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The QCD perturbation series has been observed to converge poorly near phase-space
boundaries; for example, as x ~1 in structure functions. Methods have been proposed
for improving the convergence by including kinematical corrections. We compare these

methods, and apply them to the calculation of the photon structure function.

I. INTRODUCTION

Many authors have noted that nonleading terms
in the QCD perturbation series can become large
near the boundary of phase space. ' For example, in
deep-inelastic lepton scattering the QCD series for
structure functions contains nonleading terms of
order a, ln (1—x), which are singular as x ~1.
The total mass squared s of the hadronic system
produced is just s =Q (1—x)/x; as x ~1 for fixed

Q, s approaches threshold. The standard lowest-
order term in QCD does not incorporate the proper
threshold behavior. In trying to recover the thres-
hold behavior the higher-order terms must become
large as x —+1. Thus it is reasonable to hope that
one can improve the convergence of the perturba-
tion expansion by including correct kinematics at
each order. Analyses of these kinematical correc-
tions have been given by Brodsky and Lepage
(BL), and by Amati, Bassetto, Ciafaloni, Mar-
chesini, and Veneziano (ABCMV). There is no

proof in the literature that either method correctly
resums the perturbation expansion, in the sense

that they include all terms which are singular as
x~1.

In this paper we test the two methods for
kinematical improvement of the QCD perturbation
expansion by (i) comparing them with each other,
(ii) comparing them with second-order perturbative

expansions, and (iii) applying them to the calcula-

tion of the photon structure function for x~1.

Our principal results are as follows: (i) Although
the ABCMV and BL methods agree in the leading
correction terms of order a, ln (1—x), they differ
in higher orders in a, . (ii) The leading correction
term agrees with second-order perturbation theory.
Perturbation theory, however, contains terms of the
form a, ln(1 —x), which are not present in the ex-

pansion of either of the kinematically corrected
methods. (iii) Neither method correctly accounts
for the x ~1 behavior of the photon structure
function, but this turns out to be an exceptionally
severe test. The leading-order terms cancel, and
the pointlike coupling of the photon gives rise to
x~1 singularities peculiar to the photon problem.

II. HADRONIC STRUCTURE FUNCTIONS
FOR K —1

A. Brodsky-Lepage method

We shall first review the derivation of the
Brodsky-Lepage method, going into some detail be-

cause no treatment yet exists in the published
literature. Retaining BL's notation, we define the
quark distribution function q(z, Q ) to be the sum

of the ladder-graph series shown in Fig. 1 integrat-
ed over kt (Q, including full wave-function re-

normalization of both quark legs. The leading-

logarithmic approximation yields the following in-

tegral equation for the ladder sum in a physical

gauge:

g2dk a(k )

g~ k2 4m z y 1 y y

where
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FIG. 1. Ladder-graph contributions to the quark dis-
tribution function q(z, Q ).

FIG. 2. Ladder-graph contributions to structure
functions.

This equation can easily be derived using light-
cone variables. Defining p+ —=po+p, and choosing
the target momentum in the z direction,

p =(p+ p pl )= (p+—M ~p+ 0 )
2 (2.2)

we parametrize each constituent's four-momentum
(see Fig. 2) by

k„—:(k+,k, kt)
2 2kj +m

zp+, , kj
zp+

(2.3)

One essential point to note about Eq. (2.1) is that
the argument of a, is kt ———k (1—y). There is

general agreement on this point; the justification
can be found in Refs. 2 and 3.

A quantity which is more closely related to ob-
servable structure functions is q(z, Q ) defined by

q(zQ )=d» '(Q )q(zQ ), (2.4)

where d»(k ) is the quark propagator function:

S(k)=d»(k g/k +gauge terms .

(2.5)

The distribution function q (z, Q ) can easily be
shown to satisfy an evolution equation of the
Altarelli-Parisi form,

a, ~.(g)' i dy z
, q(z g') = ' f P»z»(y)q —,Q'

BlnQ 2~ * y y

where

(2.6a)

]+~P ~ (y)=Cp y —=CF —5(1—y) f dx
, +

(2.6b)

Of course, gluonic contributions will also need to be included when one considers the singlet distribution,
but we confine our attention here to the nonsinglet case. Not only does the inclusion of the singlet intro-
duce no new principles, but it also turns out that the gluon contribution is negligible in the z-1 region.

To analyze the z-1 region it is convenient to rewrite (2.6) in the form

( Q2} ( Q2) f*dy +y + + ' g f d 1+y q( yzQ )
( g2)

8lng2
'

2m.
'

o 1 —y 2m ~ 1 —y y

(2.7)

As z-1 the first term dominates:

aq(z, g') ——P(z, Q )q(z, Q ),
8 lnQ

where

(2.8)
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d
1+y'

zf
1 —y ln(Q'/A')

and where

4CF
a (z) = — [ln(1 —z)+ —,] .

(2.9a)

(2.10)

Thus one finds for z —1

q (z, Q )-q (z, Qo ) exp —a (z) ln
ln(Q /A )

ln(QO /A )
(2.11)

Now to leading order in lnQ the nonsinglet structure function F2 is essentially equal to the quark distri-
bution function q(x, Q ):

F2(x, Q )=x ge; q;(x, Q ) . (2.12)

If we wish to capture nonleading terms which become singular as x~ 1 by incorporating correct threshold
behavior, then the structure-function ladder sum, shown in Fig. 2, differs from the quark distribution func-
tion q(x, Q ). As noted by Brodsky and Lepage, the effect of threshold kinematics is significant only at the

top rung of the ladder in Fig. 2. The result is to change the upper limit of the k~ integration in (2.1) from
Qz to Q2(1 —y). Equivalently, an extra piece must be added to the right-hand side of (2.12) so that it reads

F2(x, Q )=x ge; [q;(x,Q )+5q;(x, Q )],
where

1+y2 g& dkq a, (k~ )

5q;(x, Q )=—2C~ I dy I x -z 8(y)x)
q; —,kq —q;(x, k~ )

3' 3'

(2.13)

(2.14)

For x —1 one finds by using the same technique as in (2.7) that

(2.15)

To evaluate this correction we use (2.11) and perform the kz integration to obtain

5q(x, Q )=—2cpq(x, Q ) x 1+y2 lnQ (1—y)/A
dy 1 —exp —a (x) ln

Poa (x) o 1 —y lnQ /A
(2.16)

Expanding the exponential one finds the result

5q(x, Q ) 2~F ln (1—x) 4 ~r ln (1—x)
q(x, Q ) po ln(Q /A2) 3 po ln (Q2/Az)

(2.17)

B. Amati-Bassetto-Ciafaloni-Marchesini-Veneziano method

The Brodsky-Lepage method for taking x —1 threshold singularities into account involves solving the or-

dinary Altarelli-Parisi equation (2.6) for the quark distribution function q(x, Q ), then adding an extra con-

tribution 5q which corrects the kinematics at the top rung in the ladder sum. By contrast, the method of
Amati, Bassetto, Ciafaloni, Marchesini, and Veneziano (ABCMV) involves solving a modified evolution

equation for the (nonsinglet) structure function itself,

2F(x, Q )= I [a (Q (1 y))Pqgq(y)]+F, Q-
BlnQ 2~ "y y

(2.18)
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The original arguments for this equation were only heuristic, with a posteriori justification coming from
consideration of certain sums of diagrams. We shall not repeat these arguments here, turning our attention
instead to a comparison of the BL and the ABCMV methods. We find that they are not equivalent, agree-
ing with each other only on the leading term in (2.17).

Again using the method of Eq. (2.7) we find that the leading behavior of (2.18) for x —1 is given by

1
2

F(x,Q~)= — F(x,Q ) I dy a, (Q (1—y)) .
a lnQ'

Using the lowest-order form for a, and expanding (for x not too close to unity)

(2.19)

a, ( '(1—y))=
Ppln[Q (1—y)/A ]

4n. ln(1 —y) ln (1—y)
Ppln(Q /A ) ln(Q /A ) ln (Q /A2)

Substituting this expansion in (2.19) and doing a bit of algebra one finds

5F(x,Q ) 2CF In (1—x) CF ln (1—x)
Fp(x, Q ) Pp ln(Q /A ) Pp ln (Q /A )

where Fp(x, Q ) is the uncorrected leading-order form

(2.20)

(2.21)

Fp(x, Q )=F(x,Qp )exp —a(x)ln ln(Q /A )

ln(Q() /A )
(2.22)

Comparing (2.17) and (2.21) one sees that they agree to leading order, but disagree at the next order

C. Higher-order corrections to evolution equation

Further insight into the difference between the BL and ABCMV methods for dealing with the x~1
singularities can be obtained by examining the higher-order corrections to the Altarelli-Parisi evolution equa-

tions. Recently Herrod, Wada, and Webber have discussed two methods for incorporating higher-order

corrections which closely parallel the two methods for x~1 corrections. The first method, which they call

the two-step method, consists of first modifying the equation for the quark distribution q (x,Q ) as follows:

(2.23)

Again, we are confining our attention to the nonsinglet case. The second step is to convolute the solution

with the inverse Mellin transforms of the coefficient functions to obtain a structure function:

as(Q') ( dy ()) x
F(x,Q )~q(x, Q )+ f C~"(y)q —,Q

4m ~ y
' y' (2.24)

Note the similarity to the Brodsky-Lepage method for incorporating x —1 singularities, as given by Eqs.
(2.13) to (2.15).

Herrod, Wada, and Webber also introduce a "one-step" method. They point out that F(x,Q ) as given by
the two-step satisfies a differential equation

()F(x,Q ) ' dy as Q (())
Fqq y+

BlnQ' ~ y 2~
a, (Q')

2' I",,"(y) L,"'(y) ' F——,Q' +0(a, ')
3'

(2,25)

up to corrections of order a, . We shall show that this equation reduces to the ABCMV equation in the ap-



SINGULARITIES IN QUANTUM-CHROMODYNAMIC. . . 847

propriate limit. To understand what is the appropriate limit let us recall what we are trying to achieve in
modifying the Altarelli-Parisi equations to take account of x —1 singularities: We are trying to improve the
convergence of the perturbation expansion by writing down an equation that is lowest order in a, (Q ) except
for including high-order terms which are more singular as x —+1 than the corresponding lowest-order terms.
For example, Pqq' behaves like 1/(1 —x)+. Terms in Pqq' with this behavior we discard, because they are
higher order in a, (Q ) without being any more singular as x —1. Since there are no terms in Pqq which are
any more singular, we can discard it entirely. On the other hand, C~" does contain singular terms:

Cq (x)-2CF ~ (1+x )
(I) 2 In(1 —x)

1 —x
3 1+x
4 1 —x

(2.26)

If we now look at (2.23) we see that the evolution equation for q(x, g ) is unmodified, whereas the relation
between the structure function and q(x, Q ) contains an extra term. The extra term in (2.24) yields

a (Q2)s Q
y dyC(')( )

x
Q~

4~ x y
~ y'

as(g ) " 41n(1 —y) 3
CF dy

4m 0 1 —y 1 —g

2CF ln (1—x) 3 ln(1 —x)
P(& ln(Q2/A ) 2 ln(g'/& )

(2.27)

The most singular term, proportional to ln (1—x), agrees with the expansion of the BL or ABCM&
kinematical corrections. Note, however, the presence of a term proportional to ln(1 —x), which is n«ob-
tained by either kinematical correction method.

To derive the ABCMV form from the one-step second-order equation (2.25), we again discard the higher-
order terms which are no more singular as x~1. The resulting equation is

aF(x, g ) I) dy a(Q )

()lng' ~ y
P(0)( )

s 0( ())(
) F x g2

a ( ')
()

qqy 2 4 q
7T 3' (2.28a)

and using (2.26),

()F(x,g ) I' dy a.(Q ) 1+y
()]ng2 ~ y 2m 1 —y

ln(1 —y) x
ln(g'/A') + y

(2.28b)

CF 1+ 2F d3' 2
1 — 1+3 p x 2

2m ~ y 1 —y y
(2.28c)

which is just the ABCMV modified form of the
Altarelli-Parisi equation.

To summarize, we have in this section compared
the Brodsky-Lepage and the ABCMV methods for
taking account of kinematic singularities encoun-
tered for x —1. We have reviewed the Brodsky-
Lepage derivation, which shows that their method
sums ladder graphs with correct kinematics. The
ABCMV method is equivalent only for the leading

corrections, but disagrees beyond leading order.
On the other hand, the ABCMV equation is
simpler, and for most purposes the leading-order
correction may be adequate. Moreover, there is no
proof that either method accomplishes the goal of
including all nonleading terms which are singular
for x~1. In fact, neither method succeeds in ob-
taining the corrections of form a, ln(1 —x) which
are present in the perturbation expansion.
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FIG. 4. Same as Fig. 3, but at Q2=20 GeV2.

FIG. 3. Calculation of photon structure function F2..
comparison of leading order (LO); leading order plus
second order (BB);Chase's formula (C), Eq. (3.8); ap-
proximate formula (A), Fq. (3.11); all at Qt=3 GeV~

and A=0. 5 GeV.

III. PHOTON STRUCTURE FUNCTION FOR x -1
The photon structure functions, which are

measurable in deep-inelastic lepton-lepton scatter-
ing, have been discussed as an especially interesting
testing ground of QCD. They contain anomalous
pieces, arising from the pointlike fragmentation of
the target photon into quarks, which are complete-
ly calculable in QCD. The additional hadronlike
pieces, arising from vector-meson-dominated frag-
mentation of the target photon, are not completely
calculable but are negligibly small except at small
X.

The QCD calculation of the anomalous pieces of
the photon's structure functions has been carried to
next-to-leading (hereafter, second) order in a, by
Bardeen and Buras. They find reasonably small
corrections at moderate values of x, but find quite
large corrections at large and small x (compare
curves marked LO and BB in Figs. 3 and 4).
Complete understanding of the corrections at small

x is difficult, in that it presumably involves disen-
tangling the pointlike piece from the large vector-
meson-dominance background. At any rate, this
problem is distinct from our concern in this paper
with the x —I threshold region.

It would be quite desirable to have a method of
summing those higher-order terms which become
singular as x~1. As we saw in the previous sec-
tion, the Brodsky-Lepage and the ABCMV
methods are partially successful in summing such
terms for hadron structure functions. As we shall
see, the extension of these methods to the photon
structure functions involves additional difficulties.

A. Leading-order calculation corrected
for threshold kinematics

(3.1)

where Fy is Fjlx (or in leading order 2Fy&). Now
q;(x, Q ) satisfies the usual evolution equation (2.6),
except that not only quark and gluon but also pho-
ton intermediate states must be included':

The transverse photon structure functions are, in
leading order in a„related to the quark distribu-
tion functions of the photon,
q;(x, g )=6»/y(x, g ), as follows:

f
Fy(x, g )=6 + e; q;(x, g ),

i=1

a 1 'dy x 2

t) lnQ , G, /y(x, Q ) = txEM Pqy Gy/y(»g )
2K

&,(Q') ' dy x x+ 'Pqq Gq/y(J &Q )+PqG GG/y(3 ~g
Z JP

(3.2)
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But to lowest order in aEM the distribution of photons in a photon target is just

Gr~„(y,g') =5(y —1}+O(aEM)

which reduces the first term on the right-hand side of (3.2) to simply

1
aEMPqy(x) ~

(3.3)

where, in leading order,

Pq&(x)=Pqz(x)=e; [x +(1—x) ] . (3.4)

In examining the region x —1 we can neglect the gluon contribution, as can easily be seen from the non-

singular character of

P' '(x)= —,[x +(1—x) ]

as contrasted to the singular Pqq given by (2.6b). To incorporate the x —1 kinematics we could use either

the BL or ABCMV methods, since we shall concentrate on order-a, corrections, where the two methods are
equivalent. Choosing the ABCMV method we have finally for a lowest-order kinematically corrected equa-

tion

z q;(x, Q ) = aEMPq&(x)+ f [a,(g (1 y))Pqq(y—)]+q; —,Q (3.5}

Again using the method of Eq. (2.7) one finds for the leading x~ 1 behavior

z q (x,g }= aEMPqz(x} —P(x, Q )q (x,Q ),
8 lnQ

where, in analogy to (2.9), we have defined

2

P(x,g'}= f dy a, [Q'(1—y)] .
2m- o 1 —y

One can solve (3.6) to obtain

(3.6)

(3.7)

Fr(x, g )=h (x) f —exp f p(x, k )
Q

2 a' k' (3.8a)

where we have defined

hz(x)= g e. x +(1—x)
EM 2

2K

and where, to retain the correct threshold,

(3.8b)

a, [Q'(1 —y)] =
Po[ln(Q /A )+ln(1 —y)]

ln(1 —y)
ln(Q /A )

(3.9)

(mq')
Qo'=

1 —x
(3.8c)

Using this expansion and performing the integra-
tions in (3.8) one finds

Equation (3.8} was first obtained by Chase, by
directly summing graphs. " It is plotted in Figs. 3
and 4 in comparison to the Bardeen-Buras results.
Although it is numerically rather similar, we shall
find that it does not in fact have the same pertur-
bation expansion in powers of a, (Q ). The pertur-
bation expansion of Chase's formula can be found

by expanding

2

Fr(x, Q ) = h (x) ln
A

where

ln(1 —x)
ln(g /A )

(3.10b)

X[1+—,e+O(e )+O(1—x)], (3.10a)
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and where

hg(x)

1+d(x) ' (3.10c)

CF
d (x)= — [4 ln( 1 —x)+3] . (3.10d)

Note that Fr=h(x)ln(Q /A ) is the large-x form
of the leading-order result. The factor in brackets
in (3.10a) reflects the kinematic correction. It is
interesting to note that (3.10) can be rewritten as

2

Fr(x, Q )=h(x) In
~

(1—x)'~
A

(3.11)

This approximation to Chase's formula, valid for
a&1, is also plotted in Figs. 3 and 4. Several au-
thors have conjectured that the kinematic correc-
tions could be included by modifying the argument
of the logarithm, ' but they made the reasonable
guess that the corrected argument would be
s =Q (1 —x)/x. It was not anticipated that the

1

factor 1 —x would appear instead to the power —,.

B. Higher-order corrections to the photon form factor for x -1

Bardeen and Buras give their analytic result in terms of moments:

1 2f dxx" Fj(x,Q )=F(„(Q )=a„ln +b„+a„lnln ~
(3.12)

Since large n probes large x, we are interested in the leading behavior of the moments for large n. We find
r

an
Inn+0(1) .

0
(3.13)

There are terms going like ln n, but they precisely cancel. On the other hand, our simple formula (3.10),
when translated into moments, also has no ln n term. In fact, the inn term is just

1b„/a„———, inn . (3.14)

Thus we have reproduced only a portion of the inn term by analyzing kinematical corrections, although the
1

—, happens to be numerically larger than the 2'/Po. The 2C+/Po term appears to be an essentially (non-
kinematical) higher-order effect.

In order to see the origin of the various terms in the Bardeen-Buras result it is helpful to analyze second-
order corrections to the evolution equations for Fr(x, Q ). Instead of the one-step formulation of Herrod,
Wada, and Webber, we follow a "two-step" formulation analogous to (2.3) and (2.24):

r

Fr(x, Q ) =6 g e; f C;(y)G& ~&
—,Q +gluons+ f Cr(y)G&~& —,Qx y y

(3.15)

Using (3.3) one reduces the second term to just Cr(x), which can be obtained from the box diagram

C (x)=3 g e; [x +.(1—x) ]ln —I+Sx(1—x) (3.16)

Moreover,

C;(y) =C "(y)+ C "(y),
4~

where

C;"'(y) =&(y —1),

(3.17a)

(3.17b)

and where C;"'(y) is given by (2.26). For large x, where the gluon contribution is negligible, (3.15) becomes

Fr(x, Q )=Cr(x)+6+ e; q;(x, Q )+6 g e f Cq (y)q Q
i=1

(3.18)



25 SINGULARITIES IN QUANTUM-CHROMODYNAMIC. . . 851

Now q;(x, Q ) satisfies the evolution equation

' dy
, q;(x, Q') = aEMP„(x)+ a, (Q') J Pqqb')q —Q'

() lnQ 2' 21T
(3.19)

and for our goal of finding singular terms as x ~1 it suffices to take Pqq Pqq——, as discussed in'Sec. II C.
On the other hand,

(p) s (])
~~,-r=~e,-r+ 2 ~e, r (3.20)

where Pq z is given by (3.4), and where Pq'z can be found from expressions given in the literature for PqG' by
l

looking for the part proportional to C~T~, removing the factor T~, and multiplying by an appropriate

charge factor. In the notation of Herrod and Wada,

Pq'z ——, e; CFF—qG —e; Cz[x +(1—x) ] in (1—x)
~f @~1

and, from (2.26),

(3.21)

4
ln(1 —x)

1 —x
3

(1—x)+
(3.22)

Now one can solve (3.19) perturbatively by expanding

q(x, Q )= q' '(x)+q'"(x)+1

a, (Q')

Substituting the expansion in (3.19) and collecting terms one finds the usual lowest-order solution

(,)
(2aEMlPo)Pqr'(»

1+d (x)

where d(x) is given in (3.10d). The higher-order equation yields

(3.23)

(3.24)

(aEMI2m )Pq& (x)q'"(x) =
d(x)

(3.25)

Expanding the photon form factor

Fr(x, Q )=F' '(x)ln +F'"(x)+ (3.26)

one finds

(o) 6(aEMl2vr)f (e )
F,"'(x)=

1+d (x)
(3.27a)

3 aEMf( 4) 10
2 2m Cz ln(1 —x)

For the next-to-leading order one finds three terms,

(3.27b)

F(() C +6 y 2 (()+ y 2( (()~ (0)
y y 4 I q

2 (1) 2 (&) (p)
aEM X ~ qy aEM X ( q ql'

(3.28)
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where the asterisk indicates a convolution. Note
the one-to-one correspondence between (3.28) and
the large-n form of the corresponding result of
Bardeen and Buras. In the notation of Duke and
Owens it reads

( 4) ~ +NS ~NS+NS
(1) (0)

b„— e 6BG+ +"n~ ~ 2PodNs 2Pp(1+ dNs )

(3.29)

pointlike coupling to the quarks.
A second fact arguing the basic impossibility of

a purely kinematical explanation of the x~1
singularity in the photon structure is that the lead-
ing terms of form In (1—x) in Fr"/F'r ' precisely
cancel. The leading nonvanishing terms are then
of order ln(1 —x), and we saw in Sec. II that nei-
ther the BL nor the ABCMV methods account
correctly for such terms, even for hadronic targets.

(NS indicates nonsinglet). Using Eqs. (3.21) to
(3.25) to evaluate (3.28) one finds

EMf( 4) I
0

2+ 4Cf

or, using (3.27),

(3.30)

F(1)
r

F(0)
y

2'
p 2 ln(1 —x), (3.31)

+ 0 ~ ~

P P

(a) (b)
FIG. 5. Diagrams contributing to Pq~, except that

leading-lnQ part of (a) is to be excluded because its
contribution is included by solving the evolution equa-
tion.

in agreement with (3.13).
All three terms of (3.28) contribute to Fr".

Only the first and third could be taken into ac-
count by a kinematic modification of the leading-
order calculation. The first term Cr is just the
nonleading part of the box diagram, and the third
term is the form of the Brodsky-Lepage correction
[see the discussion following Eq. (2.26)]. On the
other hand, the second term is essentially higher
order. It is proportional to Pqy which involves di-

agrams of the form shown in Fig. 5. The presence
of such diagrams can be traced back to the inho-

mogeneous terms in (3.19), which in turn resulted
from the 5-function singularity of Gr&r in (3.3). In
other words, the photon structure-function singu-

larity as x~1 is essentially different from that of
a hadron, because the photon is itself one of the
fundamental fields and because of the photon's

IV. CONCLUSIONS

The Brodsky-Lepage and Amati-Bassetto-
Ciafaloni-Marchesini-Veneziano methods resum

QCD perturbation theory to take into account
singular behavior as x~1. Although both
methods correctly account for terms of order

a, (Q ) ln (1—x) in hadron structure functions, the
two methods differ at order a, . Moreover, neither
method accounts for terms of order

a, (Q ) ln(1 —x). Nevertheless, the methods do
represent some improvement over unmodified

QCD, and recent work by Barnett, Schlatter, and
Trentadue' indicates their value in phenomenolo-

gy

The situation is much less encouraging for the
photon structure. The behavior of the photon
structure functions as x~1 is essentially more
complicated than that of the hadronic structure
functions. The leading a, (Q ) ln (1—x) terms can-
cel, leaving a, (Q ) ln(1 —x) terms responsible for
the x~1 behavior. Since this order is not correct-
ly predicted by either BL or ABCMV methods in
the hadronic case, there is little hope for success
for the photon case.

A further difficulty in the photon structure
problem is the presence of essentially higher-order
diagrams which contribute to the x~1 singularity.
For these reasons it is not surprising that attempts
at kinematical analysis of x~1 singularities have
failed the test of agreement with perturbation
theory in next-to-leading order in a, for the pho-
ton structure problem. The formulas which have
been derived can perhaps be of some phenomeno-
logical value, but they do not represent a solution
in principle to the problem of resumming perturba-
tion theory to improve its convergence for x —+1.
This does not mean that QCD makes no prediction
in this region, but it does mean that the conver-
gence of the series is nonuniform. One must go to
higher values of Q as one takes x closer to unity
if one wishes to retain the same level of accuracy
of prediction.
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