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Spin-zero quarks in e+e annihilation
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We study th,e phenomenology of scalar-quark resonances in e+e annihilation.

I. INTRODUCTION

Both supersymmetry and hypercolor predict the
existence of scalar quarks, i.e., particles that carry
color, but no spin. In supersymmetry they are the
supersymmetric partners of fermionic quarks and
in hypercolor theories they arise as pseudo-
Goldstone bosons. In this paper, without reference
to any particular model of supersymmetry or hy-

percolor, we study the phenomenology of such par-
ticles. ' More precisely, we analyze the production
of scalar-quark —antiquark resonances in e+e an-

nihilation and their subsequent decays, using a po-
tential model of ordinary heavy quarks.

Let us first remark that one could hope to detect
the process e+e —+PP (P hereafter indicates scalar
quarks) as a new threshold in the cross section

tr(e+e ~hadrons)
o(e+e ~p+p )

It is known, however, that the thresholds of scalar
particles are hard to observe. This is because
scalar particles are produced in p waves and their
threshold, therefore, rises very slowly, bR ~

~ p ~

In contrast, fermions have AR ~
~ p ~

. Moreover,
even asymptotically, i.e., for

~ p ~

&&I, the
change in R due to scalar quarks is only 4 what it

would be for a fermion of the same charge.
Another possibility is that scalar quarks might

be discovered by detecting quark-antiquark bound
states as resonances in e+e annihilation. (This is
of course one of the main ways of studying charm
and bottom quarks. ) As we will see in detail,
bound states of scalar quarks are narrow reso-
nances (unless the scalar itself has a very large
width, as discussed later). The detectability of a
narrow resonance depends primarily on its leptonic
width. Therefore our first step (Sec. II) will be to
compute I,.

The experimental search for narrow resonances
in e+e annihilation has set very stringent upper

bounds on the magnitude of the leptonic width of
possible resonances, in some range of energies.
The best upper bounds are in the region up to 8
GeV (Refs. 3 and 4); less strong upper bounds have
been set at PETRA at higher energies, up to 35
GeV. We will compute I, for scalar-quarkonium

(PP bound state) and compare it with experimental
bounds, wherever they exist. The purpose is to see
whether scalar quarks can be detected as reso-
nances in e+e annihilation and whether they
have already been ruled out experimentally in some
range of energies. It turns out that I, is very
small, the reason being once more that scalar-
quark bound states must be produced in p waves.
Above quark masses of about 3 GeV, I, is much
below the experimental upper limits, even for a

2
scalar quark of charge —, ~ Moreover I, decreases

rapidly with the quark mass.
In Sec. III we will compute the hadronic decay

width of the 2I' scalar-quarkonium, and in Sec. IV
the radiative decay width to the 1S bound state It
turns out that the radiative decay dominates for
very heavy quarks. The 1S state, on the other side,
decays almost exclusively into hadrons (Sec. III),
since leptonic decay is forbidden. We will con-
clude this paper with a few comments on some
model-dependent decay modes.

II. LEPTONIC WIDTH

A bound state tt)P can be produced from e+e
according to Fig. 1. It must have therefore the
quantum numbers of the intermediate photon, i.e.,
J =1 . Because scalar quarks carry no spin, a
scalar resonance must be created in a state of an-

gular momentum J=1. The current matrix ele-

ment between the vacuum and a bound state PP of
1=1 and given polarization j is, to the lowest or-
der in the quark momentum,
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where m is the quark mass and M (equal to 2m

plus the energy eigenvalue) is the bound-state mass.
For a purely coulombic potential, instead,

FIG. 1. One-photon production of scalar-quarkonium
from e+e

(0~ J; iP,j&= t);g(0),vg

i

R'(0)
iI,(2P~e+e ) =24a Q (2)

where Rp is the radial wave function, M the rq, ass
of the bound state, a the fine-structure constant,
and Q the charge of the quark in units of the elec-

tron charge.
In order to evaluate the wave function appearing

in (2) we have numerically solved the Schrodinger
equation for the standard potential of heavy-quark
spectroscopy,

1
V(r) = ——+ r,

a
(3)

where x is normalized to =0.3 at the charmonium
mass, and I/a is inferred from charmonium fits
to be about 0.18 GeV .

In Table I we have listed the values of I, for a
large range of quark masses. In the computation

2
we have taken Q = —, . For scalar quarks of charge

Q = —, these numbers must be divided by four. For
comparison (see Table V), let us remark that for a
purely linear potential I, is

I,=6.4a Q2
a M

where Pp is the 2P wave function with polarization

j, and the factor ~3 is associated with color SU(3).
From (I) it follows that the analog of the Van
Royen-%eisskopf formula for the leptonic width of
a scalar-quark resonance is

As stated in the Introduction, scalar-quark reso-
nances can be considered narrow resonances. This
will become clear when we compute hadronic and
radiative widths. Also, as we will see, the leptonic
width is a small fraction of the total width. Ex-
perimentally, for narrow resonances (whose width
is much smaller than the beam-energy spread) one
measures the integrated area of the resonance cross
section. For a Breit-Wigner-type resonance this is
connected to the leptonic width by the formula

27r (2J+1) I I ho.„,dE =

and I"~/I =1 if the hadronic width predominates.
Results of the search at SPEAR for narrow res-

onances in the region between 5.7 and 6.4 GeV are
published in Ref. 3. To summarize them roughly
we say that they set an upper bound of =100 eV
on the leptonic width. Measurements in the region
around 7 GeV give I, &60 eV for 7.0&E, &7.4
GeV. Scans intended to search for tt bound states
have been performed at PETRA. In the energy
ranges from 29.9 to 31.5 GeV and from 35.0 to
35.6 GeV, these scans have set upper limits on I;,
of 0.7 and 0.4 KeV, respectively.

If we compare the above upper bounds to the
values in Table I, we conclude that scalar-quark
resonances are ruled out experimentally only for
quark masses. below 3 GeV. For a quarkonium
mass above 6 GeV, I", is below the experimental
bounds, so that scalar-quark resonances might well
have been missed. In fact the conclusion of this
analysis seems to be that scalar-quark bound states
are very difficult to detect as resonances in e+e
annihilation. Moreover, the difficulty increases
with increasing energy.

TABLE I. Leptonic widths of the 2P scalar-quark resonances for different values of the
2

quark mass and Q =—.M =—2m +e, where e is the energy eigenvalue and m is the reso-

nance mass.

(GeV)
M

(GeV)
r,

(eV) (GeV)
M

(GeV)
r,

(eV)

3.0
4.8
6.7
8.6

10.5

180
100
57
35
24

10
15
20
30
50

20
30
40
60

100

7.3
3.7
2.3
1.2
0.6
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III. HADRONIC WIDTHS

Before computing the width of any scalar-
quarkonium decay mode, it is important to under-

stand whether the 2P scalar-quark bound state pro-
duced in e+e annihilation is above or below the
continuum threshold. If it were above threshold, it
would be a broad resonance which decays mainly
into "scalar-containing" hadron, i.e., fermions
made of a scalar quark and an ordinary spin- —,

quark. Our 2P bound state turns out, however, to
be located below threshold. In fact, the 2P state is
below threshold in the case of charm, and accord-
ing to potential models it will be further below for
heavier quarks.

In order to compute the decay width of the 2P
scalar resonance into hadrons, we make the usual
assumption that the annihilation into hadrons
proceeds through gluons, the dominant contribu-
tion coming from the minimum number of inter-
mediate gluons. One-gluon decay is excluded by
color conservation, two-gluon decay is excluded be-
cause the two-gluon state is even under C (while
the 2P scalar-quarkonium has J = I ). So the
first possible decay is into three gluons which must
come in a C-odd color-singlet state. Therefore the
three final gluons must be in a d-coupling state.
This state is color symmetric, so the three-gluon
diagram of Fig. 2(c) is forbidden because of the an-
tisymmetric coupling at the vertex. The only
three-gluon diagrams are the ones in Figs. 2(a) and
2(b). In the radiation gauge, however, the ampli-
tude for Fig. 2(b) is quadratic in the quark
momentum. Therefore it has an extra suppression
factor of the order a, (

~ p ~

a: I/ao 0:a,m, where

ao is the Bohr radius of scalar-quarkonium) with
respect to the amplitude of Fig. 2(a), that is only
linear in the quark momentum. We will restrict
ourselves to the diagram of Fig. 2(a).

The calculation of the decay rate for this dia-

gram presents the same features as the correspond-
ing annihilation rate for charmonium. The graph

g~g

(c)
FIG. 2. Three-gluon decay of the 2P scalar-

quarkonium state.

becomes infrared singular if the momentum of the
gluon emitted from an external quark tends to
zero. The singularity arises from using in the cal-
culation the free propagator for the internal quark
line and neglecting the fact that the quark comes
in a bound state. An exact calculation would have
no divergence, but would have a logarithmically
enhanced term. The exact calculation would be
quite complicated, so we will derive here only a
rough estimate of this rate, by calculating the coef-
ficient of the logarithmically enhanced term. Ac-
tually one may calculate the diagram 2(a) as if the
gluons were photons and then multiply the answer

by the factor —„a, /a Q due to color and to the

difference of the coupling constants. So in the log-
arithmic approximation we get

mI g(2P~3g) = a, s

M
ln —.

6 is a cutoff that we can choose of the order ao
where ao is the Bohr radius of scalar-quarkonium,

ao ——2/m
We report in Table II the hadronic width of the

2P bound state for various values of the quark
mass. In the computation we have taken cz, =0.2
at the charmonium mass and scaled it logarithmi-

cally thereafter.
For completeness, we also compute the hadronic

decay width of the 1S resonance via the minimum
possible number of gluons, i.e., at the lowest possi-
ble order in o;, . The allowed diagrams for decay
of the 1S state into two gluons are shown in Figs.

TABLE II. Hadronic decay widths of the 2P scalar-quark resonance for Q = —,.

M
(GeV)

I'p(2P —+3g)
(keV)

M
(GeV)

F'g(2P~3g )

(keV)

3.0
6.7

10
20

500
200

18
3.6

30
40
60

100

1.4
0.8
0.3
0.04
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g y
= g

(a) (b)
FIG. 3. Two-gluan decay of the 1S scalar-

quarkonium state.

3(a) and 3(b). As above, we choose to work in the
radiative gauge and ignore the diagram 3(b) which
has an extra suppression factor of the order a,
with respect to the amplitude of 3(a). The hadron-
ic decay of the 1S state therefore turns out to be,
to lowest order in quark velocity,

where Rs(0) is the 1S radial wave function at the
origin.

In Table III we list the values of this decay
width for various quark masses, using the wave
function at the origin computed from the potential
(3). The hadronic decay is the predominant decay
of the 1S bound state, which of course has no lep-
tonic decay. The photonic decay into 2y is much
weaker. In fact the ratio between the two is

r(IS 2g) 2 ~, '
I (1S~2y) 9 Q a

for Q= —, .

tive width for some values of the quark mass. No-
tice that the electromagnetic width of the 2P state
starts out bigger than the corresponding hadronic
one, and decreases much more slowly with the
quark mass. This is compatible with the fact that
for a purely linear potential I r(2P~ IS+y) is pro-
portional to m i, unlike I z(2P~3g) that goes
like m i (see Table V). So the radiative decay
predominates for heavy enough quarks. A possible
way to discover scalar-quarkonium might be by
detecting the monochromatic photons from the ra-
diative transition from the 2P to the 1S state.

The 2P bound state could also decay to the 1S
state by emitting gluons. By color conservation,
two is the minumum number of gluons involved in
the process. If we could neglect the recoil of the
1S bound state, and assume that it is produced
with zero momentum, then the decay 2P~1S+2g
would be analogous to the decay of a spin-1 parti-
cle decaying into two massless spin-1 particles,
which is known to be forbidden. As a result, the
amplitude for this process is proportional to the
recoil momentum of the bound state. This is of
the order of the energy of the emitted gluons,
therefore of the order o,, m. It follows that the
cross section for this process is suppressed by a
factor of n, with respect to the corresponding de-
cay for fermion quarks. We therefore neglect this
decay.

V. CONCLUSIONS

IV. TRANSITIONS BETWEEN BOUND STATES

A 2P scalar-quark bound state can decay into a
1S state by emitting a photon with width given by

I r(2P 1S+y)= , aQ
~

E—lp
i

a)

where co=Eqp E&s and Ei2 ——— R &s(r)R2p(r)dr.
0

Again calculating the matrix element from the
charmonium model, we list in Table IV the radia-

To conclude, let us remark that the scalar-quark
resonance could have some model-dependent decay
modes which might be much larger than the
model-independent ones we have calculated. For
instance, the scalar quark could decay into an ordi-
nary quark and an antilepton according to the Yu-
kawa coupling l(A, +I,'y&)qP. This decay would
contribute a width (I, +A, ' /gn. )m to the scalar and
twice that, A, +A, ' /4n. , to the bound state (of

TABLE III. Hadronic decay rates of the 1S scalar-quark resonance for various values of
the quark mass aud Q = —,.2

(GeV)
M

(GeV)
I g(1S—+2g)

(keV) (GeV)
M

(GeV)
I p(1S 2g)

(keV)

1

3

5
10

2.6
6.3

10.5
20.4

3900
1200

650
490

15
30

50

30
60

100

270
180

150
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TABLE IV. Photonic transition decay rates for various
2

values of the quark mass, and Q = 3.
TABLE V. Scaling behavior of the various decay

widths for power-law potentials.

M
(QeV)

2.6
6.3

10.5
20.4

I,(2P~1S+y)
(keV)

680
130
65
25

M
(GeV)

30
60

100

r,(2P 1S+y)
(keV)

15
6.9
3.8

I,(2P~e+e )

I „(2P 3g)
I y(2P~1S+y)
r„(1S 2g)

V(r) ~r

—3/4a/a+2
—3+4a/a+2
—2+3a/a+2
—1+2a/a+2

V(r) ~r

—7/3

—7/3

—5/3

I-'

V(r) ~r

course for sufficiently low masses lepton conserva-
tion imposes upper bounds on the above coupling
constants); or the scalar could decay into two anti-
quarks with a similar formula for the width.
However, these decays could not both be allowed
or baryon-number conservation would be violated.

Some models also allow decay into an octet
quark and an ordinary quark. According to super-
symmetry the coupling constant for this decay is
&2g, where g is the strong coupling constant. The
quarkonium decay rate for this decay would then
be —, a, m, almost of the same order as the quark
mass. The decays computed in this paper, instead,
have been model-independent ones, with the bound
state assumed to be a narrow resonance. If the
model-dependent decays give the scalar quark a
width bigger than the energy splitting between

bound states, the description in terms of scalar-
quark bound states would break down.

Pote added. Some of the issues discussed in this
paper have been analyzed by G. Barbiellini, G.
Bonneaud, G. Coignet, J. Ellis, M. K. Gaillard, C.
Matteuzzi, and B. H. Wiik, DESY Report No.
79/67 (unpublished). I would like to thank M.
Peskin for drawing this reference to my attention.
Note, however, a factor-of-three discrepancy be-
tween Eq. (2) of this paper and the corresponding
equation on page 23 of Barbiellini et al.
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