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Colliding gravitational waves in expanding eosmologies
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We discuss the singularity behavior and causal structure of expanding vacuum plane-symmetric cosniologies
containing colliding gravitational waves. Penrose s theorem excluding global Cauchy hypersurfaces in plane-wave

spacetimes does not hold for our expanding cosmologies, The singularity in our solutions occurs in the past and can
be identified with the big-bang singularity. Analytical estimates based on a Green's-function analysis near the

collision provide an explicit example which is verified by numerical computation.

I. INTRODUCTION

'The idea that a collision of plane gravitational
waves inevitably produces singularities in the
future of the interaction has become part of the
folklore of general relativity. Kahn and Penrose, '
Szekeres, "and Nutku and Halil' have all given
examples of colliding plane-wave vacuum solu-
tions in which the waves start out traveling to-
wards each other in flat space, collide, and move
apart again, leaving behind a nonflat interaction
region in which a singularity inevitably develops.
These solutions, although highly specialized,
have led to the belief that colliding plane waves
always focus to a future singularity. This notion
can lead to great confusion when considering the
behavior of strong gravity waves during a chaotic
phase in the early universe.

Certainly, there is no proof that general, non-
planar gravitational waves focus to singularities,
and good reason to believe that they do not. ' Re-
cently, Tipler' has proved that the collision of
any Plane waves, gravitational or electromag-
netic, requires a singularity either in the past
or future of the interaction. We'' have studied
the collision of plane gravitational waves in an
expanding vacuum cosmology and find that in gen-
eral the waves do not focus to a singularity in the
future. This result is in keeping with Tipler's
theorem because we do have the cosmological
singularity in the past of the collision. In other
words, the universal expansion forces our plane
waves to share in the singularity of the big bang,
and frees them from a singularity in the future.

In the scenarios of Kahn and Penrose and of
Szekeres the initial data for colliding waves were
set on flat space. Prior to collision, the con-
vergence and shear of the null rays lying in the
wave fronts vanished. The interaction of the waves
induced shear in the null congruence, which then
induced convergence and resulted in a singular-
ity a finite time in the future. Szekeres's'
solution makes this behavior especially clear,

since he explicitly solves the field equations using
a Green's-function technique and demonstrates
that at a finite time in the future of the collision
the Green's function becomes singular. Con-
sequently, certain Riemann tensor invariants
diverge and thus physically inescapable tidal sin-
gularities occur in the future.

In our study of colliding plane waves in cosmo-
logical models we set data in a particular way'
on an expanding three-dimensional spacelike
hypersurface. The waves thus share the expansion
of the background. After the collision their expan-
sion is still positive and no singular focusing
occurs in the future. The wave disturbances die
down and eventually become just small fluctu-
ations in an ever-expanding universe. 'The non-
singular behavior of these waves has led us to
examine their interaction more closely using the
optical scalars. ""We present here some ex-
plicit analytical and numerical results concerning
colliding plane waves in expanding vacuum cos-
mologies in the hope of gaining insight into the
influence of more general gravity waves on the
evolution of the early universe.

II. PLANE-SYMMETRIC COSMOLOGIES

Previous work on colliding plane waves set
data on null planes matched to flat space."' We
evolve our data numerically using the "3+1"
formalism" of numerical relativity, and there-
fore require data on a three-dimensional space-
like slice. Our particula. r initial data set rep-
resents slices from two different anisotropic,
homogeneous cosmologies abutted at a two-plane.
The technique' gives data with three-metric
y;,. = &;,. everywhere on the slice, and, in the
vacuum case, second fundamental form K,.&

as appropriate for a Kasner" anisotropic cos-
mology at each point. For a consistent data set,
the momentum constraint imposes a particular
continuity requirement across the join surface.
Within limits, one may pick the age and shape
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+ (e ~dX'+ e ~ T'd Y') (2.1)

where )j) and y depend only on Z and T The. only
dynamical field equation in vacuum is

(j)+ )I)/T —(j)" = 0, (2.2)

where a dot denotes a partial derivative with
respect to time T and a prime denotes a partial
derivative with respect to spatial coordinate Z.
The remaining field equations yield z by a direct
quadrature once g is known,

(2.3a)

(2.2b)

In specifying our data, it is convenient to use
a parametrization which emphasizes the age and
anisotropy of a Kasner model. We take a typical
four-dimensional Kasner model in the form

of the anisotropy of one of the eosmologies, and
the age, say, of the other. The momentum con-
straint then determines the shape of the anisotropy
of the other model, and the initial data set is
complete. A discontinuous join is not mandatory;
the age, for example, may be varied continuously.
For analytical work we suppose the join is dis-
continuous in order to study the collision of grav-
itational shock waves. In our numerical analysis,
we smooth the join over several grid zones, but
keep it steep to approximate the analytical sit-
uation.

Analytical work is carried out in a metric of
the form"

ds'= e" '(-dT'+dZ')

metric is y, , = 5,, , z =p in the slice T =T,. We

will refer to quantities specified at z &0 with the
subscript A. and those specified at z&0 with the
subscript B. On this constant T, slice we have'

~

i

2t), (z)
r 1 Q

0
(2.6)

((z, )')= J (—', )('2dz.
D3

(2.7)

Here, the integral is taken over a region
[D„D,] on the initial slice T = To. The param-
eters D, and D4 are defined by

D2 = Z —(T —To),

D, =Z+(T-T,).
(2.aa)

(2.6b)

This situation is diagrammed in Fig. 1.
The Green's function R is the hypergeometric

function

Note that the quantity 1-t)2(z) cannot vanish; if it
did, the Kasner model at that point would be
Minkowski space and the constraints would then
require the solution to be Minkowski space every-
where He.nce, (j is finite, a fact which we will
use repeatedly below. On the other hand, because
the data set is discontinuous, the derivatives g
and (j) will be discontinuous and 6-function sin-
gularities will appear as gravitational shocks in
the Riemann tensor, traveling at the speed of light
out of the join surface.

Now consider the time evolution of this initial
data set. Equation (2.2) is of Euler-Darboux form
and a Green's-function analysis' similar to that
given by Szekeres' gives the value of the metric
function |t) at any field point (Z, T):

)22) t 22
ds' = —dt'+

I

—
(

dz'+
I, t, & t()

dz

where

Pj.+0'2+03-1 &

2 2 2+P, +&3 =1,

(2.4)

(2.5a)

(2.5b)

where

(Z -D.)(Z —D.)
4TD T

( T x/2
R= i F( —', —';1; —q), (2.9)

(2.10)

and eachP& has a possible range ——,
' «p, » 1.

Equations (2.5) imply that only one of the t), is
unconstrained, and we take this to be P3.

Setting our initial data corresponds to specifying
the value of to and p3 at one point. The constraint
equations permit us to specify, for example,
t, (z) and then determine t)2(z). This data set cor-
responds to a T = To= constant slice in the vari-
ables of Eq. (2.1).

Consider now data that are set by abutting two
different Kasner cosmologies (i.e., different t,
and p2) at a join surface z =0. Because the three-

T-Z =

T+Z

-=-T= T0
D4

FIG. 1. The metric at the field point (g, T) depends
on an integral over the region fD3D4) on the initial slice
T =Tp. The lines T+ g = constant and T- g= constant
are null rays. This figure shows the field point to the
future of To, for T &To, the positions of D3 and D4 are
interchanged.
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in the region of integration. The Green s function
has a singularity as 7.

' —0, corresponding to the
big-bang singularity. Since 8, is well behaved in
the future, arid since g is finite on the original
siice, one obtains g- 1nT, a form typical of an
expanding cosmology, in the far future. Thus,
no future singularity occurs; the gravitational
shocks do not focus to a singularity in the future
of their collision. These statements about the
behavior of the Green's function and the behavior
of the solution are justified in Sec. IV.

III. INTERACTION OF WAVES IN PLANE
GEOMETRIES

Penrose has proved a theorem"'" stating that
a Plane-agave spacetime cannot contain a global
Cauchy surface. A plane-wave spacetime is one
in which the metric depends only on one null

coordinate, and wave fronts traveling along the
surfaces where this coordinate is constant have
vanishing expansion. In contrast, in our cosmol-
ogies null planes of the form T sg =constant have
positive expansion [cf. Eq. (5.25)].

In its simplest form, Penrose's theorem refers
to weak sandwich waves in a plane-wave spaee-
time, A sandwich wave is described by a flat
region followed by a region in which plane waves
propagate past in one direction, in turn followed
by another flat region. Penrose s theorem says
that, except for one exceptional null ray, every
generator of the future null cone of a point in the
past of the passing plane wave intersects a single
spacelike line in the future of the wave passage.
If the wave is electromagnetic rather than purely
gravitational, the refocusing is to a precise point.
This refocusing of the null rays completely
changes the causal structure of the spacetime
and prevents it from admitting a global Cauchy
surface

We may summarize Penrose's proof as follows.
For simplicity, consider the case of pure electro-
magnetic waves. (Penrose" gives the proof for
the case of plane gravitational waves also. )

Electromagnetic waves contain energy and thus,
by Raychaudhuri's theorem, " tend to increase
the convergence of a null congruence passing
through them. If a test null cone expanding from
a specific event in an initially flat region en-
counters a plane (nonexpanding) electromagnetic
wave, the expansion of the null cone may be suf-
ficiently small that it is overcome and a net con-
vergence is induced by the encounter with the
wave. If the plane wave has fixed amplitude, we

may consider encounters occurring further and
further from the source event of the cone and

IO-

0, I

Dp
Z

PVT~m
FIG. 2. The edge regions D3, g and g„D4 con-

tribute only a finite piece, which vanishes as T
and T 0, to the integral over the Green's function.
The situation shown here is for T —~; for T —0, the
positions of D3 and D4 are interchanged.

eventually this net convergence will result. This
situation is shown in Fig. 2 of Ref. 14. Penrose
shows that the null cone, except for one excep-
tional ray, emanating from a single event is re-
focused to a single event. (For gravitational plane
waves the refocusing is less accurate and the null
rays reintersect along a. spacelike line. ) This
curious causal structure is sufficiently different
from the usual flat-space paradigm that no Cauchy
surface can exist. "'" Because the effect of the
plane waves is always to induce convergence, the
initial restriction to sandwich plane waves in an
otherwise flat universe is unnecessary.

An important point of Penrose's proof is that
any plane wave, no matter how weak, induces con-
vergence in a null cone emanating from some
earlier event. For very weak plane waves, such
an event must be very far away and hence in the
distant past of the encounter. But, there are
many such events in the flat part of the spacetime
ahead of the wave. Hence, Penrose's theorem
states that an arbitrarily weak plane wave pre-
vents the existence of a global Cauchy surface
in a plane-wave spacetime.

Consider now two colliding plane waves moving
with flat space between them. As the colliding
waves initially travel towards one another they
both have zero expansion. The collision then
induces convergence in each of these plane waves
via Baychaudhuri's theorem. Since these are
real waves, and not just test waves as in the null-
cone discussion above, the eventual refocusing
leads to singular Riemann tensor behavior, and
there will always be a singularity in the future.
The causality anomalies on which Penrose's
theorem depends become curvature singularities
in this plane-wave spacetime.
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+r'(de'+ sin'8dg') j. (3.1)

The geodesic equation for spherically outgoing
null geodesics k'(k" = k") is

How is the situation different for waves prop-
agating in expanding plane cosmologies? Briefly
put, there is a net overall expansion in the uni-
verse which tends to counteract any convergence.
To illustrate this point, consider a test null cone
emanating from a specific event in an expanding
Robertson-Walker cosmology with metric"

d s' = a'(q) [—dq'+ dr'

fails in this case.
The future null cone of a more distant event

will intersect the plane wave at a later time in
the evolution of the universe. As before, for
simplicity, we consider plane elect'omagnetic
waves. From Eqs. (3.3) and (3.5) we see that
the expansion of the plane electromagnetic wave
in an expanding cosmology will induce a cor-
responding decrease in its energy density, as
calculated in geometrical optics. " For a plane
electromagnetic wave propagating in a given
flat Bobertson-Walker cosmology we have

(ink") „+ (lna') „=0, (3.2)
This implies that

which is equivalent to the well-known red-shift
r esult"

9„=constant.

The rotation and shear of the expanding con-
gruence of null geodesics

k„=—k = constant

both vanish. The expansion is

(3.3)

(3.4)

(3.5)

where the comma indicates ordinary partial dif-
ferentiation, dt = a dg, and D = ax is the proper
distance the ray has propagated.

Note that in flat space, the metric function
a= constant and so a nulleone has expansion 8
—constant/(distance to source). In contrast, in
an expanding cosmology the expansion of the uni-
verse adds a positive contribution to R Hence
it is not merely how distant the source event is
from a plane wave, but also how rapidly the whole
universe is expanding at the time a collision with
a pla.ne wave occurs, that determines whether
refocusing can occur. Notice in particular that
if r = ~ (a plane wave) the expansion of the null
geodesics is nonzero, in contrast to the case of
plane-fronted waves in flat space.

Consider now an expanding plane-symmetric
cosmology containing plane waves. Does Pen-
rose's theorem that there is no global Cauchy
surface hold in this case? If there is a cosmo-
logical expansion as described by Einstein's equa-
tions, with a cosmological singularity in the past,
the theorem does not hold in general.

Because there is a cosmological singularity a
finite time in the past, it is not possible for an
event to be further in the past of a plane wave than
a light travel time equal to the age of the uni-
verse. Arbitrarily weak plane waves will thus
be unable to induce convergence in the null cone
expanding from that event, and so Penrose's proof

8'n' = constant,

where H is the amplitude of the vector potential
wave and thus II'k, ' is proportional to its energy
density. From Eq. (3.3), k, ~a '. The focusing
accomplished by the expanding plane wave is
proportional to its energy density; by this anal-
ysis the energy density is proportional to a '.

In the Robertson-Walker model considered
above, the plane-wave limiting form of the expan-
sion of the test null geodesics in Eq. (3.5) is
proportional to a 'a, and so will eventually be
overcome by the focusing induced by a plane wave
if a, falls off faster than a '. Now,

a )fxa g 0

implies

t (1-&) /3

for focusing. In other words, a version of Pen-
rose's theorem holds if the universal expansion
is slow enough.

In a dust (p = 0) Robertson-Walker model we
have a ~ t'~' and a radiation (p= 3 pc') model has
ace t '~ ', a hard fluid (p = pc') model has a
~x: f' ', which is also the behavior of the average
expansion in a Kasner (vacuum, anisotropy
dominated) model. In all of these models, Pen-
rose's theorem fails for arbitrarily weak plane
waves.

A similar type of argument shows that, in ex-
panding plane-symmetric cosmologies, suf-
ficiently weak colliding plane waves do not focus
in the future. These plane waves have a positive
expansion due to the cosmology. If they are weak
enough, no convergence occurs after their col-
lision. Cauchy surfaces do exist in these plane-
symmetric cosmologies; numerical relativity is
directly applicable to them. " The ubiquitous
focusing of plane waves moving in flat space
occurs because the waves themselves have zero
expansion initially, and an arbitrarily weak in-
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IV. GREEN'S FUNCTION ANALYSIS

We now justify the statements made in Sec.
II concerning the singularity behavior of the
Green s function (2.8) and the fact that grav-
itational shocks emanating from the join sur-
face on the matched initial data slice do not focus
to a singularity in the future.

Hecall from Sec. II that the Green's-function
analysis of the dynamical field equation (2.2)
gives the metric function g(Z, T) as an integral
of the Green's function R multiplied by a deri-
vative of ( over a region [D„DJ of the initial
slice. Because of the finiteness of the data,
singularities in the solution can arise only where
the Green's function has a. singularity, or per-
haps for T in the far future when the integration
interval is infinite.

The Green's function R a.s defined in Eq. (2.9)
contains the hypergeometric function

2
F( ,', —,'; 1; -q)-= —Z(-q) (4.1a)

E
i

(4 lb)

duced convergence will lead to eventual focusing of
the waves in the future.

D4 —Z, - 20T0,

D3 20T0

and for T -0,
D, —Z, -20T,
Z —D4 —20T .

(4 5)

(4.6)

To find the metric function g(Z, T) we use the
integral over the Green's function times g(T, )
given in Eq. (2.7). Recall from Sec. II that g(T )
is finite and piecewise constant on the matched
initial data slice. We thus suffer no loss of gen-
erality in assuming g= constant at T, in the rest
of this section. To keep track of dimensional
quantities we will however carry it along as an
explicit constant ((T,). Putting all these fa.cts
together we have

e(z, r) — ' J Rde
edges

make (D, —D,)' 160T,T ~ 0. Thus, as T —~ and
as T -0, there is a neighborhood around each of
the points D, and D4 in which q- 10. This situation
is diagrammed in Fig. 2. Using Eqs. (4.4) and
(2.8), we find the size of these edge regions, for

QQ

where K(m) is the complete elliptic integral of
parameter m, in the notation of Ref. 18. The only
singularity' of K(m) is at m = 1.

The parameter q as defined in (2.10) is zero
at the end points of the integration region and
positive inside. The maximum value of q occurs
at Z = ,'(D, + D, ) —and takes the limiting forms

= T
(4.2a)

0

T
q 4T

(4.2b)

The maximum value of q on the initial slice thus
gets very large as the field point (Z, T) moves
towards the far future T»T0 and towards the big-
bang singularity at T =0. For large q, the elliptic
integral (4.1) is dominated by a logarithmic term:

q "'lnq. (4.3)

This limiting form for the Green s function is
valid when q is larger than, say, 10. From
(2.10) we have q = 10 at the points

Z, = 2 (D +De+ [(De —De) —160Tc Tj' '} (4.4)

on the initial slice. Note that q & 10 only for values
of T sufficiently larger or smaller than T, to

+-e(, ') J Rez.
center

First consider the integral over the edge
r egions, which gives

4(T,)T,"' '1 q
edne Tt/ & (I )'/'

edges

(4.7)

Note that the elliptic integral K is positive and
bounded above in this region (0~ q ~ 10, say), as
is the function 1//v'1+q. As T —~, the size of
the integration region remains constant by (4.5)
and thus the edge contributions go to zero as
T ' '. For the case in which T —0, the size of
the integration region falls off like T by (4.6).
The edge contributions near the big bang thus
vanish as T' '. In both cases, the edge contri-
butions vanish and do not contribute a singular
piece to (I).

To derive the singular properties of these so-
lutions we need then only look at the contributions
to (I) from the central region where q is large.
We have

7 T t/2

~center 2 t/& J q I I ~ ( )
center

using (2.9) and (4.3). This gives
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T.4(T.) dZ
„.„,[(D.-~)(~-D,)l"'

ln + ln —ln—

(4.9a)

near the edges where q is small. %e will shortly
show that the errors this introduces do not af-
fect the asymptotic behavior of g.

Rewriting the integrals in dimensionless form
yields (if the limits are extended to D4 and D, )

D~ —D, ' dv
8, =8, = 21n

2T
' (1,), ,

p

(8, +8, +8,).T.4(T.)
2m

(4.9b)

We will estimate 8„8„and 8, by assuming that
the integration extends all the way to the limits
D3 and D4. 7hus for purpose s of estimation we
assume the large-q asymptotic form holds even Now

dv lnv

(1 2)1/ 2 l

T dv
T, , (1-v')'~' '

(4.10)

(4.11)

J dv 77
(Ref. 19, p. 54, Sec. 2.01, No. 17), (4,12)

J dv lnv m

2), ~, = ——in 2 (Ref. 19, p. 535, Sec. 4.24, No. 6). (4.13)

Notice that the integrand of Eq. (4.13) is negative
throughout the range of integration, so our esti-
mate based on integration over the entire range
[D„D,] slightly overestimates the absolute mag-
nitude of this term. However this integral mul-
tiplies quantities which are perfectly regular for
all T, so we can in any case ignore this term.

For T Tpy D4-D, -2T, and

geneous cosmologies.
As Szekeres has shown, the singularity in the

Green's function for T -0 again produces a
Biemann tensor - T '. Thus at T -0 physical
singularities arise in the tidal Riemann tensor.
But T =0 is just the big-bang singularity, and so
the waves in our solutions focus only at the cos-
mological singularity.

T, g(T, ) T
(4.14)

V. COLLISION OF GRAVITATIONAL SHOCKS:
ANALYTIC TREATMENT

T, g(T, ) T' ln
p

(4.15)

In this case the edge interval in v is proportional
to (T/T, )'~' and again the edge contribution to the
singular behavior can be ignored.

For both T/To» 1 and T/To«1 the solution
approaches a solution like an average of the
Kasner's specified in the data integration inter-
val.

For T» T„Eq. (4.14) shows that typical Rie-
mann tensor components fall off like T ' (since
they are constructed by two T derivatives of g;
cf. Refs. 3 and 6). Hence we have in the future
regular behavior similar to that found in homo-

In this situation one may trace through the sub-
stitutions that lead to (4.10) and (4.11), to find
the integration variable v- [(Z D, )/(D, -D-, )]'~'
or [(D, -Z)/(D, -D,)l'".

The edge zones via (4.5) then correspond to an
interval in v proportional. to (T,/T)'~', so we make
vanishingly small errors estimating the singular
part of g in the far future (cf. Ref. 6).

If T «T„D4- D, -2T, and

Substantial insight into the behavior of colliding
gravitational waves in an expanding universe can
be obtained by an analytical approximation in
which the waves are generated by step-discon-
tinuous data, which represent 6-function Riemann-
tensor waves colliding at the instant T Tp.
Evolved forward, these data show the waves
moving apart; evolved backward, they show the
model prior to the wave collision. If we concen-
trate on an interval &T in T sufficiently small
that &T «Tp, we can simplify many of the for-
mulas of Secs. III and 1V, and give an explicit
analytic solution which shows the behavior of the
waves as they collide.

It must be emphasized that an assumption of
physically discontinuous metric derivatives,
leading to 6-function Riemann-tensor behavior,
is only a mathematical approximation. In real
physics we expect to see only very large, very
narrow Riemann-tensor pulses. Because it sim-
plifies the analysis, it is very useful here to admit
these Riemann-tensor 6 functions, which means
we are dealing with a piecewise C' metric. A
slight amount of smoothing on our data (which
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in fact we do for our numerical work in Sec. VI)
returns us to a C solution. We will show that
in our case the piecewise C situation in this sec-
tion is legitimately a limiting case of a C situation
with sharp Biemann-tensor pulses.

We consider it imperative that a putative result
obtained in a piecewise C' situation be stable to
slight smoothing to become C', as ours is. We
have found no indication that any property of

plane-symmetric cosmologies (or plane-wave
spacetimes) is not stable in this sense; one should
be very suspicious of any such alleged property.

First consider the expression we obtain if the
Green's function (2.9) is expanded out to first
order jn its argument, O(&T). Using the expan-
sion of the Green's function from Ref. 6, Eqs.
(6.7) and (6.8), we have

1 ~ P, (D, -z)(z-D, )
g(Z, T) =

(T T)'i'
' 1 —

16T 2
' d

0 D3 ~3 0
(5.1)

D4

g(ZT)= ' dz,
0

and for &T &0, and for initial data which are dis-
continuous at Z = 0 (dropping the tilde indicating
the field point),

&T/=2 A, Z( —AT(0
Tp

(5.2)

& T 4T —Z ~T+Z
A +B -AT &Z &~T

TQ 4T hT

&T(=2 B, Z»T&0
TQ (5.3

where the "approximate equality" signs denote
the fact that we are keeping only the largest terms
in the expression. Also

Because the integration interval D, -D, -O(d, T),
the term proportional to T, ' in the integrand which
arises from the Green's function is already second
order, and so will be dropped. 'The fact that
T ' ' appears multiplying the integral suggests
an expansion of T in &T; this term leads to only
lower-order contributions to g and to the Riemann
tensor, so we drop it also. Thus,

for x(0 and 6(x) =1 for x&0.
It is straightforward to compute

(B —A)6(Z+AT)6(AT —Z), bT&0
1

0

(5.6)

which as anticipated vanishes in the homogeneous
regions away from the causal influence of the
discontinuity in the initial data.

We also have

[2A6(-Z —&T) + 2B6(Z —4T)
1

Tp

+ (A+B)6(Z+ ~T)6(&T —Z)], &T = 0

(5 7)

which also takes its homogeneous value outside
the causal influence of the initial discontinuity.

We will also need

[5 (Z+ 4 T) —5(z —&T)], hT & 0 (5.8)
&-A

0

8 —A.
tzz= [~(Z+ &T) —&(Z-&T], &T & o (5 9)

0

and

A=
A

(5.4a)

(5.4b)

B-A
0 zr=& rz= [~(z+&T)+5(Z —&T)1,

0

which produce the interesting result

(5.10)

are the constants associated with model A and
model B, respectively. In more compact
notation,

(2A 8 Te(-Z —& T) + 2BATe(z —AT)
1

TQ

+[A (4T —Z)

(»+g»+2t)1»=4 5(Z+hT), AT = 0.&-A
0

(5.11)

For &T &0, we rewrite as

1 f2' Te( Z+ aT)+ 2B ~Te(Z+ ~T)
TQ

+ B(r T+z)]e(z+r T)e(r T-z)],
&T-0 (5.5)

i [A(&T + Z ) + B (hT —Z)1

x 6(z —&T)6(- AT —Z)], &T & 0. (5.12)

where 6 is the Heaviside step function: 6(x) =0 Then
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6(Z- AT}6(-AT Z), AT &0
A B

0

[2Ae( Z+-AT)+2ae(Z+ AT)
1

TQ

(s.is)
N+

0

T To

whence

B-A
zz+ tj rr+ 2t/

~ rz = 4 5(Z+ AT) AT &0
TQ

(5.18)

As checks on our formulation, we note that
g r has the same sign for AT= &&0-as for AT
= &)0, while the spatial derivative changes sign,
as expected because the quantity P passes through
zero at T =TO (i.e. , AT=0). Furthermore, the
quantity

44(s) 2 ((j, zz+ |j,TT+ 2~, Tz} (5.19)

is identical for ~T =+ c. This latter quantity is
the most singular part (near AT = 0) of the Weyl-
tensor component'.

C, =C.,„,N M'¹M',
where N' is a null vector, which has values

(s.2o)

+ (&+&)6(z —AT)6( AT -—Z)], AT & 0

(s.14)

[6(Z —AT) 6(Z+ AT)], AT & 0
A —B

0

(5.15)

[6(z —AT} —6(z+ AT)], AT & 0 (5.16)
A-B

0

B —A
0 rz=tj zr= [6(Z- AT)+6(z+AT)],

0

(5.17)

FIG. 3. C~ is a source of the shear in the null con-
gruence N~ tcf. Eq. (5.32)f which is tangent to the di-
rection of propagation of the pulse in +0. Thus we ex-
pect the shear associated with N" to be continuous on
a line T = constant except at the location of the g4 wave-
front. The step in 0 thus propagates leftward with +4.
This is shown in Figs. 5 below, where the step is seen
smoothed in the C data evolved numerically.

If we considered the object qo=C, „sf M I"M,
we would have computed the strength of the other,
"rightward"-traveling shock. Entir ely symme-
trical formulas would result We would, of course,
find that W" lay tangent to this rightward-traveling
shock, as shown in Fig. 3.

We are here principally interested in the inter-
action of the shocks as they collide. We wonder,
for instance, what the focusing effect of one on
the other will do to the convergence or the shear
associated with N", say. (For our simple models
the rotation vanishes identically. ) We calculate
some of the properties of the congruence X"
defined by Eq. (5.21) at AT = 0, and by the demand
that it be an affinely parametrized null tangent
for TSTQ.

First of all, notice that our metric form (2.1)
guarantees N =H for a null vector. The geodesic
equation is simply

N 8 =8 +8 (s.2i)

at 4T =0, and M" is a unit complex spaeelike
vector; in our ease

(5.22)

~g =er —ez ~ (5.23)

( e4/2
M"=2'~ ~e+~ s +j 8.+'

T

and M" is the complex conjugate of M". If N" is
extended by requiring it be tangent to the null ray
Z —T = const, affinely parametrized, then M"
is parall. el propagated along the null geodesic.

4', defined above, via Eqs. (5.10), (5.18}, and
(5.19), is large on the line Z= —AT; it is the
gravitational strength of the shock traveling along
rays with tangent I" which at the time T = 0 can
be taken as

(5.24a)

i.e.,
( 8 9

o= i, , +, (e" "N').
&sf

(5.24b)

'The expansion' of the geodesic congruence N"
is very simple:

2T (s.2s)

We note at this point that unless the spacetime is
very pathological, 8 cannot go to zero (a require-
ment for the appearance of a singularity) unless T —~.
Now N =dT/dX along the ray, where X is an affine
parameter. Hence the spaeetime must have a
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finite T point which is the limit for all geodesics
of this form, in order for convergence to occur.

Our Green's-function analysis showed that in
the far future g -lnT, Further, both y and tt

vanish on the surface T = T,. From Eq. (2.3a) we
have

Hence

N =e~ =t (5.26)

where iwl& ~. Thus N can vanish only at t= ,
and reconvergence cannot occur.

We use Penrose's' definition of the shear:

e =N„.„M"M"

gruence parallel to the shock, both ahead and
behind the shock, with tangent normalized to

¹ 9„=~~+ 8~ on &T = O.

We see, via Eqs. (5.33)-(5.35) that in a small
region near Z= &T =0, the null ray which lies
just to the past of Z = &T (for &T & 0) has the same
value of shear as the null ray which lies just to
the future of Z= & T (f or &T &0); both these rays
suffer the same jump [given by (5.33) t on crossing
the other shock. But the ray which lies in the
future of Z=&T is in a homogeneous region; the
ray just to the past is in an inhomogeneous region
of the spacetime. The properties of the rays
parallel to the plane-wave front are continuous
across the wave front.

(5.27) VI. COLLISION OF GRAVITATIONAL SHOCKS:
NUMERICAL EVOLUTION

Now the important point of consistency between
the optical scalar o and the Weyl tensor %4 is the
equation

N" O „=-2O8+%4,

i.e., near &T=0

e„c=o' ++0' ~ =4

where

8 =Bp+Bz

(5.28)

(5.29)

(5.so)

introduces a null coordinate u and where we keep
only the most singular terms on the right side.
But then, near &T =0, from (5.27)

(5.31)

s„o'= 2 6(2u);
B-A

0
(5.s2)

the expected jump in o for N" (the rightward-
traveling tangent) due to the collision is thus

B-A
after before

0
(5.33)

We may verify that Eq. (5.27) evaluated using the
expressions (5.6), (5.7) and (5.13), (5.14) is

A 1 1 p, -p~
before T 2T 2T 1 P0 0 0 P3

and so we have a consistent scheme.
Rewriting Eq. (5.29), using the 4, we found near

&T = 0 [i.e., Eqs. (5.18) and (5,19)] we have

We now consider the numerica. l evolution of an
initial (T = T,) slice that describes two Kasner
models A and B matched together at a join sur-
face. 'The future evolution of this data set shows'
gravitational shocks 4'0 and 44 traveling to the
right (+Z direction) and left (-Z direction), re-
spectively, out of the join surface. Since we are
interested in the collision of 40 and 44, we first
run the code backwards in time until the shocks
are separated. Using this earlier time slice as
our new "initial" data slice, we then evolve for-
ward in time, through the collision at T = T„and
on until the shocks are separated in the future.
The situation is shown in Figs. 4(a)-4(c) ~ We then
compare our computations in the region &T «Tp
around the T = Tp slice with the analytic estimates
derived in See. V.

Note that to evolve a slice backwards in time,
we set the time interval dT - -dT inthe code. This
procedure will not be valid whenever we expect
irreversible physical processes to be present.
We checked that no errors were introduced by this
technique by verifying the behavior of the metric
as the evolution passed through T = T,. There,
the three-metric should be flat and we find that

y,-& ——~,, + 10 '. We also remark that the code uses
periodic boundary conditions; we thus have two

join surfaces, with models. matched to B, and
then B matched to A to achieve periodicity. The
figures show only the left-hand side of this evol-
ution for clarity.

Our numerical work uses a metric of the form

ds' = —dt'+ y dx'+ y dy'+ y dz' (6.1)
B 1 1 p

Tp 2T0 2Tp 1 p3
(5.35)

which obviously satisfy (5.33). In evaluating the
shear as in (5.31) and (5.32) we assumed a con-

where the y;~ are functions of z and t only. Since
y;&

——
&;& on the initial slice, and since the analytical

field variables g and y both vanish at T = To, the
coordinates (z, t) are the same as (Z, T) in a suf-
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800
- (o)

600-

400-

I I I I I I I I I I I I I I I I I I I I ficiently small region &T«T, around that slice.
Thus, we can readily compare analytical and
numerical results in that region.

To calculate 4~ in the code we use the expres-
sion 44= C ~„,n m~n"m . These null vectors are

n' =A(1, 0, 0, (y„) '~'), (6.2a)
200-

g (0, (y*')"', -f(y")"',o). (6.2b)

-200-
The rightward-traveling vector n' is geodesic,
with the amplitude A satisfying the geodesic equa-
tion

g I & I I I & I I I I I I I I I I I I I I I I I

0 20 40 60 80 IOO l20
I

400 I I I I I I I I I I

(b)

0

-200-

The leftward-traveling shock 44 is a source of
the expansion and shear of this rightward-traveling
null congruence n". We are free to give the ampli-
tude of A. at one point on each ray. We set A =1
on the slice T = To, consistent with the analytic
treatment in the previous section. To compute
4„we use an entirely analogous procedure; Co
=C 8»l m l" m', where now /" is a leftward-
traveling geodesic congruence.

We are now ready to compare analytical and
numerical results. Our input to the code is

-400- +o
I I I I I I I I I I I I I I I l I I I I I I I

0 20 40 60 80 100 l20

400 / l I I I 1 /, , I I I I I & I I I I I I / I I

- (c)

and

t „=0.900,

p, „=0.100,

= 0.180.

(6.5a)

(6.5b)

(6.6a)

200- As discussed in Ref. 6, the constraint equations
then give

0
p, ~ = 0.820. (6.6b)

-200-

Thus, both models are expanding in the z direc-
tion; model B is younger than modelA, however,
and thus is expanding more rapidly. Equations
(2.5) give

I I I I I I I I & I I I I I I I I I l I I I I I

0 20 40 60 80 IOO I20
I

p, „=0.991,

P, ~
= -0.091,

and

(e.va)

(6.7b)

FIG. 4. (a) The shocks +p and g4 are traveling towards
each other and will collide in the future at T =I' p. This
figure shows the situation gt =3 x10 to the past of
the "initial slice" T p The code was evolved backwards
to this earlier slice to separate the shocks, and then
run forward to follow the collision at T&. Arrows show
the direction the shocks are traveling and the horizontal
axis labels zone number I. (b) The shocks +p and +4
collide at T =Tp. (c) The shocks +p and +4 have
collided and are now moving apart. This figure shows
the situation at &t =2 x10 to the future of T p.

p,~ = 0.484,

p,~ = -0.304.

(6.8a)

(6.8b)

A = 1.101,
I3= 2.689.

(6.9a)

(6.9b)

Refer now to Fig. 4(b). Equations (5.18) and

The quantities A and B in Eqs. (5.4) are then
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400-

I I I I I & I I II I I I I I I I I II I I

- 2.4

(5.19) sa, y that

(B -A)
44(g) —2 (6.10)

Thus, e a, th rea under the curve in Fig. 4(b)
~ 6should be 2(B —A)/T, . Since

200—
To ——1,

we get

(6.11)

- l.2

I
I I I I I i

0 20 40 660 80 l00 l2.0

— 2.0

200—

I I I I I I I I I I I400
(b)

= 3.176.S~e+ uude~ @4(~l l anal rllc =

usin the fact that the spatial mesh size
&z =10 ' and approximating 4 y
find

area under @alnnmarlcal

ith the analytical estimate.good agreement wit e
r. Asth behavior of the shear. sFocus now on e e

ec. V the shear of the N con-discussed 'n Sec. , e
nce suffers a jump as it crosses

re isnojumpin e s e
since the propro erties of the rays are c

nt. From Eqs.s that parallel wave front. Fromacross a
d for the shear before(5.34) and (5.35) we find, for e

crossing 44,
- l.2 -0.601,be fore

and for e sth hear after crossing 44,
- 2.189.after

(6.12R)

(6.12b)

400

I I i i I

0 20

(c)

I
I I I I IJI I I I I I )

40 60 80
I

I I I I I I I I I I I I

l00 I ZO

- 2.0

200—

I

I

I

I

I

I

I

I

I
I
I

I

- l.6

- l.2

I I I I I II I I I

0 20 40 60 80 IOO l20
I

c show that our numericalFigures 5(a)—5(c) show
d ood agreement wi'th theseevoluation has produce g

50ates. %'e consider a region
ste s to the past and future of,. i

this produces an-ste size is &t=2&& 1 is
entered on Tin eterval of duration-

the situation before collision,~ ~

d 4 are still separated; Fig.
s the ollision at T„and Fig. c sshows e

when the shocks are oncesituation in the future, when e
se arated. In all three cases, we see a

the jump in the shear occurs a e

close to the analytic estimates 6.
e take this as justification tha our p

C' analysis of Sec. V is an accu
har Biemann- tensorthe behavior of large, sh p

pulses in these cosmologies.

r of the congruence 1V tangtan ent()
'

m onl at the position o +4.+4 f aj mpong
graph showss the situation at gt =1&&10 o

The dashed ~e sd l' hows 0 which isthe collision at Pp.
the solid line showsed on the right-hand scale; t e so imeasure on

1 ft-hand scale. (b) Thiswhich is measusured on the le t- an4

gl aaph shows the situa '

ituation at &t =—1 10 2 to( ) This raph shows the situa
the future of the collision a

VII. SUMMARY

in ularity behavior and%e have discussed the singu
of ex anding vacuum plane-causal structure o
olo ies containing co i insymmetric cosmologies

sin ularity in our so u il tions
'n the as ant and can be identified with t eoccurs i p

big-bang singularity. PenPenrose s
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eluding global Cauchy hyper surfaces in "plane-
wave spacetimes" (which contain nonexpanding
wave fronts traveling along a single null direction)
does not hold for our expanding cosmologies.

Analytical estimates based on a Green's-function
analysis near the shock collision provide an ex-
plicit example which is verified by numerical
com putation.

The expansion of the wave fronts in plane-sym-
metric cosmologies is always positive Icf. Eq.
(5.25)]. This provides a direct proof that the
supposed "nonsingular vacuum solution" of
Stoyanov" is in fact no solution at all. It has rays
lying in initial wave fronts ("colliding waves")
with vanishing initial e'xpansion. After the col-
lision, Stoyanov's solution may be verified to be
an expanding Kasner solution. Hence, no matter
how the individual rays are connected up, the
invariantly defined congruence traveling toward
increasing Z (say) has zero expansion before the
collision and Positive expansion afterward [cf.

Eq. (5.25)1. From the equation for optical sca-
lars, if there is any coordinate system in which
the null rays can be followed across the collision
front, they must have encountered negative
matter-energy there (since the solutions have
vanishing rotation everywhere).
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