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Baryon- and lepton-number violation by electroweak instantons
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We make a quantitative study of instanton-induced baryon- and lepton-number-violating processes in an

SU(2) )&U(1) electroweak gauge theory at zero and finite temperatures (in the "dilute-instanton-gas" approximation),

As an example we consider a simplified model involving only the proton, neutron, electron, and electron neutrino.

At zero temperature the total cross sections for p + n~ e + v and eleven other similar reactions are of order

s &10 '" cm', where s is the total center-of-momentum energy squared in GeV'. The neutron decays via

n~p + e + v with a lifetime of the order 10'" years. The cross sections and neutron decay width decrease with

temperature because color-electric-charge screening reduces the self-dual-instanton density at finite temperature. At

high temperature the cross sections (for a given s) and neutron decay width fall off as T ""in this simplified model.

It is suggested that correctly treating the instanton gas as very dense (as discussed by Berg, I.uscher, and Stehr) and

including finite-energy tunneling solutions could increase the predicted reaction rates.

I. INTRODUCTION

Lately various authors have studied baryon- and
lepton-number violation generated by superheavy
gauge bosons in grand unified theories. ' There is
one baryon- and 1.epton-number-violating process
which is a necessary consequence of relativisitic
quantum field theory itself. This is the Adler-
Bell-Jackiw (ABJ) anomaly' in the chiral limit of
negligible fermion masses. Remarkably, the ABJ
anomaly, the Belavin ef pl. instanton, ' and elec-
troweak baryon- and l.epton-number violation are
related phenomena, as first elucidated by 't Hooft.
He recognized that an instanton could be associated
with a violation of axial-vector charge equal to
that generated by the ABJ anomaly. In the limit
of massless fermions in left-handed SU(2) weak-
isospin doublets and right-handed singlets, this is
equivalent to a violation of fermion number (e.g. ,
baryon and lepton number).

Previously, Christ' has used 8-matrix theory to
study the anomalous creation of weakly interacting
fermions by a time-dependent background Yang-
Mills field at high energies. Using 't Hooft's ef-
fective-Lagrangian method, we undertake here a
quantitative calculation of the cross sections for
baryon- and lepton-number violation in an SU(2)
x U(1) electroweak gauge theory. These instanton-
generated process es will be cons ide red at both
zero and finite temperature. To do this we will
make use of the finite-temperature instanton-den-
sity calculation of Gross, Pisarski, and Yaffe.'

The outline of this paper is as follows. In Sec.
II we briefly review the relation between the ABJ
anomaly and instantons. In Sec. III, we review
't Hooft's construction of the effective 2N&-fermion
interaction generated by unit-winding-number in-
stantons in an SU(2) weak gauge theory and exhibit
the (zero-temperature) coupling constant for the

2N&-fermion vertex. In Appendix A a general
method for constructing effective-Lagrangian func-
tions is illustrated.

In Sec. IV we specialize to an SU(2) &&U(1) elec-
troweak gauge theory with two left-handed fermion
doublets: the proton and neutron plus the electron
and electron neutrino. We find that the reaction
P+n —e+ v and 11 other instanton-mediated bary-
on-lepton reactions have cross sections of the or-
der s&&10 '" cm' at zero temperature, where s is
the total center-of-momentum energy squared in
GeV'. 'The neutron decays via n- p+ e+ v with
a lifetime of the order 10"' yr in this model. A
brief calculational outline for these specific two
reactions is given in Appendix B.

In Sec. V we generalize 't Hooft's effective-
Lagrangian construction from Sec. III to finite
temperature. The form of the 2N&-fermion inter-
action is temperature independent with only the
effective vertex coupling becoming a function of
temperature. Since the presently known finite-
temperature instantons are self-dual, they have
zero energy. The classical tunneling amplitude for
such a solution will not increase with temperature
but will remain constant at exp(-Bv' ~n ~/g'). At
the one-loop level, the self-dual-instanton density
decreases with temperature due to color-. electric-
charge screening, ' and consequently the vertex
coupling decreases. For the above two-doublet
model, we find in Sec. VI that at temperatures
above 10"'K (approximately 100 GeV in energy
units), the coupling decreases like T 47~', while
below 10" K it is nearly temperature independent.
The neutron decay width and the various cross
sections thus fall off l.ike T "~' above 10"'K but
are nearly constant below this temperature.

We close with a discussion of our results in
Sec. VII. Because the instanton gas is thought to
be very dense rather than dilute, we conjecture
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that our "dilute-gas" reaction rates may be only
lower bounds on the actual rates for a dense in-
stanton gas. It is also possible that finite-energy
tunneling solutions could increase the finite-tem-
perature tunneling rate.

II. INSTANTONS AND THE ADLER-BELL-JACKIW
ANOMALY

acquires an anomalous divergence"

(2. 8)

where J (x) is defined to be invariant under non-
Abelian gauge transformations of the background
Yang-Mills field. In (2. 8) the matrix N, ~ is given
by

For an SU(2) gauge theory described by the Yang-
Mills (YM) Lagrangian

(2. 1)

N, ~
= ~~ Tr(r5QP' T~),

where 7."are the gauge-group generators.
In the case of (2. 5), the vector currents

(2.9)

F' „=8„a'„-8P;+g~„,a'„a„,
the winding number is defined as

(2. 10)

and the traceless part of the axial-vector current
2

(2. 2)
~', s~ =&P,r, r, 4~ (2. 11)

,
( )

2q; (x —z),
g(x —z)'+ p' (2. 3)

where s and p are the instanton position and scale
size, respectively, and q', „(q'„) is 't Hooft's' q
symbol which projects out self-dual (anti-self-
dual) tensors. The instanton (2. 3) is the WKB
interpolating field configuration, or "most proba-
ble escape path" (MPEP), ' for a tunneling from
one vacuum state to a gauge-rotated vacuum (not

obtainable by a series of infinitesimal gauge ro-
tations). The corresponding one-dimensional tun-

neling barrier in winding-number space is

where f'„=—,'s „F,' . For self-dual (instanton) and

anti-self-dual (anti-instanton) Euclidean field con-
figurations, n is an integer. Such configurations
are automatically solutions to the Euclidean equa-
tions of motion.

The unit-winding-number instanton in Euclidean
space may be expressed as

are conserved without anomalies. Hence, the
theory has an exact global SU(N~)~ x SU(N~)R x U(1)
chiral symmetry. The axial-vector current

(2. 12)

has an anomaly

~a pa
2

g p, )6+2 p, v gv ' (2. 13)

Comparison with (2.2) shows that a unit-winding-
number instanton can be associated with an axial-
vector- charge violation

&Q'=2N~ . (2. 14)

Because the U(N~)„&U(Nz)~ symmetry of (2.5) is
thus broken down intrinsically by instantons, and
not spontaneously, to SU(N&)s &&SU(N&)I, &&U(l), one
does not expect a physical massless Goldstone
boson to appear. This was 't Hooft's solution to
the so-called U(1) problem. '

V(q) = (3w'/g'p) &(q) (2.4)

with U(q) plotted in Fig. 1. Here q is a continuous
winding variable defined such that q(7'= -~) = 0 and

q(v=+~) =1, where v is the Euclidean time. The
WKB tunneling amplitude is exp(-8v'/g').

Now let us add N& massless fermion doublets
coupled to the gauge fields with Lagrangian

Ny

(2.5)

U(q)

.6

where .2

D g™=3P, — r'P'„g~—, n =1,2. (2. 8)
I l

0 I 2 5 4 5 6 7 8 9 lo

&„(x)= Itr„QP (2. 7)

In general, when a classical Dirac field theory is
quantized, the operator current

FIG. 1. The potential barrier U as a function of the
winding number q for an n =1 vacuum tunneling. The
winding number q is defined in Eq. (2.4) (taken from the
first paper under Ref. 7).
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III. EFFECTIVE LAGRANGIAN
IN THE CHIRAL LIMIT

D @'= 3 @' —jgT'A. '4,
[r', r']=f2., r

(3.2)

(3.3)

The spinors g are in Nz isospin--', doublets. The
gauge-invariant source term will be used to obtain
Green's functions. The indices s, t = 1, . . . , Nz

label isospin doublets.
The superficical chiral U(Nz) &&U(Nz) global sym-

metry in (3.1) is broken down to SU(N&) x SU(Nz)
xU(1) by an Adler-Bell-Zackiw anomaly associated
with the chiral U(l) current. Using the instanton

We will be discussing an SU(2) weak-isospin
gauge theory in the chiral limit with Lagrangian

& = --,'F'„,&;. D.-~*D„~ Py—„D„P+4.~.~4~

(3.1)

The complex scalar fields 4' may contain several
multiplets of arbitrary isospin I,

w=.„,&o I o&,„

DA. D DC D exp & ——,
'O' A. +2 „, d'x

(3.4)

fn (3.4), G(A) and g „,„(Q) are the gauge-fixing
and host terms, respectively.

If 0) is the vacuum, and ~0') is the gauge-rota, —

ted vacuum arrived at via a tunneling, then in the
absence of fermions, the total contribution to
(0'

~ 0) from all Euclidean paths that have a unit-
winding-number instanton at z within d z, with
scale between p and p+dp, is given by

dW=n(p)d zdp. (3.5)

Here n(p) is the instanton density

solutions, 't Hooft4 has calculated in the one-loop
approximation the chiral-U(1)-breaking part of the
vacuum-to-vacuum transition amplitude

n(p) = [det(-D'5, „—2E„),~;&„„„&] [det(-D'), 2;&,„„,&] „,, [det(-D')r~, ~t~&]
' exp[-8v'/g'(p)], (3.6)

where D, =8„—igA. , A.„ is the instanton field, and all fluctuation determinants are understood to be nor-
malized by the corresponding vacuum determinants. Specifically, 't Hooft has shown that

1 Bz' 1 Bm' 22 1 ~
n(p) =

2 2 —,exp —, + ———~N'(I)C(I) lnpp —o(1) —QN'(I)c. (I)
4m2 g2(p. ) p' g'(p, ) 3 6 I

(3.7)

where N'(I) denotes the number of scalar multi-
plets of isospin I. Each complex scalar multiplet
counts as one, and each real multiplet counts as
one-half. The coefficients C(I) and n(I) can be
found in Table I of the second paper under Ref. 4.

The one-loop contribution to (3.7) from massive
isospin- —,

' fermions would be
Ny

j [det(P + m, )]= [ (m, p det'@)
s=l s=l

Ny

(m, p exp[- —', inpp+2o. (-'2)]j.
(3.8)

In the chiral limit of massless fermions, mp must
be replaced by the lowest eigenvalue of the fermion
fluctuation operator when perturbed by .a small
source 8, , In this case the fermion fluctuation
determinant is

detM = D D exp M =detZ J det'

(3.9)

where M2 =@+J.
The zero-mode determinant is given by

detZ(J) =det(g* Jg) =det(g J„g,),
where the g's are the fermion zero-mode wave
functions,

(3.1o)

2p3 l j2
(p'+x') "'u" . (3.11)

(The instanton is at the origin here. ) The Dirac
spinors u (u*u=1) contain an isospin index n

(=1,2) and are left-handed chiral eigenstates
(y,u=-u). Recall that the propagator for a mass-
less fermion in coordinate space is

'y'x
F (x)

2 2( 2)2 (3.. 12)

Hence, for large x' the zero-mode determinant is
seen to have the form of an Nf-point Green's func-
tion with each source connected to the instanton
position (the origin 2' =0) by two fermion lines
(Fig. 2).

Because detZ(J) vanishes if J is set to zero, a
unit-winding-number tunneling occurs only when

accompanied by a 2N&-fermion point interaction at
the instanton location. Indeed, one can determine
the gauge-invariant effective interaction Lagran-
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J( x() J( xp)

g,f f(P, y) =(8ff'P')'&(P, (d)((d(j), )(4,(d)((dt )&

(8g2 p3)2

(26,()5„,—5,5(),)

INSTANTON

FIG. 2. The instanton-induced Green's function for the
case of two massless fermion doublets. The sources J
change the sign of the axial-vector charge Qs. The am-
plitude goes like J2.

gian 2,«('P, ()}) generated by the instanton. Since the
Lagrangian must reproduce the zero-mode behavi-
or (3.10) by an interaction vertex at the instanton
location z", it must satisfy

D D L,ff exp J =det ~J . 3e13

From (3.13) 't Hooft finds that the effective fer-
mion interaction can be written as

Sy

p. (p, ll)=e(() p') ' c'„( . p)( tete))p
S=1

where & is a parity reflection of the I, The
angular brackets denote the average over all gauge
rotations of ~,

&(d (d()&=-,'6 8(1+y ) .

For example, if we have two massless fermion
doublets, then

x (y(PA, gs}p}2A,p~~ —(t}f A, (I}28/~A, (1)fp) e

(3.16)

A, =-', (1, +y, ). This result is derived in Ap-
pendix A by an equivalent method' to 't Hooft's
gauge averaging. Anti-instantons, of course, give
rise to an effective fermion interaction which is
the Hermitian conjugate of (3.14).

As is evident from (3.15), the instanton-gener-
ated interaction (3.14) takes right-handed fermion
doublet states over to left-handed fermion doublet
states. Anti-instantons mediate the reverse re-
actions. The phenomenology of these interactions
will be explored in Sec. IV.

The product of (3.7) and det'P in (3.9) deter-
mines the effective coupling constant for the ver-
tex (3.14). Since a unit-winding-number instanton
can have any scale size, we must also integrate
over p. This integration over scale size has the
usual infrared divergence for p- ~ characteristic
of a scale-invariant gauge theory. For a weak-
interaction theory, however, the Higgs field will
provide a cutoff. The Higgs-field contribution to
the classical action has been estimated by 't Hooft
to be

4p2lg 2p2

where I is the isospin of the Higgs multiplet, and
I' ' is the Higgs vacuum expectation value.

With exp(S«) multiplying (3.7), the full effective
Lagrangian, Zpff(g), describing the instanton-gen-
erated interaction between massless fermions is

00 S~
pe(c}p e=ce'peexp( p cf p""s'eexp( Pctp'p')pp '(-Tpte)(PXP))+H. c. ,

0
(3.18)

where
t

where the effective coupling constant is given by

b = '~~ —g~Nf ——', QN'(I)C(I), (s.20)

g = f ce-a ff(}(4ffaIF2)(4 srvf (})I&--
-4 + 3Nf + bii (-8ff' i)

(xr &))exp',
( ),i . (3.23)

IV. ZERO-TEMPERATURE CROSS SECTIONS

Ng

'pee(e)=g
'

'(pe)(PX())+H. P. , ,
s=l

(3.22)

The integral over the instanton position z„cor-
responds here to the usual integration in coordin-
ate space over the vertex variable. Performing
the p integration in (3.18) yields 't Hooft's result

Since the interaction (3.22) couples left- and
right-handed ferrnion doublets, it can lead to a vio-
lation of fermion number in a gauge theory con-
taining left-handed doublets and right-handed sin-
glets. In this section we specialize to a very
simple electromeak gauge theory in which such vi-
olations occur.
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The theory we consider is an SU(2) xU(1) elec-
troweak gauge theory in the chiral limit with one
complex Higgs scalar doublet and two left-handed
fermion doublets: the proton and neutron plus the
electron and the electron neutrino,

P I

~$|JE nJE

ill w r+w

dC Js, 8Jr.

(4. 1)

'„ = (,r„r,4i +fumy. r542

have an anomaly' '
(4. 2)

(4. 3)

where F„„,E„'„are the four SU(2}xU(1) field
strengths and F„„,F'„„are their duals. Since the
topological quantum number for an instanton is

2
. 6 -a

n=32 2 F„„F„„dx, (4.4)

a unit-winding-number instanton can be associated
with a violation of axial-vector charge

The right-handed fermions (P„,ns, es) are taken
as weak-isospin singlets and do not couple to the
SU(2) gauge fields.

All currents that are coupled to gauge fields are
free of anomalies, and the model is renormaliza-
ble. However, the baryon ((,) and lepton ($,) cur-
rents

The effective coupling constant (4.8) has the value

9 = 3.71+'" x 10 ' ~ GeV20 27

using the SU(2) coupling constant

g'(p, ) =g'(100 GeV) = 0.412

(4.12}

(4.13)

and neglecting threshold corrections. (By way of
comparison, Newton's gravitational constant is of
order G„-10"GeV '.) The errors are due to the
experimental uncertainty in the Weinberg parame-
ter10

sin28~= 0.228 + 0.010. (4.14)

In (4.12) and ail subsequent equations, the upper
and lower errors on the preexponentials [of inter-
est where 0(l) factors are important] and ex-
ponents correspond to the upper and lower errors,
respectively, on sin'e~ in Eq. (4.14). For ex-
ample, for sin'8E, =0.238, we have g'(100 GeV)
=0.394 and 9=6.98x10"GeV '. We have taken
the renormalization point as p. =100 GeV since
this is the relevant renormalization point for the
instanton scale size integration in Eq. (3.18}.
The Higgs mechanism cuts off the p integral some-
where above 100 GeV, while below 100 GeV the
S", 8, and Higgs fields decoupl. e.

The value for g'(100 GeV) was obtained by run-
ning the SU(2) coupling constant

QQ5 4

or, equivalently, baryon and lepton number

(4.5) g'(Q} a EM

4F sin ~gr
(4.15)

(4.6}

in this model.
The instanton-generated effective Lagrangian

describing the baryon- and lepton-number-vio-
lating process is, according to (3.22),

~~ =8 (-' 6.E6,.-i66..6E,)

where

x (gA, Pg&,g', —g, A, Pg",&,P) +H. c.,
(4.7)

a(—') = 0.145 873, a(l) = 0.443 307 .

The Higgs vacuum expectation value is

F2 1F—

(4.8)

(4.10)

where 6 is the Fermi coupling constant"

G = (l.166 32 + 0.000 04) x 10 ' Ge V '. (4.11)

,( 8v'
8 =8v'i, exp[- a(1)+3a(2)1

g P)

x p&& 8(2vmF2) 4 ~ &F(~) exp[- 8E'ig'(p)] (4 8)

and'

from Q'= p,,'= 1 GeV' to Q' = p,
' = 10' GeV' using the

two- loop renormalization- group equation"

4v 4v 1 Q
g'(Q) g'(u. )

(4.16)

For our simple two-doublet electroweak theory,
we have Ni=2 and SU(N) = SU(2). The present
experimental value for the Weinberg parameter
given in (4.14) is determined in experiments with
typical momentum transfers of the order Q'- 1
GeV'. Consequently, we have taken the starting
value g'( p,,) in (4.16) at p,o = 1 GeV with asM = i+,
and sin'el, given by (4.14).

Let us now turn to the phenomenology of Eq.
(4.7). From the 1+y, structure in (4.7), we see
that a unit-winding-number instanton can cause
antibaryons and antileptons to annihilate and form
baryons and leptons. The Hermitian conjugate in
(4.7) describes the fermion to antifermion reac
tions mediated by anti-instantons. Because the
interaction (4.7) conserves electric charge but not
fermion number, the field E (I +y,)f, represents
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TABLE I. Differential and total cross sections for the
12 reactions described by the Lagrangian (4.22). Here
t is the invariant momentum transfer squared, s is the
center-of-momentum energy squared, and Z = 9 /72m

that'

g' = Cg, P = (C 'g')

y=Cy", q'=(C 'y)',
(4.20)

Reaction

e+ v p+n

do-/dI; total where in the standard representation

C =ay'y'=- C-'= C' = C~. (4.21)

n+v n+v

p+n- e+ v

n+v p+e

Z 1+—+

gZ

g
2

Z—
2

g2
Z~s

7Zs
i2

1Z

3Zs

3Zs

Using (4.20) and (4.21), one sees that the second
terms in (4.19e) and (4.19f) vanish, while (4.19a)-
(4.19d) can be consolidated into three terms. The
final result is

( 6 &5„,——'5,5&„(PA g"PA g, — P;A g"PA g, )

=v ((~A P„P;A g„—(~A g„P„'A g, + gcA P, tgA g„
p+e p+ e

—Z
1
4

1+—+ —Zs7
24

4Zs

p+e n+ v

p+p e+ e

n+n v+ v

e+e p+ p

f 2
—Z—2 2

f 2

gZ~

i
T6

Z

—Z1
i6

—Z1
i8

—'Zs
6

i Zs
8

—Zsi
18

i6
—Zs

i
i8
—Zs

the charge-conjugate field (g'}, s. Hence

g', A, = g~, g,'A, = P„,
(4.17)

yg'A g, P&A P, +tgA g„g„'A P„) . (4.22)

The terms in (4.22) give rise to the free decay
n-P+e+v plus the 12 two-body reactions listed
in the first column of Table I.

The neutron lifetime and the cross sections for
these reactions are straightforwardly calculated
using the charge-conjugate spinor identities
(B4) in Appendix B and the familar Dirac algebra.
The initial states are taken as unpolarized, and
final. spin s tates are summed over. A brief out-
line of the calcul. ation for P+n-e+v and n-P
+8+ v is given in Appendix B. We find the neutron
decay width to be

I'(n-P+e+ v) = ",' (1.67858 x10 "QeV').8'm„m,

(4.23)

and

A gl yc A y2 yc

Using the calculated value of 9 from (4.12), the
neutron lifetime is

+2/„A g g„A g& + tgA g, P„'A P&

+0:A 4.7:A 0, -T:A 4.P:A 0,

+7/ P.7;A 4. 7;A 4.7:A 4. -

(4.19b)

(4.19c)

(4.19d)

2q~A p q'A gc p'A p, /~A g~ (4.19e)

2gA q y'A q q'A g„g'A P ). (4.19f)

This expression can be simplified by recalling

(4.18)
A, g it;2, A, p ga

In order to study the particle-to-antiparticle
reactions (which are of inherent interest in our
part of the universe), we expand the Hermitian
conjugate in (4.7) explicitly and obtain

(- 5 5„-—'6 6 „)(g A P"g,A g, —g;A g"g A g )

=—' (2+A g„g&A g„+ $&cA p„gA p„(4.1 S)a

v =1.14+2' 9, z 10' yr.0
(4.24)

The invariant differential. cross sections and total
cross sections for the remaining 12 reactions are
summarized in Table I. For notational conven-
ience, we denote

g2
Z (4.26)

Using the value for 9 in (4.12), this quantity is

g —2 37 ~. 53~
&& 10 ~95+7 Ge~ 2 cm2

+ ~
(4.26)

The total cross sections are all of order s
x 10 "'"cm', where s is the center-of-momentum
energy squared in GeV'.

As is usual with four-fermion point interactions,
the total cross sections rise linearly with the cen-
ter-of-momentum energy squared s. The ef-
fective Lagrangian (4.7) is probably not physically
valid beyond Ws= 10"GeV, where gravity becomes
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important. In the next two sections we explore
the effect of temperature on these rates.

I2
gt2 ~ 2 P ~SPIV

g ~2+ y2 y2+~2+ p]2 (5.6)

V. FINITE-TEMPERATURE EFFECTIVE
LAGRANGIAN

The effect of temperature on the chiral-U(1)-
breaking amplitude (3.5) is determined by the
temperature dependence of the instanton density
(3.6). Gross, Pisarski, and Yaffe' have recently
made an. extensive study of finite-temperature
SU(N) gauge theories and imbedded self-dual
SU(2) instantons. They find that at high tempera-
ture thermal excitations produce a plasma of
quarks and gluons which screens all color-electric
flux, and quarks become unconfined. This is evi-
dent from the correlation function of the timelike
component of the gauge fieM,

(A, (x)A, (y))- exp(-m„~ x -y ~) . (5.1)

The one-loop electric screening length is

= [3g T'(N+ 'N )] iI'— (5.2)

for an SU(N) gauge theory with Nz fermion funda-
mental representation multiplets. Here II,„(k) is
the gluon self-energy.

At finite temperature the boundary condition of
fields vanishing at temporal infinity is replaced by
periodic boundary conditions in Euclidean time.
A periodic instanton can be constructed from the
multi-instanton solution which describes an infi-
nite string of instantons located at x = 0 (arbitrary)
and r =nP, ne Z, with identical sizes and gauge
orientations. The 't Hooft aligned instanton solu-
tion ls

where p" = p'/(1+ 3X') and X=mp/P. This is like a
zero-temperature instanton with a renormalized
size p'. When p' «x «P, the solution is like a
four-dimensional self-dual dipole. For distances
r»P, the periodic instanton is approximately

6 afj jA;-, , A;----,' gr'(1+r/Xp) ' ' gr'(1+r/&p) '

exp I „fdic' =exp —E —2 2m V q

zp~ *dqI
where

(5.8)

(5.9)

The competing effects of the %KB tunneling factor
and the Boltzmann factor result in there being a
path with some optimal energy maximizing (5.8).

If y» Xp, this describes a three-dimensional di-
pole field. If p «r «Xp, the solution is like a. dyon
with unit electric and magnetic charges.

Periodic Euclidean solutions are interpretable
as "finite-temperature most probable escape
paths" (FTMPEP's) in the WEB sense. ' They are
the tunneling paths with the maximum barrier-
crossing probability at a given temperature. For
example, in the fami]iar one-dimensional double-
well potential of Fig. 3, the finite-temperature
barrier-crossing probability is given by the pro-
duct of the Boltzmann factor and tunneling factor:

A„=—II rP „(r~/2j)B„II ~, (5.8)

where

(5.4)

describes E instantons with positions g„and sizes
p„. For p„=p and@„=np& (nEZ), this becomes the
single periodic instanton"

~p' sfnh2wr/P
Pr cosh2mr/P —cos2mr/P ' (5.5)

where r =
( x ~. Here the instanton solution is ex-

pressed in the so-called ' singular" gauge where
A„has a pure gauge singularity at r =a =0 (which
can be removed by a periodic gauge transforma-
tion) .

For distances
~

r'+r' ~'~' «p, the periodic in-
stanton is approximately

FIG. 3. The potential for the symmetric double-well
anharmonic oscillator. The dashed tunneling path with
optimal energy E and turning points +a represents the
periodic instanton for a given temperature T. Above a
critical temperature T, the instanton becomes static at
the energy E=VO.
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This thermally activated path is a periodic instan-
ton and results in an increase of the barrier-
crossing probability. However, above a critical
temperature

1 1 d Y(0)
2' m

(s.io)

W= exp(-8v /g'), (5.11)

independent of temperature. By relaxing the pure
gauge boundary condition, it might be possible to
find finite-energy tunneling paths like those in the
double-well potential, but this is speculative at
present.

Combined quantum and thermal fluctuations alter
this classical thermodynamic picture. Generaliz-
ing 't Hooft's one-loop calculation of the fluctua-
tion about an instanton to firiite temperature,
Gross et al. have reevaluated the fluctuation de-
terminants in an SU(N) gauge theory using perio-
dic temporal boundary conditions.

Using the fact that H 8 II = 0 for any 't Hooft
solution (5.3), the zero-mode normalization inte-
grals can be changed to surface integrals at spatial
infinity. These integrals may be evaluated by us-
ing the asymptotic form (5.7) and turn out to be
completely temperature independent. Further-
more, the determinants can be written as

Indet(-D'/-S')
~
r=lndet(-&'/-S') ~r.,+5(~),

the instanton becomes static." Physically this
means that the most probable crossing path is the
one with energy equal to the barrier height V,.
Above T, the crossing probability is simply e

The periodic instanton (5.5) is a self-dual solu-
tion, and consequently it automatically satisfies
the field equations and has zero energy. This solu-
tion becomes a pure gauge at spatial infinity. Un-
der these conditions it is a local minimum of the
Euclidean action with one unit of topological charge
in the physical strip 0 ~ r ~ p." The periodic in-
stanton (5.5) then apparently connects zero-energy
Minkowski states, which makes it physically un-
derstandable why its classical tunneling amplitude
is

u (p, T) =n (p, 0) exp -5, (A) —g N'(I) 5 (y)
I

(s.14)

Here

A. =w pT,

s,g, (X) = g gX'+A(A)

(s.is)

(s.i6)
('tl =+1 for periodic fields and -2 for antiperiodic
fields),

5,(&) = —,X'+16A(A),

A(~) = ——,', ln(i+~'/3)+u(1+yX- ~')-

~ =0.012 897 64,

y =0.1.5858,

(s.i7)

(s.is)

(s.19)

(5.20)

xexp — 2 sz )p
2m'

2 2
g2

2m 2
lpT)e ' exp — m„'p)

~q p f izBti

(s.2i)

(s.22)

The exponential factor in (5.22) is the screening
factor, with large instantons being suppressed
compared to small ones.

The contribution of fermions to (5.14) is

Ny Ny

[det(p+m, )]= (m, p exp[-3 lnp p+2&(2)]

x exp[-z A. +2A(X)]). (5.23)

In the chiral limit of massless fermions, the ferm-
ion zero-mode determinant

1et Z (J)= det (g*Jg) (s.24)

and n(p, 0) is the zero-temperature density (3.7).
The instanton density decreases with tempera-

ture due to color-electric screening generated by
thermal fluctuations. Comparison with (5.2) shows
that the finite-temperature correction in (5.14)
from the gauge (plus ghost) fields can be written
as

exp[-5, (A)] = (1 +v'p'T'/3)' ' exp(-16& [1+y(w pT) '~ '] '}

where

(s.i2) replaces the m, p factors, just as it did in the zero-
temperature case. The finite-temperature ferm-
ion zero-mode wave functions are'

T

6(A,) = dT', trln(-D'/S )
~

&. . (s.i3) y =II"'r s(y/11)pu, (s.2s)

All finite-temperature determinants are thus given
by the zero-temperature determinant multiplied by
a temperature-dependent correction exps(A. ).

For the SU(2) gauge theory described by (3.1), in
the absence of fermions, the result of Gross et al. '
for the finite-temperature instanton density is

cos' r /P
coslmx/P

(s.26)

As Gross et al.' have noted, the periodic instan-
ton (5.5) has various length scales such as p', p,

where II is given by (5.4), r —= (-i, r, ), r = (i, &.,.), —

and u is the Dirac spinor defined in (3.11). Here
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and Xp. Different scales are relevant for different
physical effects. Most of the instanton action
density

Ed —F' = —s (8 lnII)2 (5.2V)

is concentrated in a region of size p' about the
center of the instanton rather than p. At finite
temperature the field strengths do not spread out
over larger regions as p- ~. For baryon- and
lepton-number-violating effects then, we see
from (5.6) that, having interacted with the finite-
temperature instanton in the core region x- p', the
massless fermions propagate away from it into
the region x» p'. Since the finite-temperature

fermion zero modes approach the zero-tempera-
ture modes in the limit P- ~ with a temperature-
independent normalization, the form of the effec-
tive fermion interaction (3.14) is unchanged at
finite temperature.

The finite-temperature factors in (5.14) and
(5.23) now multiply the zero-temperature Lagran-
gian (3.18) to yield the finite-temperature fermion
inter action Lagrangian

N~

&,« -9 (T) ($,(d) ((d(t(, ) + H.c. , (5.28)

where the temperature-dependent coupling constant
is given by

Z(T)=ee p ezp -- p
' xedepe p z— delp + x T)p

-(16—2N~)A(vpT) Q N'(E) 5 (vpT)
I

VI. FINITE-TEMPERATURE CROSS SECTIONS

(5.29)

%e can now apply the results of Sec. V to study the effect of temperature on the baryon- and lepton-num-
ber-violating processes discussed in Sec. IV.

Because the form of the effective fermion interaction (3.14) is temperature independent, the finite-tem-
perature cross sections for the 13 reactions in Sec. IV can be obtained by simply taking 9 in (4.7) to be the
temperature-dependent coupling (5.29). As is evident from (5.29), the effective coupling 9 decreases with
temperature. This is a direct consequence of the decrease in the self-dual instanton density at finite tem-
perature due to color-electric-charge screening. Hence, all of the reaction. rates in Sec. IV decrease with
temperature in the dilute-instanton-gas approximation.

For the SU(2) &U(1) electroweak theory of Sec. IV, the temperature-dependent coupling is explicitly

,f 8v'
35 69(T)=16v'~ 2 exp[-o'(1)+3&(2)] p,
" 'exp, dpp '(1+m'p'T'l3)" "

(g'(u) ' g'(u)

Vm'r'&t,2~'S'+ p' &3~ &+yips '~' ' .3 )

(6.1)
[The constant c( in the last exponent of (6.1) is given by (5.19) and is not related to c'(1) and o'(y) in (4.9).]
Introducing the dimensionless variable

7&2Z 2 &/2
x=f(Tlp (Zx'p + . p, =—

the coupling (6.1) may be written as

(6.2)

I

(((Z)=Z(O) '„((,",) f dxx ' '(1+ ) ezpI —x' —(Z (ex( ) (6.3)

where 9 (0) is given by (4.8).
The above integral is easily evaluated numerical-

ly for any temperature T. In Fig. 4, the ratio
9(0)/9(T) is plotted as a function of temperature
up to T =10"GeV (10'2 'K), where gravity be-
comes important. The effective finite-tempera-
ture Lagrangian (5.29) is probably not physically

I

valid above this temperature. Below T =100 GeV
(10" 'K) the coupling is approximately temperature
independent. At high temperatures (T» 100 GeV)
the coupling decreases as a power of T,

9(T» 100 GeV) = 0.0140469(0)(G~E 'T) ~'E'

(6.4)
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where & is the Fermi coupling constant in (4.11).
The neutron lifetime for temperatures T» 100

GeV increases as

(8.5)

The cross sections in Table I at such temperatures
decrease as

o(T) =1.9729 x10 (O' 'T) " 'c'(0) . (8.8)

VII. DISCUSSION

Using 't Hooft's effective-Lagrangian method, it
has been straightforward to quantitatively calculate
the magnitude of various instanton-mediated bary-
on- and lepton-number-violating processes. To
study more diverse reactions than we have, one
can add more lepton doublets, and quark doublets
can be used instead of our phenomenological pro-
ton-neutron doublet. One effect of additional SU(2)
fermion doublets is to increase the coupling 9(0).
The magnitude of 9(0) is governed by the factor
exp[-8m'/g (p, )] in (4.8). For six flavors g'(100
GeV) in (4.13) increases from a median value of
0.412 to 0.440 (neglecting threshold corrections).
The coupling 9(0) then increases from a median
value of 10 "GeV ' to around 10 "GeV '. Another
consequence of more doublets is to cause 9(T) to
fall off faster at high temperature, specifically
like

(7.1)

I & I I I & I s I I I t I s I i I i I i I

-20 -16 -12 -8 —4 0 4 8 12 16 20
10g T [Gev]

FIG. 4. The logarithm of the ratio of the four-fermion
couplings g(0)/g(T) as a function of the temperature T
(in Gev). The inset figure is an enlargement of the knee
region around T=100 GeV (10~~ K).

(the final term in the exponent d being due to the
scalar fields). For six flavors and one Higgs iso-
doublet, 9(T) falls off like T 'O3~'.

The smallness of these rates is experimentally
disappointing. It should be remembered that our
results were obtained by considering only a single
unit-winding-number instanton. As discussed by
Berg and Luscher x and Berg and Stehr i th
(zero-temperature) instanton gas is not dilute but
in fact very dense. One would expect the probabil-
ity for baryon- and lepton-number-violating pro-
cesses to increase in such a dense gas because at
any point in spacetime the number of instantons
with which fermions could interact would be much
greater than one. Presumably, generalizing the
calculations of Berg et al. to finite temperature
would allow one to determine the effect of temper-
ature on these violating processes in a dense in-
stanton gas.

As was noted in Sec. V, the currently known
periodic Yang-Mills instantons become pure
gauges at spatial infinity, and their classical tun-
neling amplitudes are temperature independent.
Finite-energy tunneling paths would obey a differ-
ent boundary condition and could be local minima
of the Euclidean action independent of the above
instantons. Their classical tunneling probability
could conceivably increase with temperature. As
the vacuum tunneling barrier in Fig. 1 suggests,
such paths might be periodic non-self-dual solu-
tions with noninteger winding numbers. Recently
non-self-dual complex solutions with finite, com-
plex Euclidean action have been found in an SU(2)
gauge theory. " Periodic non-s elf-dual solutions
may well exist too.

Finally, since all of our calculations assume
thermodynamic equilibrium, nonequilibrium eff ects
on our rates are unknown. Hence, although the
smallness of these rates is not encouraging, one
cannot rule out that finite-energy tunneling paths
along with nonequilibrium and dense-instanton
effects might increase them in, for example,
heavy-ion collisions, dense stellar interiors, or
the early universe. At the very least, it is grati-
fying to know that we can now perform some quan-
titative nonperturbative calculations.
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APPENDIX A: EFFECTIVE LAGRANGIAN
FUNCTIONS

We wish to construct an effective Lagrangian
satisfying

Using the zero-mode wave function (3.11}with the
instanton at the origin, (A5) becomes

d. z„r (x-y)&(y)r (x-y)
4w'(x —y)'

D D «, e =det *J (Al)
2p, tr(u*Ju)(p'+x') '

This can clearly be done if there is only one fer-
mion doublet, since the effective Lagrangian must
have the general form

2 3
= ~ tr(Ju„u„*)(p'+x') '

4. (V, V)=r&'vV(v)&(v)V(v), (A2)

(p'+x ) 2tr J'

where we have used the identity4

(Av)

where A( y) is to be determined. Substituting this
into (Al) gives Q u.u. = 2(1 r,)- (A8)

g7 d4y y g y y et~4 2)(:J (A3) For large x', then, we see that

(The $ and P on the left-hand side are fields,
while the g* and tc) on the right-band side are zero-
mode wave functions. )

When we expand the exponential in (A3) in powers
of J, only the linear term will survive upon con-
traction with 7()( y}A( y) I()( y):

&(y)=
2

'f(y),

where f(y) satisfies

(A9)

(A10)

d'y xJx x yA y y= *J (A4) This implies th taf ( )y= 8 p«2(5y) and

or &(y)=«'p'
2

'5'(y). (A11)

-tr d yJxS~x —yA yS~ y-x = *J

(A5)

Hence, for a single doublet, we find that (with the
instanton at the origin, z" = 0)

where Z,«(p, II)) = 8«'p'T()(0) ' It(0) . (A12)

r (x-y)
Sl,(x —y) =, ,4.2)l (x —y)

' (Ae)
In the two-doublet case, the zero-mode deter-

minant is

def. (PQJP) I( 1 llkl 41 1242

CJ»41 &2J»42

232
p'+ x tr u J yu tr u*J»u —tr u*J„u tr u*J2yu

p'+ ' 'tr» 't » ' -tr J„'tr J„ (A13)

Drawing upon our experience with the one doublet case, we take the effective Lagrangian to be of the
general form

(V, V)=(()v' ')' ()- 'V'P 'V.4 „+; 'V.'." 'V. , )
1+

for large x'. The only terms from e2 2 that will survive when contracted with Z,«(IF), Ic)) are
X

I(1 1141 02 22%F2 + 41 12m(2 02 2141

This contraction yields, when equated to (A13),

(A14)

(A15)
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(8n p ) ([6~ s6y~ tr(J„Si,A, Si,)tr(J2~Si,A+Si, ) —6„~6sr tr(J,2S~A+S~2iSgA+Sp)]A„sy
+ [-6«68& tr(J»SzA+Sz J»Si,A, Sz)+ 6 «6& ~ tr(J»S iA, Sz)tr(J»SzA, Sz)]B„a&J"

I2'p
~(» ) ftr(J„A )tr(J„A ) —tr(J„A )tr(J„A )], (&16)(ir' j

where

A, = —,'(1+ y,).
Because of the symmetry in the isospin indices

of (A16), the most general forms for &„zz, and

B+8 y& we need consider are

9M=-(v,A u, u,A v4-v, A v,V,A v,

+v,A vV, A v,). (B2)

Owing to the presence of u and v spinors, one
will get cross terms such as

and

Aaaya a16+86y~ + a26a a6 By (A18) v iA u2u~A v~v ++v 2v4A+ v i

in the expression for ~M I'. Vse of the identities"
B~ay. = b16n86ya+ b26aa68y ~

Substituting these into (A16), one finds that

(A19) v=Cur, u=(C 'v)

u=CVr, V=(C 'u)r,
(B4)

6~86yQ ey, ——4a, +2a, = 1,
6~a 68y+aaya 2a1+ 4a2

(A20)
[where C is given by (4.21)] will always trans-
form these into the more familiar forms in which
the usual Dirac-Algebra identities are applicable.
In the case of (B3), for example, one finds

6~~68yBaeya = 2b, +4b2= 0,
(A21) 1 2 3 4 3 + 2 4 + 1 1 " 2 2 + 3 3 " 4 4 + 1'

The solutions are

a= — a= —— b =-- b=-1 1 1 1
1 3& 2 6& 1 3& 2 6' (A22)

Averaging over initial spin states and summing
over all final spin states, the amplitude (B2)
squared becomes

The effective Lagrangian (A14) is then ( tM f') = —,
' g jM J'='.p~

(B6)

Z„,(y, y) = (26,6„.—6„.6,„)
(8m'p')'

&& (PA+4~92 A.0: PA. 02'O'—A+0:)

(A28)

This method can be extended straightforwardly to
more doublets.

where Ws is the total energy in the center-of-
momentum frame. The invariant differential cross
section is defined as

APPENDIX B: PROTON-NEUTRON ANNIHILATION
AND FREE-NEUTRON DECAY

A. p+n~e+v

~h~~~ p=
~ p, ), . In the negligible-mass limit,

P'= s/4, and we obtain, for P+u-e+ v,

de & 92s
dA ~. 576n' ' (B8)

The four-momenta of P, n, e, and v will be de-
noted P„P„P„and P4, respectively. Using the
fact that

g(t v iP.'~xidt —iP'x)

(Bl)

da 8
dt 144@''

' dO 92S
dt—

B. n~p+e+v

(B9)

(B19)

P=g(hue '~'*+dtve' ' ),

the Feynman amplitude for p+ n- e+ v arising
from (4.22) is

The four-momenta of n, P, e, and v will be de-
noted P„P„P„and P4, respectively. The
Feynman amplitude for n- P + e+ v arising from
(4.22} is
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9M= @~A Q~Q~A V4 —Q2A V4V~A 5~Q 1 3 4 2 " 4 1 3

+ u,A v,V,A v,}. (B11)

mately at rest .Equation (B12) becomes

( (~ ~2} = -88'm„'m, '.
The neutron decay width is

(B18)

spins
(B12)

Averaging over the initial neutron spin states
and summing over all final spin states, the am-
plitude (Bll) squared is found to be

I dC

where the three-body phase-space factor is

(B14)

In neutron decay, the P carries away a negli-
gible amount of kinetic energy in the neutron rest
frame. In this frame, the n and P are approxi-

Using the fact that the n and P are nearly at rest,
and that the v is (essentially) massless, the in-
tegra, l (B14) can be evaluated exactly to yield

1 E @2~2)/2
z (E *—m *)'&*—m '1n " ' ' —-'(@ *-m *)'~'I

167r3m 2 3
(B16)

(1.678 58x 10 "GeV'),
16m mp

(Bl7}

where E, is the neutron-proton rest-mass difference, and m, is the electron rest mass. The decay width
is then

mI'= " ~(1,67858x 10 "GeV').36' (B18)
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