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Majoron emission by neutrinos
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The presence of a massless boson coupled to neutrinos in the Gelmini-Roncadelli gauge

model can be tested in m, K leptonic decays and in wrong-sign single-lepton production by neu-

trinos. We place bounds on Majoron-neutrino couplings from experimental limits on these

processes.

A Nambu-Goldstone boson, called the Majoron,
arises in gauge models that have a spontaneous
breaking of a B —L global symmetry. ' There are
two possible models of this kind, with and without
right-handed neutrinos. In the latter case, proposed
by Gelmini and Roncadelli (GR), ' the Majoron may
have interesting observable consequences, some of
which have been recently considered. ' In this paper
we examine possible effects of the Majoron in lepton-
ic weak decays of kaons and pions, and in deep-
inelastic scattering of neutrinos; the processes of in-

terest are illustrated in Fig. 1. We derive experimen-
tal upper limits on the Yukawa coupling of the Ma-
joron to neutrinos.

M, X

C

7' L

In the GR model the standard SU(2) && U(1) model
is modified by a triplet of Higgs bosons 4' (Q++,
P+, P ) in addition to the usual doublet 4&. 4 is as-
signed a nonzero 8 —L number and 8 —L as a global
symmetry is preserved in the Lagrangian, but is bro-
ken spontaneously by a vacuum expectation value v T

of P . There is a genuine zero-mass Nambu-
Goldstone boson (Majoron) M and a light neutral
Higgs boson X, whose couplings to neutrinos are
given by

1Z„~+„g= 2 gg gV~(Ur+I'y5M+X)V I

I,I

where I, I' go over e, p„v and v= vq+vL, . Mand X

also couple to other fermions, but much more weak-

ly; those couplings are of order

mylar/vD',

where
vD —250 GeV is the vacuum expectation value of
the usual I = —, Higgs field and 87 ( io vD from

1 1

measurements of the neutral-current strength. 4 We
will be only concerned with the couplings of Eq. (I)
in this paper.

Neutrino masses are obtained by diagonalizing the
mass matrix whose elements are g„,vT. If the result-

ing flavor mixings are small, then approximately

m„=g«~T, etc.

C
L

FIG. 1. Diagrams for Majoron and X emission in E or m

leptonic decays and in neutrino production of wrong-sign

single leptons.

However, if the g„are all comparable, then all mix-

ing angles are large and two of the three neutrino
masses are nearly zero. In Feynman amplitudes for
Majoron-emission processes, the neutrino eigen-
masses appear in the virtual-neutrino propagators and
the diagonal couplings are related to the g by a uni-

tary transformation. For simplicity we shall frequent-
ly use a generic label g to denote the effective overall
coupling, with the understanding that g is process
dependent.
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Some bounds on the parameters in the GR model
have been derived by Georgi, Glashow, and Nussi-
nov. ' These are vr ( 100 keV (lest cores of red su-

pergiant stars lose energy too soon), m„& 15 eV forv

a Majorana v, from analysis of neutrinoless double-

P decay of Ge and Se, and g ~10 from
analysis3 6 of the ratio of double-p decays '2sTe and"Te. By using vr & 100 keV, m„ is expected to be
of order 100 keV or less. In this paper we deduce
limits on Majoron couplings to v, and v„ from ana-
lyses of leptonic decays.

K(??) lvM decay. A Majoron (or X) can be
emitted from the neutrino of K(??) lv decays.
The differential decay rate for Majoron emission is

dI'(K I vM) = dR I'(K IN) (3)

where

where f» is the kaon decay constant and Hc is the
Cabibbo angle. The four-momenta of the kaon,
charged lepton, Majoron, and virtual neutrino are
denoted by K, I, I, and N, respectively, and
m„=N'. We introduce the dimensionless quantities
x —= m» /m» =1+a 2E?/t?l?, a=—m? /???», and

P —= m„ /m» . The invariant decay-lepton distribution
in x can be expressed in the factorized form

dI =—g'GF'f»'sin Hc (2K ~ M)(K ~ I) —m»'M I

128m 5m~ mx m

dR = dx(x —P)g2/32??2x2 (4)

84(K I M) d I d v d M
EI E~ EM

and I (K IN) is the leptonic-decay rate to a neutri-
no N of mass m„

I'(K IN) = GF'f»'sin'Hcm»'[x + u —(x —n)'] k' '(l, x, n)/8?? (5)

Note that? (a, b, c) = a? + b2+ c' —2ab —2ac —2bc The kin. ematic limits on x are P ~ x ~ (1 —Ja) 2. Equations
(3)—(5) also apply to m+ I+vM decay, replacing m», f», sinHC by m, f, cosHC For X. emission dR is given by

dR =dx(x2+P2+6xjg —yx —yl3)(x —P) lt'I (x, P, y)g /32??2x (6)

where y =—m„'/m» . The lower limit on x in this case
is (WP+Wy)2~x. For x values much greater than the
lower limits, the contributions of X and M emission
are essentially equal.

Upper bounds on g' can be placed from the experi-
mental limits from searches for heavy neutrinos in
K(?r) I v decays and from searches for
K(??) I +neutrals over particular ranges of m„.
Figure 2 compares the predicted branching fractions
for Majoron plus X emission based on g2 = 2 x 10
with experimental bounds. We deduce the follow-
ing 90%-C.L. upper limits

(g2)„(1.8&&10 ~ (K e, CERN, Ref. 7)
(g')„&2.7X10 ' (m-e, TRIUMF, Ref. 8), (7)

(g2) „„&2.4 x 10 ~ (K p„LBL, Ref. 9)

Here g' is the square of the matrix whose elements
are g„i.

Electron-muon universality tests for total leptonic
widths can also be used to bound g'. The Majoron
and X contributions constitute a much larger fraction
of K e than of K I?„since I'(E ev)
=2.5 && 10 5I (K I?v) and I'(K eMv)
=0.1I'(K I?,M v) for comparable (g2) „and
(g )». The predicted deviation from e, I?, universali-
ty for m„, m&&1 eV is

I (K el )/I (K ??I ) I +1970( 2)
I'(K e v) /I'(K I?,v)

(8)

where L includes v, vM, and vX final states. For m

decay the corresponding prediction is

R „=I + 157.5 (g2)„
The experimental results, ' '" including radiative
corrections" to Iv theoretical rates in the denomi-
nator of Eq. (8), are R» =1.016 +0.06 and R „

lo
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FIG. 2, Predictions for the differential leptonic-decay
rates of K or m mesons into final states with Iv and Majoron
or X. The variable m„ is the square root of the virtual-
neutrino four-momentum squared. Solid curves represent
electron decays and dashed curves represent muon decays.
Data are from Refs. 7—9. All K(m) differential rates are
normalized to the E(m) p, v rate,
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= 1.033 +0.019. The corresponding universality
bounds on g at the 90% C.L. are

(g2) «& 4.5 x 10 ' (K ~ I v, Ref. 10)

(g')„&3.1 X10 4 (2r Iv, Ref. 11)
(10)

vN ~ I+M+ hadrons. Majoron or X emission
changes incident neutrinos to charge-conjugate neu-
trinos which produce charge-conjugate leptons in

scattering processes. For deep-inelastic scattering of
neutrinos on a u-parton target, the differential cross
section for Majoron emission is

'GF g I ~ uM d

gm'(s —m„')

x 8 (g+ v —I —M —d)
d'1 d M d d

EI EM Eq

1+p dW2dQ
1 pp— (12)

where the moments are labeled by v (incident neutri-

no), I (charged lepton), M (Majoron), u (initial up
parton), and d (final down parton); s is the energy
squared of the consituent subprocess. Equation (11)
can be recast in the form

GF g (W md ) s —Q' —W' —m„

322r2(s —m„')2, s —Q' —m„—m~

beam energy in GeV. For X emission with
m „»m„, the factor m „2 in Eq. (15) is replaced by
2.1m ~2.

Experimental upper limits on "wrong-sign" single
leptons produced by neutrinos can be used to bound
g2. The limitS are o.(v„p+)/o. (v„ I2, )
& 1.6 x 10 ' for E,;, & 100 GeV (Ref. 14) and
o(v„e+)/o(v„ I2, ) &3 x10 for (E) =3
GeV." From appropriate spectrum averages of the
M+ X cross section with energy-acceptance cuts, we
find that these limits imply

(g„„)2&2.5 x10 2 (v„p,+)

(g„,)' &1.8 x10 ' (v„e+)
(16)

taking a common neutrino mass m„= 10 eV and
m„=100 keV.

Figure 3 shows the energy ratios EI/E„and E~/E„
for the vN I+Mh or t+Xh processes at E„=100
GeV. Appreciable missing energy EM, carried by the
M or X, results in a charged lepton at relatively low

energy.
Quasielastic production of wrong-sign leptons near

threshold where form-factor effects can be neglected
can be estimated from Eq. (12) in the approximation

gq =gy. From the LAMFF limit' on o.(v,p e+n)
we deduce only that (g„)2 & 1.

The limits on the Majoron coupling to neutrinos
obtained in the preceding analysis can be summarized

where

p= [1 —4W m„ /(s —Q —mp —m„2)2]' 2 . (13)

In Eq. (12), W2= (M + d)' is the invariant mass
squared of the Mand d, and Q2= —(I —v) is the
four-momentum transfer squared from v to t. The
integration limits are mq ~ W ~ (s)' —mi and
0 & Q & (s —m„') (s —W2)/s. To a good approxima-
tion Eq. (11) applies to X emission as well, with the
denominator factor 2M v replaced by 2M v —m„.
The modification to Eq. (12) in the X case is to re-
place p with y, where

p[1 4 W2m 2/( W2 m 2)2]1/2

1 —2 W m„ /(s —Q —
m~

—m„)( W —mq )

(14)
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Folding in the parton distributions of an average
nucleon target from Ref. 13, and taking a single v

mass with coupling g, we find an integrated cross sec-
tion for Majoron emission of

a(vN I+Mh) =0.21g. 2E„[ln(M~E„/m„2) —0.9]

0.0 0.2 0.l 0.6
Z = E /E„OR EM/Ev

0.8 I.O

x 10 'cm (15)

where M~ is the nucleon mass and E„ is the neutrino

FIG. 3. Distributions in EI/E„and EM/E„ in neutrino

production of wrong-sign single leptons via vN 1Mh or
1Xh, EM is the missing energy carried by M or X.
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as follows:

(g')„&4.5 x10 ',
(g')» & 2.4 x 10~,
(g») &25 x10 ~

(g )' & l.8 x10-',

where the latter two limits are based on an effective
neutrino eigenmass of 10 eV and a X mass of 100
keV. Leptonic-decay experiments in progress can im-

prove on these limits or find evidence for Majoron
emission.
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