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The concept of "internal time" is applied to a cosmological model having spatial hyper-
surfaces of negative curvature. It is then possible to ascribe an irreversible evolution to
the expanding universe without resorting to any "coarse graining" or "loss of informa-

tion. " The key observation which enables this description to be used is that geodesic flow

on a four-manifold can be reduced to geodesic flow on a three-manifold when the
Robertson-Walker metric is used. If the three-surface is compactified in such a way as
not to change the metric, and if it has negative curvature, the geodesic system is a Ber-
noulli flow —a dynamical system which has the highest degree of instability. We draw

various conclusions about mixing in the system pertinent to the microwave background,
the observational consequences of negative curvature for objects moving with respect to
the galaxies, and we show that the requirement of negative curvature always leads to a
particle horizon, a conclusion which has some bearing on the physical spectrum of the
internal time operator and on the possibility of removing the cosmological singularity to
the infinite past.

I. INTRODUCTION

Classical mechanics starts by idealizing dynami-
cal evolution as being a deterministic and (time) re-
versible motion of phase points along the phase-
space trajectories. Implicit in this idealization is
the supposition that initial conditions (phase
points) can be determined with infinite precision.
This idealization is unobjectionable provided one
considers systems (such as periodic planetary mo-
tion) for which the phase-space trajectories depend
on the initial conditions in a continuous manner.
Recent interest has shifted, however, to the study
of more complex systems exhibiting instabilities of
phase-space trajectories. It has become increasing-

ly evident that, for such systems, the very concept
of deterministic motion along phase-space trajec-
tories is an unphysical idealization and a proba-
bilistic description of the system is more appropri-
ate.

Our recent work' has given a precise formula-
tion of this idea. It has been shown that for a

class of dynamical systems, the so-called K-flows,
the dynamical motion is indeed "equivalent" (simi-
lar), in a well-defined sense, to the stochastic evolu-
tion of Markov processes. This "similarity" also
permits the construction of an H function or
Lyapounov variable associated with the dynamical
motion of E-flows. These results demonstrate the
intrinsically stochastic and irreversible character of
dynamical systems that satisfy the E-flow condi-
tion.

Another interesting feature of such systems,
which is closely related to the above-mentioned
property of intrinsic randomness and irreversibility,
is the existence of an internal time operator. Brief-
ly, this is an operator acting on the distribution
functions of the phase space and which is canoni-
cally conjugate to the generator of motion (Liouvil-
lian). Its existence permits one to attribute internal
time (or age) to distribution functions in such a
manner that advance in internal age corresponds to
decrease in an 8 function of the system (increase
of entropy). The internal time operator may thus
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serve as a microscopic model of thermodynamic
time. (For a discussion of thermodynamic time see
Ref. 7.)

The main purpose of this paper is to point out
that in certain cosmological models all of the
above-mentioned features (trajectory instability,
equivalence with the Markov process, the existence
of a Lyapounov variable, and an internal time
operator) are exhibited by the simplest and most
fundamental of dynamical motions: the free geo-
desic motion of test particles. This work illustrates
a possibility of how stochasticity and irreversibility
could be linked with cosmology.

These considerations are also found to be of in-

terest in connection with the conceptual issues

raised by the singularity prediction of Einstein's

theory. As is well known, under very general as-

sumptions, Einstein's theory of general relativity
predicts the occurrence of a singularity in the
spacetime structure which may be regarded in
some sense as the "beginning" of the universe.
What is disconcerting about this conclusion is that
this cosmological singularity ("big bang") is

predicted to have occurred at a finite proper time
in the past. The singularity prediction of general
relativity thus confronts us with the unpleasant
possibility of a complete breakdown of all physical
concepts and laws at a finite proper time in the

past. Naturally, various attempts have been made
to avoid this unpleasant implication of Einstein's

theory. Most attempts involve modifications of
Einstein's classical theory of gravitation, such as
the inclusion of quantum gravity effects. Howev-

er, the outcome of such modifications on the
singularity problem have so far remained incon-
clusive.

Another possible approach to avoid the un-

pleasant implications of the singularity is to try to
remove it to the infinitely distant past. This would

be achieved if one could demonstrate the existence
of a time scale that has iuell defined physic-al signi

ficance and is such that, in this scale, the time in-

terval that has elapsed since the cosmological
singularity is infinite.

Let us mention in this connection that in a
cosmological context the physical significance of
the concept of proper time is far from straightfor-
ward. The point is, as expressed by Misner,
Thorne, and Wheeler, "proper time near the
singularity is not a direct counting of simple and
actual physical phenomena but an elaborate
mathematical extrapolation. . . . Since no single
clock (because of its finite size and strength) is

conceivable all the way back to the singularity, a

statement about the proper time since the singular-
ity involves the concept of an infinite sequence of
successively smaller and sturdier clocks with their
ticks then discounted and added. 'Finite proper
time, ' then, need not imply that any finite sequence
of events was possible. It may describe a necessari-
ly infinite number of events ('ticks') in any physi-
cally conceivable history, converted by mathemat-
ics into a finite sum by the action of a nonlocal
convergence factor, the 'discount' applied to con-
vert 'ticks' into 'proper time. ' "

In a cosmological context the proper time loses
its preeminent position as the physically significant
time variable. It seems more appropriate to intro-
duce a time concept which, unlike the proper time,
does not involve the time measured by an external
clock carried by the observer or particle, but is re-
lated to the intrinsic properties of the motion of
the particle itself. In other words, the new time
concept we seek should refer in some suitable sense
to the "internal time" associated with the particle's
motion.

As mentioned before, the possibility of defining
such a concept of internal time exists for dynami-
cal systems satisfying the K-Aow condition. In
this paper we point out that the geodesic motion of
test particles in a universe having compact three-
surfaces of constant negative spatial curvature can
be regarded as K-flows. As a consequence, one can
associate an internal time operator with the free
motion of test particles in such a universe. The
time variable A, (t) associated with this internal time
is found to be a nonlinear function of the cosmo-

logical time parameter t.
The existence of a new time scale associated

with internal time naturally raises the question of
whether the cosmological singularity could be re-
moved to the infinitely remote past in the new
scale. A simple general argument shows that this
can be done only if the pressure of the cosmologi-
cal fluid is allowed to take negative values. Since
pressure is usually considered to be a positive
quantity this seems to lead to the negative conclu-
sion that the singularity cannot be removed to the
infinitely remote past by the introduction of the
internal time scale. Nevertheless, it should be
stressed that the concept of pressure near the
singularity is far from being unambiguous and the
meaning and possibility of "negative pressure"
needs to be examined further. We hope to come
back to this question soon in connection with a
reexamination of the meaning of the second law in
general relativity.
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II. INTERNAL TIME OPERATOR

We begin with a brief review of the properties of
the internal time operator associated with suitably
unstable dynamical evolutions.

Let us consider an abstract dynamical system

(Qg,pg, ). Here Q denotes the phase space of the
system which is equipped with o-algebra B of
(measurable) sets, S, is the one-parameter evolution

group mapping 0 onto itself, and p a measure in-

variant under S,: p(S,A)=p(h). We shall further

suppose that the measure p is finite and is normal-

ized for convenience by p(Q)=1. Finite classical-
mechanical systems give rise to such a structure
when fL is taken to be a constant energy surface of
the system, the group S, describing dynamical mo-

tions of phase points and p being the Liouville
measure on Q. But other systems such as geodesic
flows on compact Riemannian manifolds can also
be viewed as abstract dynamical systems.

The evolution group S, on 0 induces a unitary

group U, on L„(Q) which describes the evolution

of distribution functions by the relation

U,p(ro) =p(S,co) . (2.1)

Now, let H denote the one-dimensional sub-

space of constant functions on Q, P the projec-
tions onto H, and H the subspace that is
orthogonal to H . By an internal time operator
T of the abstract dynamical system we mean a
self-adjoint operator T and H „having the fol-
lowing properties:

(a) U,'TU, =T+tI .

(b) Let IE~ I denote the spectral projections of
T: T = f A.dEq. Then the projection

P~ ——E~+P „ofLz preserves the positivity of
functions: i.e., p & 0 a.e. implies P~p )0 a.e.

Existence of an internal time operator in the
above sense places important restrictions on the
dynamical system. Specifically, a dynamical sys-
tem admits an internal time operator if and only if
it is a SC-flow. '-'

For a precise definition of I(-flow, see, for exam-

ple, Ref. 6. Let us only mention that E-flows have
the characteristic property that the knowledge
about the past history of the system obtained from
an infinite repetition of any measurement of finite
precision (corresponding to a partition of the phase
space into a finite number of disjoint cells) is insuf-
ficient to predict the future outcome of the same
measurement. The mathematical expression of this
fact is that E-flows have strictly positive Kolmo-

gorov entropy. The observed evolution of a E
flow is thus nondeterministic in character, the phy-
sical origin of which stems from the high degree of
trajectory instability.

Many systems of physical interest, e.g., a system
of hard spheres in a box, and more importantly for
our present purpose the geodesic flow on a corn-
pact manifold of negative curvature, are known to
be K-flows. ' '"

If the system admits an internal time operator T
one can interpret the quantity ( T)z given by

(T) = f„p(~p)dp=(p, ~p) (2.2)

(with p=p —1 being the departure from micro-
canonical equilibrium ensemble p,q= 1), as the
average internal time or "age" of the (Gibbsian) en-

semble p. Property (a) of T then expresses the
desirable consistency requirement that in the
course of dynamical evolution the system's average

age advances in step with the increase in the time
parameter t labeling the dynamical evolution: i.e.,
if p, = U,po then (T)& ——(T)& +t.

We shall not discuss here in detail the signifi-
cance of property (b) of T. The interested reader

may see the references cited in the beginning of
this section. Let us, however, mention that if an

internal time operator T satisfying both (a) and (b)

exists then one can construct an inuertible transfor-
mation A, mapping states (i.e., non-negative distri-

butions p with fgd p = 1) to states and such that

AU, A '= 8", (t )0) is the semigroup induced

from a probabilistic Markov process on Q. A is

constructed as a suitable operator function of T:
A=h (T)+P „.The existence of an internal time

operator with the stated properties implies that the

given system is intrinsically random in the sense

that for such systems the dynamical evolution can
be transformed into the stochastic evolution of a
Markov process by a change of representation

p, ~Ap, which (owing to the invertibility of A)

does not involve any loss of information.

Moreover, the condition (b) also implies that the
"Projected evolution" Po U, Po (Po =Eo + P )

(for t & 0) is itself the semigroup of a stochastic
Markov process and that the functional

Q(p~) = f„Pop~in(Pop~)dp, where pt =—U~po and

P „p=1 is an H function for the system, i.e.,
Q(p, ) decreases monotonically to the equilibrium
value Q(1)=0 as t~+ oo and increases to the
fine-grained value polnpodp as t~ —oo. To0
summarize, the possibility of attributing (average)
internal time or age to ensembles is associated, on
the one hand, with a strong form of instability of
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phase-space trajectories (E-flow condition), while
on the other, it is associated with a representation
of the evolution by a Markov process. It should
also be emphasized that although the (average)
internal time or age keeps step with the dynamical
time parameter t, the internal time is a property of
the ensemble or state of the system and it is not
identical with the time measured by an external
clock. In fact, we shall see in the next sections
that in certain cosmological models one can define
an internal time scale for freely moving test parti-
cles which differs from that of the external "cosm-
ic time" of the model.

Finally, let us briefly recall the concept of geo-
desic flow. Let M be a Riemannian manifold
which is geodesically complete. By a line element
on M is meant some point of M together with a
specified direction or, equivalently, a geodesic pass-
ing through the point. Geodesic flow on M is an
abstract dynamical system for which the phase
space 0 is the set of all line elements of M. The
geodesic flow S, is a mapping which carries each
line element along the corresponding geodesic at a
given constant speed, and the invariant measure dp
under this motion is dp=dVd0, where dVis the
volume element of the Riemannian space M and
d0 the "angle differential" corresponding to the
directions of the geodesics. As mentioned before,
geodesic flows on compact Riemannian manifolds
of constant negative curvature are known to be K-
flows. For later purposes, the important point is
to note that the "time parameter" labeling motion
of geodesic flows are the affine parameters X of
geodesics, and the time scale determined by aver-

age internal age of distributions is the scale defined

by A, .

III. REDUCTION OF GEODESIC
MOTION IN SPACETIME TO GEODESIC

FLOW IN THREE-SPACE

The particular cosmological model we have in

mind is a Friedmann universe with negative spatial
curvature whose three-dimensional hypersurfaces
of simultaneity are homogeneous and are compac-
tified in an appropriate manner. Generally, cosmo-

logical models with negative spatial curvature are
regarded as "open" or noncompact. However, in

the case of negative- (or zero) curvature three-

space, the local metric structure does not uniquely

determine the global topology, and it is possible to
compactify the three-dimensional hypersurfaces
without changing the metric structure. ' '

We need not discuss here the method of compac-

tification in detail. Let us only mention that it in-
volves identication of points that are carried into
each other by a suitably chosen discrete subgroup
I of the group 6 of all transitive motions that
preserve the local metric structure of the hypersur-
face. In the case of an open three-dimensional
manifold of negative curvature the group 6 of mo-
tions is isomorphic to the Lorentz group:
PSL(2,C) =SL(2,Q/[+1]. The covering space 0
of the compactified phase space 0 is isomorphic to
PSL (2,Q / U(1) so that all rotations about the
tangent vector to a geodesic are to be identified.
We do this because the phase space is the set of
unit tangent vectors (line elements) and not the set
of all three-frames on the three-manifold. ' Com-
patification of three-space would thus involve, in
this case, identification of points modulo a suitable
discrete subgroup I of the Lorentz group. Such
subgroups are analogous to Fuchsian subgroups
arising in the theory of two-dimensional surfaces
of negative curvature. ' The phase space 0 of our
dynamical system is then isomorphic to I ~
PSL(2,C)/U(1).

Compatification of a negative curvature three-
space results in a multiply connected three-
geometry. Moreover, the resulting spacetime can
no longer be globally isotropic, although local iso-
tropy is preserved. For these reasons the particular
cosmological model studied in this paper is termed
a "nonstandard cosmology. " It is interesting to
note that the existence of a time operator for the
cosmological model forces the model to be non-
standard in the above sense. Both negative spatial
curvature and compactification of three-
dimensional hypersurfaces are required to ensure
the E-flow property, which in turn is essential for
the existence of a time operator.

We now proceed to show how the geodesic mo-
tion of test particles in four-dimensional spacetime
reduces to geodesic flow on a fixed spacelike hy-
persurface of simultaneity. An important conse-
quence of this projection from four-dimensional
spacetime to a three-dimensional hypersurface is
that the affine parameter A, for geodesic flow on
three-space becomes a nonlinear function of the af-
fine parameter of spacetime geodesics as well as of
the cosmic time.

If we use comoving coordinates (x =t~'~ ~ )

in a homogeneous and isotropic spacetime then the
four-metric is the well-known Robertson-Walker
metric gp~.

goo
———1, g; =R (t)y;2

y;, = (1+—,k [(x')'+(x')'+(x')'] j '5;, .
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Here, as elsewhere in this paper, Latin indices i,j,
etc. take the values 1,2,3 only.

The comoving coordinates are defined such that
the spatial coordinates x' of cosmological fluid ele-
ments (the typical galaxies) do not change in the
course of time. The proper distances between the
galaxies change, ho~ever, due to the presence of a
time-dependent scale factor R (t) in the metric.
The time coordinate x = t represents the cosmic
time. It is the proper time measured by clocks
moving with the cosmological fiuid elements (i.e.,
galaxies). The constant k appearing in the metric
determines the geometry of three-dimensional hy-
persurfaces. It takes the value + 1, —1, or 0
depending on whether the spatial curvature is posi-
tive, negative, or zero, respectively.

Let us now consider freely moving test particles
in a Roberston-Walker universe. The coordinates
x"(o } (as functions of the affine parameter cr of
spacetime geodesics) satisfy the geodesic equation

d x p dx dx

do do do

together with the condition

dx" dx'g&„——0 (massless particle)

(3.2)

= —1 (massive particle) . (3.3)

Here I ",~ denotes the affine connection.
We now verify that the three spatial coordinates

x'(o) of freely moving test particles follow geo-
desic motion (with respect to a new affine parame-
ter A, ) in the fixed three-dimensional hypersurface
having the metric y,j. To this end, it will be useful
to rewrite the geodesic equation in terms of the
cosmic time variable t. Now,

Here and else~here I 'Jk denotes the affine connec-
tion of the three-space metric y,j., and a dot
represents the derivative with respect to t. Upon a
change of variable t~k(t) Eq. (3.6) becomes

+I'k

R . . k dx'
+ A, +—(2—gkxjx )A, =0. (3.7)

dA,

Equation (3.6) is thus equivalent to the geodesic
equation in three-space provided k(t) is chosen to
be a solution of the equation

A, +—(2 —g&kx x")A,=O . (3.8)

To determine the form of A(t) let us solve (3.8).
For massless test particles gjkx x =c =1 (in the
units adopted here) and Eq. (3.8) reduces to the
equation

R dk
dt'

(3.9)

and

dA,

dt R(t)

(3.10}

A,(t) —k(t&)=& J,

[It is understood here, of course, that R (t) is a
known function of t determined by Einstein's equa-
tions in conjunction with some assumed equatiori
of state an equation for conservation of energy. ]
From (3.9) it follows that

dt

d
do

dt

do
dx
do

with 3 a constant. Similarly, for massive test par-
ticles,

dt

do

—2

d x
do

' —3
dt dt dx'

do do do (3.4)

Substituting for d2x'/do and d t/do. —:d2xo/do.
from the geodesic equation (3.2) we find

dx~ u dx"
dt dt dt

gjkx xk=u (t),
where u(t) is the speed of the particle in the
comoving frame at time t. On the other hand, it is
known (cf., Ref. 16) that for freely moving parti-
cles in an expanding universe

R (t)u(t)
=constant, say A .

[1—u (t)]

Thus the equation (3.8) reduces to

Rx+I kxx + 2———g. x~x x =0.J R R J (3.6)

Using the values of I " for the Roberston-Walker
metric we finally obtain

d~j R R (t) dA,+—1+dt' R R'(t)+a'

As before it can be integrated to yield

(3.11}
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or

dA,

R (t)[a'+R'(t)]'~'

A,(t) —A,(t, ) = Ads
'0 R (s)[u +R (s)]'~

(3.12)

Let us note now that in a nonstatic universe

(R+0) the affine parameter A(t) ,of the spatial geo-
desics traced by the spatial coordinates of freely
moving test particles (that are not at rest with

respect to the cosmological fluid) are essentially
different from the cosmic time parameter t; i.e.,
A,(t) is necessarily a nonlinear function of t. The
speed U (t) varies as a function of t; however, as a
function of the affine parameter A, it is constant,
i.e.,

dx dx
y „=constant .

affine parameter A. of spatial geodesics we have
dLO/dk, =cLO, with c being a positive constant.
Thus,

dL
dt

(4.1)

Substituting the value of A, found in the previous
section we obtain the divergence rates

4

R cL = L+—L(nu—ll geodesics),
R R

(4.2)

R cLL=—L+ (timelike geodesics) .
R [tr2+R 2]1/2

In the case that the three-space is compact, the
average c of c over the three-space is essentially
equal to the E-entropy of the geodesic flow. '

Thus c can be estimated in terms of the volume V
of the three-space [at the moment when R (t) = 1]
and the speed of the geodesic flow. Explicitly,

IV. TIME OPERATOR AND GEODESIC
INSTABILITY IN A NONSTANDARD

COSMOLOGY

c=V '
log2e (null geodesics),

c-a V '
log2e (timelike geodesics) .

(4.3)

In the preceding section we have seen that the
projection of geodesic motion in spacetime to a
fixed three-dimensional hypersurface of sirnultanei-

ty gives rise to geodesic flows in three-space. This
result holds in all cosmological models with
Robertson-Walker metrics, independent of the sign
of the spatial curvature. But it is only in the case
of negative spatial curvature that this possibility of
reducing geodesic motion in spacetime to geodesic
flow in three-space has interesting implications.
The present section is devoted to discussing them.

As is well known, an important feature of the
geometry of manifolds with constant negative cur-
vature is the instability of their geodesics: the dis-
tance between neighboring geodesics increases ex-
ponentially, at least in one direction. ' Thus, in a
universe with negative spatial curvature, this ex-
ponential instability, in principle, will show up in
the divergence rate of spacetime geodesics that are
not stationary with respect to the cosmological
fluid elements. Let L (t) =[gjhx'(t)bx2(t)]' be
the spatial distance between two neighboring space-
time geodesics of test particles that are not station-
ary relative to the cosmological fluid. The distance
Lo(t) between the projected geodesics in the fixed
three-dimensional hypersurface is then given by
Lo(t) = [y&bx'(t)ducj(t)]'~ =L (t)/R (t). As Lo in-
creases exponentially with respect to change in the

The first term (Hubble term) on the right of each
equation (4.2) is due to the expansion of the
universe, and it obviously is present, irrespective of
the sign of the spatial curvature, for motion which
is either fixed or stationary with respect to the
galaxies. The second term, on the other hand, is a
specific feature of negative spatial curvature. Its
origin is the geodesic instability that is characteris-
tic of negative curvature. Observational evidence
with regard to the presence or the absence of such
an additional term in the divergence of the neigh-
boring geodesic motion of test particles that are not
stationary with respect to the galaxies would thus
help determine the sign of the spatial curvature of
the universe.

If the cosmology is nonstandard in the sense
that the three-dimensional hypersurfaces, in addi-
tion to being manifolds of constant negative curva-
ture, are also compact, then further interesting
conclusions follow. In this case the three-
dimensional geodesic flow is known to be ergodic,
mixing, and in fact, K-flow. ' '

In such a universe arbitrary initial beams of test
particles distributed in space and direction (or
more precisely, beams corresponding to square-
integrable distribution functions on the space of
line elements of three-space) will tend toward the
uniform (microcanonical) distribution as time
progresses. There is thus a natural mechanism



25 GEODESIC INSTABILITY AND INTERNAL TIME IN. . . 927

leading to homogeneity and (local) isotropy in such
a universe. In particular, photons from different
regions of the early universe would form the iso-
tropic background radiation after a sufficient lapse
of time.

Distributions of massive test particles, on the
other hand, would behave somewhat differently.
Though the "mixing mechanism" is present in this
case also, an initial distribution of massive particles
may not be able to reach the uniform distribution.
This difference in behavior between photons and
massive test particles comes from the fact that the
parameter A(t) f.or massive test particles, in con-
trast to that of photons, stays bounded even as
t~ co. The physically admissible values of A,(t)
cannot be made arbitrarily large. The mixing pro-
perty of three-dimensional geodesic flow would
lead to a uniform distribution in general only in
the asymptotic limit A,~ oo.

Let us now turn to the internal time operator T
associated with the geodesic motion of test parti-
cles in the nonstandard cosmological model under
consideration. We shall not discuss here its expli-
cit construction. (The interested reader may see
forthcoming publications. '

) But its existence is, of
course, assured by the previously noted fact that in
the nonstandard cosmology the spacetime geodesic
motion of test particles, when projected to a fixed
three-dimensional hypersurface of simultaneity,
gives rise to a E-flow. The internal time operator
T under discussion will thus be an operator acting
on the distribution functions on the space of line
elements of the three-dimensional hypersurface and
will satisfy the relation

[T,Ux]=A, Ux .

Here U~ denotes, of course, the unitary group in-
duced by the projected three-dimensional flow.

The important point to note is that the time
parameter of the projected flow is not the cosmic
time parameter t but is a nonlinear function A,(t)
given in the preceding section, and it is A,(t) rather
than t that must occur in the defining relation of
T. As a result, the (average) age of distribution
functions on the space of line elements changes as
the test particles move freely, keeping step not
with t, but with A, (t). The time scale defined by
internal time is thus distinct from the cosmic time
scale and corresponds to that of A,(t). It is interest-
ing that (see the expression for dk, ldt given in the
previous section) in very early epochs of the
universe the internal time flows more rapidly com-
pared with the cosmic time:

dkldt~ 1/R (t)~+ oo as t~0. Similarly, as the
universe ages the internal time scale gets dilated re-
lative to the cosmic time: dA, /dt~O as t~+ ~.
The physical meaning of these relative rates of
flow of internal time and cosmic time is that the
mixing rate (i.e., rate of approach to equilbrium)
taith respect to change in t approaches op as one
nears the singularity: whereas there is practically
no mixing in a sufficient1y aged universe.

The existence of a new physically significant
internal time scale in the nonstandard cosmology
naturally raises the question of whether the cosmo-
logical singularity could be removed to the infinite-

ly distant past in this time scale. In view of the
expressions (3.10) and (3.11) the cosmological
singularity can be removed to the infinite past if
and only if the integral

f ds
'0 R (s)

diverges as to~0 for any finite positive t.
Now if one assumes a linear equation of state

p=(y —1)p connecting the pressure p and the ener-

gy density p of the cosmological fluid then it is
well known that Einstein's field equations imply
the following behavior for R (t): R (t)=(t) ~ r near
the singularity t=O. The integral would thus
diverge only if y( —,, i.e., only if the pressure p be-
comes negative. A simple general argument given
in the Appendix shows that this conclusion is in-
dependent of any specific assumption about the
equation of state.

Since pressure is usually a non-negative quantity
the above considerations seem to lead to the nega-
tive conclusion that the cosmological singularity
cannot be removed to the infinitely distant past
even in the internal time scale. Nevertheless, it
seems worthwhile to stress that the concept of
pressure near the singularity is far from being
unambiguous. Although no generally accepted de-
finition of gravitational pressure exists, in the pres-
ence of a strong gravitational field the concept of
pressure is bound to be modified. In such a situa-
tion pressure may as well be negative without in-
volving any physical absurdity. However, we shall
not pursue this idea in this paper.

Quite apart from the question of the singularity,
the existence of an internal time operator T in the
nonstandard cosmology has other important impli-
cations. As mentioned in Sec. II, it allows one to
associate a Lyapounov variable or H function with
the geodesic motion of test particles. Moreover,
the existence of T implies the intrinsic randomness
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of geodesic motion in the sense of Sec. II. This il-
lustrates how irreversibility and randomness could
emerge as essential features of dynamical systems
embedded in a suitable cosmological model.

We can make an additional comment about the
evolution of distribution functions in the early
universe provided we assume the existence of an
initial singularity (in the A, time. ) The commuta-
tion relation [T,L]=iI holds where L is defined by
Ux —=e ' . As a result, for any distribution func-
tion p we have the uncertainty relation

(hT) (hL) & —, .

In the early universe we must have (b, T)p very
small which implies that the dispersion (b,L)p in
the frequencies is very large. This implies that the
evolution of such p will be rather chaotic just after
the initial singularity.

It is amusing to recall that Einstein cherished
the belief that "God does not play dice." A seri-
ous challenge to this point of view comes from
quantum mechanics. In our opinion, an equally
important challenge comes from the recent studies
of classical systems exhibiting strong forms of tra-
jectory instability. As was said before, such sys-
tems are intrinsically random, and we find here
that Einstein's own theory allows cosmological
models in which the simplest and most fundamen-
tal of motions, the geodesic motion of photons and
test particles, exhibits this nondeterministic feature.

APPENDIX: PARTICLE HORIZON AND
NEGATIVE PRESSURE

We show here that the integral f dt/R (t) would
0

diverge only if the pressure of cosmological fluid
takes negative values. As discussed in the text,
this means that the price to be paid for being able
to remove the cosmological singularity to the infin
itely remote past (in the internal time scale) is to
allow the pressure p to take negative values. The
divergence of the above integral also implies the
absence of particle horizons. ' lt may be recalled
here that absence of particle horizon means that an
observer at any given spacetime point can, in prin-
ciple, receive signals emitted at sufficiently earlier
times from any point of the three-dimensional spa-
tial hypersurface of the universe. The argument
given here thus shows the existence of particle hor-
izons can be avoided only at the cost of allowing
negative pressure.

The proof given below is quite general. In par-

R2=1 SING+ 3' (Al)

In addition we have the equation of energy con-
servation

pR'= —[R'(p+p)] .
dt

(A2)

Using (Al) and (A2) one can easily express the
pressure p entirely in terms of R. and its deriva-
tives:

4~GR
(A3)

Positivity of pressure is thus equivalent to the
condition

RR+ —,R & —, . (A4)

Now behavior of R near the singularity conforms
with either of the following two alternatives: (i) R
stays bounded in a neighborhood of t=O, and (ii)
R(t)~ ao as t~O. We first verify that the first
case can occur only if pressure p is negative.
Indeed, boundedness of R means also that pR
remains bounded near the singularity [see (Al)].
As a consequence pR ~0 as t~0. On the other
hand, integrating both sides of (A2) from 0 to t we
obtain

—3 pRR= Rpo ——R tpt &0. (AS)

Since R and R are positive quantities it follows
that p must assume negative values.

Having disposed of case (i), let us now show
that, in the case of alternative (ii), positivity of
pressure [condition (A4)] implies the convergence
of the integral f [I/R (t)]dt.

First, let us note that the conditon (A4) can be
rewritten to read

d R 3 1

dt R 2
(A6)

Integrating both sides from 0 to t and noting
that lim R (t)/R(t) =0, we obtain

f~o

ticular, it is independent of any specific assump-
tion about the equation of state or about the
behavior (such as the assumption of power-law
behavior) of R (t) near the singularity. We do as-
sume that the spatial curvature is negative, howev-
er.

Einstein's field equations yield the following
first-order differential equation for R (t):
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R(t) 3t 1 ' ds

R(t) 2 & OR (s)

Since R (t)~ oo as t +0—, there exits a to such
that 1/R (t) & c with c & 1 for t & to. Thus

(A7)

I . ds&ct .
OR (s)

(AS)

The inequalities (A7) and (A8) imply the inequality

(A10)

. 2/(3 —c)

1n (ln
R (t& )

Thus, near the singularity 1/R (t~ ) & at~
As c is strictly less than 1, it follows that 1/R (t) is
integrable near t=O. This completes the proof that
nonnegativity of ressure p necessarily implies the
convergence of [I/R (t)]dt or equivalently the

0
existence of a particle horizon.

R (3—c)t
with c &1, or

R 2

R 2
R 3—e

(A9)

Integrating both sides of this inequality between t&

and t2 (with 0 & t, & t2 & to) one obtains
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