to infinity. The entropy increase of the black hole
will just equal the entropy lost into the black hole
by this thermal radiation falling into the black
hole. The process is thus isentropic and one can
imagine reversing the process. An open box
lowered in toward the black hole. The box is then
closed at a certain distance from the horizon trap-
ping the thermal radiation present at that radius
and then withdrawn from the black hole. In this
process one will have extracted a net energy

€=TthS(Tbh/X) (3.1)

from the black hole. [See Eq. (2.22).] We will
have expended the work W given by Eq. (2.17) but
will have recovered the energy, W +¢, in the form
of thermal radiation in the box when it is far from
the black hole. In this process we have literally
mined the acceleration radiation that surrounds the
black hole.

From the point of view of an accelerated ob-
server, there is a large flux of radiation trapped
near the horizon of the black hole by a gravitation-
al and angular momentum potential barrier. The
work done in raising the box allows that portion of
the radiation trapped within the box to overcome
this barrier and be brought to infinity.

How rapidly can this radiation be mined? Our
analysis is strictly valid only in the quasistatic lim-
it, but we believe that the mining process can be
carried out at a finite rate without affecting the
analysis significantly. The only important modifi-
cation is that the walls of the box will radiate due
to the changing acceleration of the walls (see Sec.
V). The work done against the radiation reaction
forces may be larger than the energy extracted if
the rate is too high. However, we can find no rea-
son to believe that this will place any fundamental
limitation on the rate at which the energy can be
extracted. In particular, there seems to be no bar-
rier to extracting energy from a large black hole at
a much greater rate than the ordinary energy loss
rate due to the Hawking radiation.

Unfortunately, the technological applications of
black-hole mining do not appear to be very promis-
ing. The Hawking temperature of a Schwarzschild
black hole is 1/87M. Therefore, the mining of
thermal energy at a temperature T requires lower-
ing the front end of the box to a red-shift factor of
X=1/8nMT. Provided that Ty, << T, the proper
distance of the box from the horizon is

R [ —_4dr
M (1—2M /r)/?

172
| 2M

~4M =4MX . (3.2)

[Note that R (T) is thus independent of the mass
of the black hole for Ty, << T.] Thus, in order to
mine thermal energy at, say 100 K, we need to
lower the box to within a distance R ~1073 cm
from the horizon. At 7' =100 K, the buoyancy
pressure on the box (which would help support it)
should be negligible. The local acceleration of the
box is
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a=——rm——="7—. (3.3)

Thus, for T =100 K, we need an acceleration of |
about 10%2 cm/sec®. The spatial gradient of ac-
celeration is

1 dX

X dl

da _

d 2
a ~ 34
dl dl ¢ 3.4

so for T=100 K and small A/ the differential ac-
celeration between the front and back faces of the
box in cgs units is Aa ~ 10?* Al, where Al is the
height of the box. Thus, the engineering require-
ments for black-hole mining at, say, T =100 K are
truly formidable. We must build a box that can
withstand the above differential acceleration, and
we must be able to position this box to an accuracy
of 1073 cm. We must also build a string that is
able to accelerate the box to 10?? cm/sec?.

IV. THE INERTIAL VIEWPOINT

In the previous two sections, we showed how ac-
celeration radiation around a black hole prevents a
violation of the generalized second law and how it
can be mined. However, as already mentioned in
the Introduction there are several rather puzzling
aspects of our analysis. If we lower a box filled
with thermal radiation down to the radius where
the acceleration radiation has the same temperature
and open the box door absolutely nothing should
happen during the opening of the door since the
matter inside the box is in thermal equilibrium
with the acceleration radiation. Yet, by the time
the open box has been returned to infinity an ener-
gy € will have been delivered to the black hole.
Where, when, and by what mechanism did the en-
ergy transfer into the black hole occur? Similarly
in our analysis of black-hole mining the mined ra-
diation was the acceleration radiation outside the
horizon. However, we know that the energy ex-
tracted must ultimately have come from the black
hole itself. How was the energy actually extracted
from the black hole?

A related puzzle is what the viewpoint of an
inertial observer would be. An inertial observer
does not see any acceleration radiation. He would
deny the existence of the thermal bath near the
horizon, and would deny the existence of a buoyan-
cy force. However, he must somehow conclude
that the tension in the rope holding up the box is

less than it would be in a classical analysis. Furth-
ermore, when in the mining process the box door is
closed, there is for him no acceleration radiation to
be trapped in the box. Yet, if our analysis is
correct, he will agree that when the box arrives far
from the black hole it is full of thermal radiation.
How did this energy get into the box?

These puzzles are resolved by a closer examina-
tion of the quantum effects of the perfect reflect-
ing walls composing the box. As has been estab-
lished in studies of “moving mirrors” in two-
dimensional spacetimes,'>!* if the proper accelera-
tion of a mirror changes with time, energy will be
transferred across the mirror via quantum effects.
Thus, if a rectangular closed box is lowered toward
a black hole energy will be transferred across both
faces of the box which are normal to string. How-
ever, since there is a larger change in acceleration
for the face closer to the black hole, a net amount
of energy is transferred out of the box in the
lowering process. This provides the required
mechanism for transferring energy from the box
into the black hole. Similarly, if a closed box is re-
moved from the vicinity of a black hole, negative
energy is transferred out of the box and into the
black hole. This explains how a black hole can be
mined in the inertial viewpoint.

This energy transfer into the black hole by the
quantum field also provides a simple explanation
in the inertial viewpoint for the reduction in the
force necessary to hold up the box. It is not due to
a buoyant force (except for a small residual vacu-
um polarization effect which becomes negligible as
the box approaches the horizon) but rather due to
the box having radiated its energy and thus its
weight into the black hole. At the floating point,
all of the box’s rest mass has been transferred to
the black hole, the box weighs nothing, and no
force is required to hold it up. If the box is
pushed in beyond its floating point, its mass, from
the inertial observers veiwpoint, has become nega-
tive and the box has to be pushed in to hold at

such a radius.
That one should expect an energy transfer out of

an accelerated box can be seen from the following
considerations. Suppose, for simplicity, we lower
an empty box toward a black hole. If we lower the
box sufficiently slowly, no particle creation will oc-
cur and the interior of the box will remain in the
vacuum state with respect to its local time coordi-
nate. However, as we shall show by an explicit
model calculation below, this vacuum state will be
essentially the Rindler vacuum state of flat space-
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time. Ignoring the Casimir energy and the true
quantum stress energy near the black hole (both of
which become negligible for large boxes near large
black holes) the stress energy inside the box will be
the negative stress energy of the Rindler vacuum
associated with the local acceleration of the box.
Thus, energy must have been transferred out of the
box as it was lowered.

This inertial viewpoint may appear to differ rad-
ically from the “accelerating viewpoint” given in
Secs. II and III. Do these two viewpoints always
lead to identical physical predictions? It is not dif-
ficult to see that they do. Two analyses which
differ by a conserved T, will make equivalent
dynamical predictions as long as self-gravitating
effects are ignored (as they were in our analysis
above). The “inertial” and “accelerating” analyses
are exactly of this character. For the accelerated
observer the natural reference state is the vacuum
state defined with respect to the Schwarzschild
time—i.e., the state in which an observer at con-
stant radius sees no particles. By assigning zero
stress energy to this state, the accelerated
observer’s stress energy will differ from the true
(inertial) stress energy by the true stress energy of
this accelerated vacuum. This difference between
the two stress energies is a conserved tensor, how-
ever, and thus will make identical dynamical pred-
ictions. For example, if we lower an empty box
close to a black hole, in the accelerating viewpoint
of Secs. II and III the box remains empty (no
stress energy) but becomes surrounded with ther-
mal radiation (large stress energy). In the inertial
viewpoint, the box surroundings remain essentially
empty (small stress energy) but the box fills up
with a large negative stress energy. However, the
forces on the box, the tension on the string, and
the energy transmitted to infinity are identical in
the two viewpoints. It is the inertial viewpoint
that is literally correct, since the stress energy it as-
signs is presumably the physically correct one, i.e.,
the one that would also give the correct self-
gravitating effects. However, the accelerating
viewpoint has considerable intuitive advantages
since it avoids dealing with negative stress energies.

It is instructive to give a detailed calculation in
the inertial viewpoint of the energy flow into or
out of a box as it is moved near a black hole to il-
lustrate the above points. We have not been able
to carry out such a calculation in four dimensions
because we do not know the true quantum stress
energy around a black hole or the energy transfer
across a reflecting wall in four-dimensional curved

spacetime. However, we have done a model calcu-
lation in two spacetime dimensions which, we be-
lieve, contains all the essential features of the prob-
lem. We present now this calulation.

The behavior of mirrors on a massless scalar
field in two dimensions has been extensively
analyzed by Davies and Fulling,'> Fulling and
Davies,'# and others. We will use the result de-
rived in Davies, Fulling, and Unruh'® (DFU) for
the energy-momentum tensor for such a massless
scalar field. Any two-dimensional metric is con-
formally flat and may be written as

ds’=Q %dudv , 4.1)

where u,v are null coordinates. If the null coordi-
nates are chosen so that the state of the field in the
past is defined to be the vacuum state with respect
to the normal modes in u,v coordinates, then the
expectation value for the energy-momentum tensor
is given by

Typ=—-0,,/(127Q), (4.2)
Tp=—0,,/(127Q), 4.3)
Ty, =R/967Q* (4.4)

where Z is the scalar curvature. The condition of
being in the vacuum with respect to the u,v modes
means that if the quantum field is expanded in
terms of normal modes

o= (a,¢a+ajdh), (4.5)
A>0
where the ¢, have a u dependence of e and/or a
v dependence of e, then the state of the field
|¥) is defined by

a; |¢)=0. (4.6)

For a moving mirror, we choose the coordinates
to the right of the mirror as u,v and to the left as
u’,v’ such that the state of the incoming field is
the vacuum state with respect to the ¥ modes to
the right of the mirror and the v’ modes to the
left. The coordinates v and u' are then defined so
that the mirror trajectory is given by the equations

u—v=0, v —u'=0. 4.7)

(u',v can always be chosen in such a way for a
two-dimensional spacetime.) Let ) and ' be the
conformal factors for the u,v and u’,v’ coordinates,
respectively,

ds’=Q"%dudv to right
=Q'"%du’dv' to left . (4.8)
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We will be interested in the expectation value of
the energy flow at the mirror in the frame of the
mirror. Let V* be the four-velocity of the mirror,
and let a* be its acceleration. We have

VE=(V% V) =Q(1,1), 4.9)
at=0(Q,-Q ,)(1,—-1). (4.10)
Thus, we obtain
T, Vta"=(T,—T, QHQ,—-0,)

=

= Q=02 =0, . G1D)

However, note that

d ,, d 2
2 (_ata)=2(Q,-0Q,)
ar T = g Qe (4.12)

=20, — 0,00, —0,)Q,

where 7 denotes the proper time along the world
line of the mirror. Therefore, we have

a¥ 1 da
Tm,V"——————————— (4.13)

a 12xdr’
where a =( »a”a,,)“ 2. The left-hand side is just
the quantity of interest: the energy flow in the
direction of the acceleration, since the acceleration
is orthogonal to the velocity.

Consider now the box which we slowly lower
into the black hole. The acceleration increases as
the box comes closer to the horizon, and thus
da /d is positive for both the top and bottom
faces of the box. Since the acceleration vector
points away from the black hole, we find that
there is a positive energy flow toward the black
hole from the bottom mirror, and a negative ener-
gy flow into the box. Similarly there is a negative
energy flow outward from the top mirror, and a
positive energy flow into the box. The net energy
flow out of the bottom mirror is given by

T, V*
f bottom = HY

Similarly the net energy flow into the top of the
top mirror is given by

v Aa
9 dr=—"
a 127

(4.14)

Aa,
127 °

Ty V*—dr= 4.15)

top
where Aa;, and Aa, are the changes in acceleration
of the bottom and top mirrors, respectively. If we
assume that the box was initially at infinity where
the initial acceleration was zero for both the top
and bottom of the box, we find that the total ener-

gy flow out of the box as it is lowered into the
black hole is given by

SE =(ay —a,)/121 . (4.16)

But the acceleration of the top of the box is less
than that of the bottom, implying that the box
must have lost energy in the lowering process.

Thus, energy is indeed transferred out of a box
when it is lowered toward a black hole. Similarly,
negative energy flows out of the box when it is re-
turned to infinity. This explains the energy-
transfer mechanism from the inertial viewpoint.

Let us now demonstrate that the energy flow out
of the box together with the true vacuum pressure
are just sufficient to account for the reduced string
tension predicted by the “accelerating-observer
viewpoint.” We take as two-dimensional black-
hole model spacetime the metric

ds?=(1—2M /r)dt*—dr*/(1—2M /r)

—r/2M
=—2Mer—dUdV , .17)

where U, V are Krushal coordinates. We will now
calculate the net force which the rope must supply
to hold up the box. This will be equal to the
weight of the box (reduced by the flow of energy
out of the box due to its changing acceleration)
minus the buoyant force due to the residual pres-
sures on the top and bottom faces of the box pro-
duced by the quantum field outside the box.

In order to calculate the pressure of the quan-
tum field on the box we must calculate the stress-
energy tensor of the quantum field in the state in
which the black hole is in thermal equilibrium. In
our two-dimensional model, this corresponds to
choosing appropriate null coordinates u and v’ on
the two sides of the box. As was shown by Hartle
and Hawking'® the appropriate choice is to use the
Kruskal-type coordinates throughout. The ap-
propriate conformal factor to use in Egs. (4.2) to
(4.4) is

Q=(2Me~""?M /y)=172 (4.18)

with u,v,u’,v’ being the coordinates U,V of (4.17).
The appropriate stress-energy tensor in t,r coordi-
nates is given by

1 | IM?  4aMm 1
= 4 4 — .3 + ToM? ] , (4.19)
1 1 M? 1
T,=— S —— |, 420
T 2w (1—2M/rP l rt 16M? ]
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T,=0. 4.21)

The pressure on a wall of the box located at radius
r is given by T,, where r’ is the proper radius

LI

dr
= . 4.22
r f (1__2M/r)1/2 ( )

The net force which the rope must supply is then
given by

1

F=(Eg—8E)a —AT,,=Eq —A

where A denotes taking the difference between the
bottom and top of the box of the term in square
brackets. However, we have

s 1 M
= |= 4.24
T 02 |2 @29
giving us
1 1
—Eqa—A | T
F=Eot =8 1% (T—am/r) (8aM7 ]
=Eoa —A %TZ , (4.25)

where T is defined in Eq. (2.8) and E| is the initial
energy of the box. But the term 772 is just
equal to the pressure of thermal radiation of tem-
perature T for a massless free scalar field in two
dimensions. This expression is therefore exactly
the same as we obtained from the accelerated ob-
servers point of view. The energy flow out of the
box together with the true quantum stress energy
does, indeed, properly account for the reduced
string tension.

For completeness, we also examine the stress en-
ergy of the material enclosed within the box. We
will show that the energy inside the box is the sum
of the Rindler vacuum energy, the Casimir energy,
and particle energy terms. Again we will examine
the behavior of a free massless scalar field within a
box in two-dimensional spacetime. Because of the
multiple reflection of any change of state of the
field from the two walls of the box, it is very diffi-
cult to analyze the behavior of the field within the
box in nonstationary situations. We will therefore
calculate the stress-energy tensor for the enclosed
field for a stationary box. We assume that the
metric within the box is of the form

ds?=0Q"2x)(dt*—dx?) (4.26)

with the walls of the box located at x =0 and
x =H. The solution for the modes within the box
is given by

247" T 241 (1—2M/r)

rt 16M?

M? 1
4 ) (4.23)

I

nmot .
e sinnwyx
(nweH)!?

where o, is 7/H. The quantum field ® in the box
can be expanded as

®(t,x)= 3 [andn(t,x)+a,d5(1,%)] .

b (t,x) = 4.27)

’

Let us now assume that the field is in a state such
that the mean number of particles in any state n is
given by N (n)—i.e.,

(afay)=N(n)s,, . (4.28)

Now, the expectation value for the stress-energy
tensor can be written as

<T;w>: <0l T;w | 0)
+3NmTY , (4.29)
n
where T;,"v) is the stress energy of the classical field
¢, and where the state (0| is defined by
a, |0)=0. (4.30)

The first term of (4.29) is divergent and must be
regularized. Using point-splitting regularization in
the same way as was done in obtaining Egs. (4.2)
to (4.4) in DFU (Ref. 15) we find

Q 2
OTe[0)= -7 ;2;(;2 _247;12 ’
(4.31)
(0] T |0)=[0], 4.32)
(0] Txx |0)=(0| T, |0) —[2/247Q7] . (4.33)

The terms in square brackets are identical to the
results in free space given in Egs. (4.2) to (4.4)
where u,v are given by (t —x) and (¢ +x), respec-
tively. The additional term proportional to H ~2 is
the so-called Casimir energy. Assuming the box to
be small so that Q(0) =~ Q(H), we find the proper
Casimir energy E is given by
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T
24L °

where L is the proper length of the box, H /.
This energy can be associated with the box itself; it
is part of the energy necessary to construct the box
and remains constant at all heights.

Similarly, if the box is lowered sufficiently slow-
ly, N (n) will remain constant during the lowering
process. The contribution of these quanta to the
total proper energy

H
Ec=Q fo T'Q 2dx = — (4.34)

nim

I3 (4.35)

> N(nnwt=2, N(n)

also remains constant as the box is lowered. How-
ever, the contribution due to the vacuum polariza-
tion does not remain constant, but rather decreases
as the box is lowered nearer to the horizon of the
black hole. The term in square brackets in (4.31)
gives a contribution E, to the total energy of the
field within the box of

—_ Q,Xz_Q,X,X L
VT a02 Q 244
| _am| 1
rt 3241 =2M /7))

(4.36)

where the second expression is the first as evaluat-
ed in a black-hole metric. From the inertial
observer’s viewpoint, the box therefore grows
lighter as it is lowered nearer the black hole be-
cause the vacuum energy density of the field

within the box decreases.
As mentioned earlier in this section, the ac-

celerated observer takes the field energy of the
empty box as his reference, thus neglecting the
terms in square brackets in (4.31). For him, the
mass of the box and of the radiation within the
box remain constant as the box is lowered toward
the horizon of the black hole. Since the neglected
terms are just a part of a conserved energy-
momentum tensor, the accelerated observer’s
viewpoint is completely consistent.

V. ACCELERATING BOXES IN FLAT SPACETIME

The close mathematical analogy between the ex-
terior Schwarzschild solution (r > 2M) and the
Rindler spacetime

ds’=x%dt*—dx*—dy*—dz*, (5.1)

which corresponds to a wedge of Minkowski space-
time is well known and, indeed, has been used to
gain insight into the quantum processes occurring
near black holes.” Thus, one would expect that ef-
fects analogous to those of boxes lowered toward a
black hole should occur for accelerating boxes in
Minkowski spacetime. The purpose of this section
is to explore these analogous effects.

Consider a rectangular box with perfect reflect-
ing walls in Minkowski spacetime which undergoes
rigid acceleration, i.e., the box follows the orbit of
a boost Killing field. Then each face of the box
will react exactly as if placed in a thermal bath of
temperature7

T=a/2m, (5.2)

where a is the local acceleration. However, the lo-
cal acceleration is given by

a=_——=_, (5.3)

where the “red-shift factor” X is now the norm of
the boost Killing field d/9¢, so that X =x. Hence,
the “top face” of the box (where “upward” is taken
to be the direction of the acceleration, i.e., the
direction of increasing x) will undergo a smaller
acceleration than the bottom face. Thus, just as in
the black-hole case, the box will feel an effective
buoyancy force from the acceleration radiation.
This buoyancy force will reduce the applied force
required to keep the box in uniform acceleration.
Again, for some sufficiently large acceleration, the
box would float at which acceleration it would
continue to uniformly accelerate without any exter-
nal force. If accelerated beyond the floating ac-
celeration the buoyancy force would be so large
that the external force needed to keep it in uniform
acceleration would be opposite the direction of ac-
celeration.

How can the existence of such a self-accelerating
box in Minkowski spacetime be consistent with
conservation of energy? The answer is best under-
stood from the “inertial viewpoint” developed in
the previous section. In the inertial viewpoint, as
we quasistatically increase the acceleration of an
empty box, the interior remains in its ground state,
energy flows out of the box, and the energy of the
field inside the box becomes negative. As we shall
show below, at the floating acceleration, the total
energy content of the box vanishes; the negative
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energy of the Rindler vacuum inside the box can-
cels the positive mass of the box walls. Thus, the
box can “self-accelerate” without violating conser-
vation of energy in the same way as can a system
composed of a positive mass m connected to a
negative mass —m by a spring. If the box could
be accelerated beyond its floating acceleration, its
total energy would become negative.

o 1 3 3
T x xe xH

Integrating with respect to x dx dy dz over all of a
t =const spacelike slice, we find that the first term
is zero because the box remains static in this coor-
dinate system, and the second term is zero by an
integration by parts since T#" is zero outside the
box. We have therefore

0=— f T"x%dx dy dx
=— [ T'dxdydz . (5.5)
This can be rewritten as
J 1°dx dydz=0, (5.6

where ¢’ and X are Minkowski coordinates such
that a ¢t =const hypersurface is also a t'=const
surface. This justifies our previous contention that
the total energy is zero. However, because the
left-hand side of (5.6) is independent of hypersur-
face and because the above is true for all t =const
hypersurfaces, we find that ¢',X and X,X com-
ponents also integrate to zero. Using the stress-
energy conservation we finally obtain

[ Tdx dydz=0 (5.7)

for all components of T*¥ in Minkowski coordi-
nates. Thus, the integrated stress-energy com-
ponents over the walls of the box must equal the
negative of the integrated stress energy over the in-
terior of the box. However, if we neglect Casimir
terms, the stress energy inside the box is just the
negative of the stress energy of blackbody radia-
tion. Thus, we find

Jooy Tud’x = [ Thid’x (5.8)
walls

where TEB denotes a stress tensor appropriate to

3
(xT"”)—{—FZ,,T""———l———a xT* —xT" = | =T*+ 3,
x

We derive now the stress conditions required of
the box in order to achieve its floating acceleration.
At the floating acceleration no external forces are
necessary to maintain the box at that acceleration.
Thus, in the inertial viewpoint, the stress energy
density can be nonzero only within the box. From
the conservation of stress energy in the Rindler
coordinates of (5.1) we find

9 l—a—.xT"i —xT*. (5.4)

ot =1 x ox'

{alackbody radiation. Now, unless the number of
species of elementary particles increases rapidly at
large masses, thermal radiation should be dominat-
ed by massless particles and particles whose mass
can be neglected compared with their thermal ener-
gy. Hence, to a good approximation, the trace of a
thermal stress tensor should vanish, 758 ~0.
Therefore, if we model a box wall as having mass
per unit area p, and tension .7~ in the two direc-
tions tangent its surface, but take all other stress-
energy components to vanish, then according to
Eq. (5.8) the tension must be negative (i.e., a pres-
sure) and must, on average, satisfy

|7 | =5u . (5.9)

Although this does not violate the dominant ener-
gy condition, there is no known physical matter
which satisfies Eq. (5.8). Thus, it does not appear
that one could construct a box that could with-
stand the stresses required to achieve its floating
acceleration (or, in the black-hole case, the stresses
required to be lowered to its floating point). In
reaching this conclusion that “floating boxes” (or
negative total energy boxes) cannot be produced
physically, we have not even taken into account the
physical limitations on producing perfect reflecting
walls or the possibility that the acceleration radia-
tion would cause the box walls to melt.

Although it may already seem surprising that
the analogy between black holes and Rindler space-
time carries over as far as the analysis of buoyancy
effects on boxes, the analogy can be carried much
further. Flat spacetime can be mined by accelerat-
ing boxes. If we accelerate a box, open and close
the box door while it is accelerating, decelerate the
box, and bring it back to our laboratory, we will
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find that it is filled with thermal radiation.

Where does the energy come from when we
“mine” flat spacetime? Since total energy must be
conserved, the energy source for the mining of flat
spacetime must be the external agent responsible
for accelerating the box. For a quasistatic mining
process, the forces such an agent must exert on the
box can be divided into three categories: (1) the
ordinary inertial force needed to accelerate the en-
ergy contained in the box, (2) the force needed to
counteract the buoyancy force of the acceleration
radiation (which, in the inertial viewpoint, would
be considered part of the first force), and (3) the
force needed to counteract the radiation reaction
force. The radiation reaction force provides the
key to understanding energy balance in the mining
of flat spacetime, and, to gain more insight into
the nature of it, we return to our two-dimensional
model of Sec. IV.

When the acceleration of a mirror (such as a re-
flecting wall of the box) changes with time, the
mirror radiates and a radiation reaction force acts
on the mirror. This radiation reaction force is
given by

FE=Tra" |, —T*a"| _, (5.10)

where T*,, is the stress tensor of the quantum field,
7" is the outward normal, and the plus and minus

refer to the two sides of the mirror. A calculation
similar to that which gave (4.13) yields

1 da a*
F=———
6w dr a
1 |da da”
=— | ——V*V 5.11
6r | dr Vidr 51D

Note that this quantum radiation reaction force
on a moving mirror is identical in form to the ra-
diation reaction force on a point charge in classical
electrodynamics. Thus runaway solutions will ex-
ist for moving mirrors even though the renormal-
ized stress energy is finite everywhere, i.e., even
though there is no infinite self-energy as in the
case of a classical point charge. Energy is con-
served because the local energy density in the field
is not necessarily positive, and the mirror will radi-
ate negative energy as it self-accelerates. Thus
moving mirrors provide an interesting example of
radiation reaction dynamics'* and show further-
more that quantum mechanics of itself does not el-
iminate runaway-solution problems.

It should be emphasized that the radiation reac-

tion force, Eq. (5.11), is completely distinct from
the buoyancy force we have previously analyzed.
The buoyancy force vanishes, of course, for a sin-
gle mirror as opposed to a box. On the other
hand, the radiation reaction force vanishes for uni-
form acceleration, and thus can be neglected in the
quasistatic analyses of the previous sections.

Thus, if we vary the acceleration of a moving
mirror we must exert an extra force, F*= —F§, to
compensate for the radiation reaction force. Using
Newton’s law, dp"/dr=F*, we find that this force
will do work Wy given by

Wi=2p°= [ Fldr=— [ FRdr

1 da
== [ dr, (5.12)

T

where v is the velocity of the mirror (taken positive
if in the direction of the acceleration) and
y=(1—v* "2 This energy Wy will go into the
radiation emitted by the moving mirror. Note that
if the mirror is initially inertial, undergoes a period
of acceleration, and returns to a final inertial state,
the boundary terms in the integral for Wy will
disappear when we integrate by parts and we ob-
tain

1 2
We=—— [ a’ydr. (5.13)

Apart from constant factors, this agrees with the
formula for total energy radiated by a point parti-
cle in classical electrodynamics, as could have been
foreseen by the agreement of the radiation reaction
forces. Note, however, that the nature of the emis-
sion process differs greatly in the two cases: The
mirror radiates only when its acceleration changes,
while the point particle also radiates while it ac-
celerates uniformly.

Returning to the mining process, we may divide
our mining operation into three regimes: (i) The
box is started from rest and is slowly brought to a
constant acceleration a. (ii) The box door is
opened, allowing the box to fill with thermal ener-
gy, and then closed. (iii) The box is slowly de-
celerated and brought back to rest in the laboratory
or allowed to fly off with constant velocity. As-
suming for simplicity that the differential accelera-
tion across the box is small compared with « in
step (ii), we find that at the end of the process the
box will be filled with thermal radiation at tem-
perature T'=a /2m. Since the energy density of
thermal radiation in two dimensions is %'n'Tz, the
box will have energy
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T 2 1 2

yE—yéTL—247TaL, (5.14)
where L is the length of the box, and
y=(1—v;%)"""* where v, is the final velocity of
the box. The ordinary inertial force (1) on the ra-
diation in the box in steps (ii) and (iii) accounts for
the energy (E —E;) where

1

Ey=vy,——a’L 5.15
0 7’02477‘1 ( )

with yo=(1—vy?)"!/? where v, is the velocity of
the box during the time the box filled with radia-
tion. Thus, the buoyancy force (2) and the radia-
tion reaction force (3) must account for the energy
E,. We calculate now their contributions.

According to (5.13), the work done against the
radiation reaction force is

1
WR:6—7T [f arz%d”'t‘*‘fabzybd'rb

’

(5.16)

where “¢” and “b” denote the top and bottom faces
of the box. On the other hand, since the “pres-
sure” (i.e., force) of thermal radiation in two di-
mensions is %’ITTZ the buoyancy force is given by

_ L 2
Fp= 247(0, —ap”) (5.17)

and thus the work done against the buoyancy force
is

1
Wp=~,— [fabzybvbdﬂ:

— [ ayvdr, (5.18)

Comparison of (5.16) and (5.18) shows that Wy al-
ways dominates Wp. In particular, if the differen-
tial acceleration is small compared with the aver-
age acceleration as we have assumed here for sim-
plicity, we have Wp << Wj.

We show now that Wy is sufficient to account
for E,. Namely, in order to fill the box with ther-
mal radiation we must accelerate it with accelera-
tion a in step (ii) for a time At at least as great as
the light travel time L across the box. In fact, for
the mining procedure to be quasistatic, we need it
to accelerate with acceleration close to a for
A7>>L. Thus, from (5.13) we find

Wg>>yea’L ~E, . (5.19)

Thus, Wy indeed can account for energy balance
in the “mining” process.

Thus, our picture of the process of “mining” flat
spacetime is the following. During regimes (i) and
(iii) above when the acceleration of the box is
changing, the front and back faces of the box emit
radiation. The energy for this radiation comes
from the extra work done by the external agent in
combating the radiation reaction force. While the
acceleration is held constant and the box door is
opened and closed, the empty box fills with ther-
mal radiation according to the accelerated observer.
From the inertial observer’s point of view, the box
is full of negative energy density before the door is
opened and has zero energy content when the door
is shut again. Thus, during the time the door is
open the negative energy in the box escapes as a
negative-energy flux to infinity. The total energy
radiated to infinity by the moving walls of the box
in the entire process must always be positive as the
vacuum state of the field is a minimum energy
state. Thus, the mechanism by which the opening
of the box has converted part of the total work of
the accelerating force to thermal energy within the
box rather than to energy emitted.to infinity is
rather surprising. It does this not by trapping part
of the radiation which would have escaped to in-
finity, for during the period of constant accelera-
tion there would have been no energy flux pro-
duced by the box walls if the door had not been
opened. Rather, it does this by radiating a
negative-energy flux which subtracts from the
larger positive-energy flux emitted during the
periods when the acceleration changed.

The energy source of flat-spacetime “mining”
contrasts sharply with the “black-hole mining” dis-
cussed in Sec. III. In the black-hole case, the velo-
city v of the box is unrelated to the local accelera-
tion a of the box. Consequently, although the lo-
cal radiation reaction force on a mirror in our
two-dimensional model is still (1/67)da /dT, no
analog of (5.13) exists and the work done by the
force can be made negligible by lowering the box
sufficiently slowly. Thus, in the black-hole case,
true mining occurs; the energy comes from the
black hole, not from the forces combating radia-
tion reaction. It is interesting that the processes of
“mining” flat spacetime and mining a black hole
have sharply differing global interpretations even
though the local descriptions of these two phenom-
ena near the box are virtually identical.
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