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Petite unification of quarks and leptons
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A, general discussion of a quark-lepton unification characterized by the gauge group
Gs (3 G~ with two coupling constants gs and g~ and by the unification mass scale
M =10 +—' GeV is presented. The choice of G~ is quite restricted by the measured value
of sin 8~. The minimal model of such a unification turns out to be SU(4)ps SU(2)L
8 SU(2)& 8 SU(2)L, 8 SU(2)~, where the first three factors constitute the well-known

Pati-Salam group. The presence of SU(2)L, 8SU(2)~ is required by the measured value
of sin 0~ and it implies the existence of mirror fermions whose masses may range from
20—30 GeV to a few TeV. The lightest mirror fermion might be relatively long lived
when compared to an ordinary sequential heavy fermion. The model accommodating all
known quark and lepton generations gives the correct sin'0~-0. 22 and at the same time
can be made consistent with the experimental bounds on rare transitions induced by lepto-
quark exchanges.

I. INTRODUCTION

If it is true that at presently attainable energies
the strong and electroweak forces are described by
an SU(3) 8 SU(2) SU(l) gauge theory, then it is
natural to expect further synthesis at higher ener-

gies. At present, the most attractive candidates for
such a synthesis are the grand-unification
schemes, ' in particular SU(5). In those
schemes, strong and electroweak interactions be-
come unified at a very high mass scale of —10'

GeV, with quite possibly relatively little new phe-
nomena populating the energy region of -10 to
—10' GeV. There are good reasons, such as the
approximate agreement of the measured value of
sin 8~ with the theoretical expectations ' and the
economical assignment of known fermions to
SU(5) representations, to take the grand-unification
idea very seriously. However, there are also well-

known difficulties, in particular the large number
of arbitrary parameters and especially the lack of a
credible scenario of spontaneous symmetry break-
ing.

Given this situation, it may be of importance to
carefully examine less ambitious alternatives. Our
purpose here is to examine a limited class of such
alternatives. We assume that at some distance
scale, not too many orders of magnitude less than
the Compton wavelength of the intermediate bo-
sons W +—and Z, the SU(3) SSU(2) SU(1) gauge
theory, characterized by three coupling constants,
becomes embedded in a gauge theory G& SG~,

characterized by only two coupling constants gz
and g~. That is, we assume the strong group Gq
and weak group G~ each are either simple or
pseudosimple, i.e., a direct product of simple
groups with identical coupling strengths. We call
such a possiblity petite unification. Any subse-
quent unification of the strong force with the weak
at still shorter distances we shall leave uncon-
sidered.

It turns out that it is not easy to find realistic
models of such petite-unification schemes, at least
in a reasonable economical fashion. We shall ar-
gue that the best candidate theory is based upon a
Pati-Salam SU(4) strong group, where lepton num-
ber plays the role of a fourth color. The weak
group Gs can be [SU(2)] or [SU(4)] [or, if one
does not mind extravagance, SU(8)].s

It turns out that the choice of G~ is quite re-
stricted. The charge operator is evidently a linear
combination of generators of G~ and G~, with
coefficients of order unity. This implies that the
electromagnetic potential 3& is a linear combina-
tion of strong gauge fields with coefHcient of order
e/gz, and of weak gauge fields with coeAicient
e/g~. It follows that in the limit of gz)&g~, the
electromagnetic gauge field resides almost com-
pletely in G~. Because of this, a representation of
Gz S G~ which is singlet under Gz will have the
same relationship to the SU(2) 8 U(1) electroweak
generators as would be the case were 3& complete-
ly contained within G~. In particular, the relation
of Georgi, Quinn, and Weinberg,
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2sin e~=
T3'

2

sin Op

Adj of Gs

+0
as

+renormalization-group corrections .
(1.2}

For the standard Weinberg-Salam SU(2)

T3'
2

(1.3}

where the sum goes over the members of a
representation of G~ (for instance the adjoint
representation), survives almost intact. Specifically
we find

efficient choice of a strong group, and is the sim-
plest case for which the electroweak U(1) generator
is a linear combination of both Gs and G~ genera-
tors.

Hereafter in this introduction, we restrict our at-
ten«on to SU(4) @[SU(2)]' and inquire as to the
particle content of such a "minimal" model of
petite unification. The first two of the four elec-
troweak SU(2) groups may be identified with the
SU(2)1 8 SU(2)ii of a conventional left-right-
symmetric model. The final SU(2)r. 8 SU(2)ii
pair can be associated with similar "mirror" de-
grees of freedom which do not couple to the con-
ventional W+— (or its heavier right-handed counter-
part}. More specifically, for each generation, we
introduce a set of two-component Weyl fermions

4; (a =1,2,3,4; i =1,2) transforming as (4; 2, 1;
1,1)L +(4; 1,2; 1,1)1, e.g.,

and we therefore see that a considerable enlarge-
ment of G~ is required. For example, for the
group [SU(2)]", one obtains

T3'

Q2
RdJ

n
(1.4)

2

Xa'
color3, L

9
10 ' (1.5)

implying at the least a large number of additional
quarks and/or new quarks of charge & 1. We shall
not consider SU(3), further, but shall choose in-
stead SU(4), built in the manner of Pati and
Salam. ' This provides what appears to be the most

A detailed analysis of options for Gs is given in
Secs. III and IV; the smallest acceptable G~ does
turn out to be [SU(2)] . Coupling-constant renor-
malizations must also be considered; this is done in
Sec. VI. The qualitative behavior is unaffected by
these modifications, especially if one chooses the
petite-unification mass scale not to be inordinately
large.

What about Gs? Can it be SU(3},? If so, then
the photon would be contained entirely within G~,
and the Georgi-Quinn-Weinberg formula, Eq. (1.1),
would apply to all representations of G~-
including fermions. For example, all left-handed
color-triplet fermions would necessarily form a
representation of Gs . The known ones (e.g. ,
ul. ,dL, ) satisfy

Q2 d2

Q3 d3

Vq e

The mirror fields, ' whose masses may range from
20—30 GeV to a few TeV, then transform as (4;
1,1; 2, 1)1 +(4; 1,1; 1,2)2 ..

Ui D]

The existence of these mirror fermions is required
by the permutation symmetry among the SU(2)'s
assumed ab initio.

From the form of 4 we see that leptons provide
the fourth color degree of freedom. It is easy to ar-
range spontaneous symmetry breakdown of SU(4)
to SU(3). For example, a real adjoint Higgs
representation 15 provides the six leptoquark bo-
sons with mass, and does not generate any baryon-
number violations. It also generates no fermion
mass. The leptoquark mass scale must be quite
large ( & 100 TeV) in order not to produce unac-
ceptable neutral-current interactions. The
phenomenology is discussed in Sec. VII.

The 15th generator of SU(4) is proportional to
B —L." It combines with the sum of the four
electroweak T3 generators to become the elec-
trornagnetic field, in accordance with the general-
ized Gell-Mann —Nishijima relation
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1

Q 2 (~ ~}+T3L+T3R+T3L'+ T3R' ( g}

The mass generation of the twelve electroweak

gauge bosons can be accomplished by four Higgs
multiplets transforming, respectively, as (4; 2,1;
1,1), (4; 1,2; 1,1), ...(4; 1,1; 1,2). Other SU(4)-
singlet representations of the (2,2) type may also
be introduced to provide the fermion mass. How-

ever, the overall scheme for fermion-mass genera-
tion must be quite complicated in order to account
for acceptable v masses, full SU(4) breaking in the
mass matrices within a generation, Cabibbo mix-

ing, and the fermion-mass hierarchy among genera-
tions. While the scheme itself does suggest a
variety of avenues to explore, the study of the
fermion-mass generation is beyond the scope of this

paper.

The paper is organized as follows: In Sec. II, we

present in more detail the general structure of
petite unification, we list our main assumptions,

and we derive Eq. (1.2). In Sec. III, we study the

restrictions on the choice of G~ coming from the

observed value of sin 8s.. In Sec. IV we enlarge

this consideration to include fermion representa-

tions, and show that, upon assuming SU(4) for the

strong group, many possible candidates for Gs are

eliminated, and that SU(4) 8 [SU(2}] seems to be

the simplest candidate for a petite-unification

model. In Sec. V we present the fermion, gauge-

boson, and Higgs-boson content of the

SU(4) 8 [SU(2)] case, and we outline spontaneous

symmetry breakdown of this gauge group down to
SU(3), 8U(1)EM. In Sec. VI, we study, via a
renormalization-group analysis, the predicted value

of sin Ha. For SU(4) 8 [SU(2)], the value agrees

with experiment for a wide range of parameters.

Section VII is devoted to phenomenological impli-

cations. The most important of these are a conse-

quence of the lepton-quark unification at a rela-

tively low mass scale, and are rare flavor-changing

decays and neutral-current processes induced by

leptoquark exchange. We also briefty discuss the

phenomenology of the lightest of the mirror fer-

mions whose masses could be as low as 20—30
GeV. Section VIII consists of concluding remarks.

II. BASIC STRUCTURE

A. Basic assumptions

We shall first list our main assumptions without

yet specifying the fermion and gauge-boson content
of the theory.

(A) We choose as the unifying gauge group

G=Gs(gs}8Gs(gs» (2.1)

where Gz and G~ stand for the strong group and

the weak group, respectively, and gq and g~
denote the corresponding couplings. We assume

G~ and G~ each are either simple or pseudosim-

ple, i.e., a direct product of simple groups with

identical couplings.
(8) We assume that G is broken down to

SU(3), 8 U(1)EM according to the following

symmetry-breaking pattern:

G~Gi~G2~SU(3), 8U(1)FM .
M M M~

Here

(2.2)

Gi ——SU(3),(g3) 8 Gs(gs }8 GIY(gw)

with SU(3), 8 Gs C Gs, and

(2.3)

G2=SU(3), (g3) 8SU(2)L(g2) 8U(l)(g'),
(2.4)

where 62 represents the "standard" model, i.e.,
quantum chromodynamics (QCD) for the strong
interactions and the standard SU(2) 8U(1) model'

for the electroweak interactions. Furthermore, the
scales at which the symmetry breakings occur
satisfy

Mg (M&M (2.5)

with M~ being of the order of the 8'-boson mass.
It should be remarked that in principle the break-

down of the group G could directly occur down to
the group 62. In order to have our discussion
more general we shall allow for an intermediate

stage at which the group 6& is an unbroken gauge

group. Such a hierarchy also seems to be a re-

quirement forced by data on sin 0~ and rare decay
processes —at least for the most economical
models.

Furthermore, in accordance with our early
petite-unification idea we require the following.

(C) M and M are only a few orders of magnitude

larger than M~.
(D) The weak hypercharge U(1} group of Eq.

(2.4) merges into both Gs and Gii at the mass

scale M.
Requirement (D) allows us to put quarks and

leptons into identical representations of the weak

group G~ and consequently make the quarks and

leptons to be indistinguishable when the strong in-

teractions are turned ofK Notice that if U(1) were

totaHy embedded into G~ such a unification would
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B. Diagonal generators and normalization conditions

In view of the derivation of Eq. (1.2) for sin 8w,
which we present in Sec. II C, we shall now intro-
duce some necessary notations and list certain nor-
malization conditions which relate various cou-
plings in (2.1)—(2.4) at the mass scales M, M, and
M~. For the purpose of Sec. II C only the diago-
nal generators need to be considered.

The electric-charge generator Q of U(1)EM is
given as usual by

Q 3L+ 0 (2.6)

where T3J and T0 are diagonal generators of
SU(2)L and U(1), respectively. T3L and To can be
generally written as follows:

T,L +claw T~w— (2.7)

To = g C.wT'. w+ gC;s T;s, (2 &)

where T ~ and T;s are the diagonal generators of0 0

G~ and Gs, respectively. The sets C ~ and C' ~
are orthogonal to each other. The generators T ~
in Eq. (2.7} are the generators of the disjoint SU(2}
subgroups of Gw (see the case E2). In the case of

not be possible. ' Quarks and leptons would then
have to form entirely different representations
under G~, in order to account for the disparity. in
quark and lepton charges. Also, the total embed-

ding of U(1) into Gs is unacceptable, since this
would lead to a large value of sin 8w. When U(1)
is totally embedded into Gs, sin 8w of Eq. (2.20) is
equal unity. Even for M, M =10' GeV the result-
ing sin 8w(Mw) is larger than 0.4.

As far as SU(2) is concerned, it is embedded into
the group G~ but the following two cases can be
considered.

(El) "Unlocked standard model, " in which the
generators of SU(2)L are the unbroken generators
of Gp,

(E2) "Locked standard model, " in which the
generators of SU(2)L are the unbroken combina-
tions of generators belonging to several disjoint
SU(2) subgroups of Gw.

Finally, without loss of generality, we assume
the following.

(F) SU(3), and Gs are unbroken subgroups of Gs
so that their generators are unbroken generators of
Gs.

the unlocked standard model (El) Eq. (2.7) reads
as

0
T3L T3W (2.9}

where T3w is a diagonal generator of one of SU(2)
subgroups of G~.

We shall normalize T~~ as follows:

Tl ( TawT pw )=~5ap, (2.10)

1 1 1

e (Mw ) g2 (Mw ) g'(Mw )
(2.11)

It is not diAicult to derive analogous relations
(normalization conditions) corresponding to Eqs.
(2.7) and (2.8). In this respect the formalism
developed by Weinberg' is particularly useful. We
obtain

g C'.w'
1 a

[gw(M')]'

g Caw g C&s
1 a J.

[g'(M')]' I gw(M')]' lgs(M')]'

(2.12)

(2.13)

Furthermore, the assumption (F) implies

g3(M )=gs(M )=gs(M ) . (2.14)

We are now in a position to derive Eq. (1.2).

C. Basic equation for sin 8~

We first define sin 8w(Mw ) by

e (Mw)
sin 8w(Mw ) =

g2 (Mw )
(2.15)

In order to derive Eq. (1.2) we use the evolution
equations for various effective coupling constants.
In the one-loop approximation to the relevant
renormalization-group P functions, neglecting
fermion-mass effects, and upon using the normali-
zation conditions (2.11}—(2.14), these evolution
equations read as follows:

1 Cm2 Cs2
+

[g'(M ')]' g '(M') g, '(M')

+2h) ln'"Mw ' (2.16)

where A, depends on the representation.
Corresponding to Eq. (2.6) we have the following

known relation:
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and

1 1 M
+2b3 ln

g3 (Mgt ) gs (M ) M~
(2.18)

+2b ln
gs'(M') gs'(M') M

(2.19)

1 M+2b2ln, (2.17)
lg2(Mw )) gw'(M ) Mw

In order to simplify notations we have introduced
Cs =gC;, and similarly for Cii and Cii. The
parameters b; and b are the coefficients of g; in
the relevant renormalization-group P; functions.
Explicit expressions for these coefficients are given
in Sec. VI. There we shall also briefly discuss the
fermion-mass effects.

Combining Eqs. (2.15)—(2.19) we find

, a(Ms'), M, M
sin29~(Miv )=sin 9ii, 1 —Cs —Sabra(Ma ) Kln +K'ln

as(Mw~) Mg M
(2.20)

where

2
p 8'

sin ggr ——

C~'+C~'

K'=Cs (b b3), —

C
K =bi — b2 —Cs b3,28'

and

e(Ma )
a(Ms )—=

4m

g3'(Mw')
as(Mw') =—

4~

(2.21}

(2.22)

(2.23)

(2.24)

D. Strategy

(sin 9g ),„p——0.23+0.015 . (2.27)

Recent calculations of Ref. 16 show that
(sin 9~),„zof Eq. (2.27) which is measured in

low-energy experiments is related to sin 9ii, (Mii, 2)

by

sin 9s (Mg ) =0.95 (sin 9~),„p

In this section we have stated our assumptions
and we derived a general formula for sin 9ii (M~ ).
In the next few sections we shall look for accept-
able groups Gs and G~. A necessary condition for
our scheme is that it should give a value of sin 0~
consistent with the experimentally measured
value"

We note next that for any representation of G~
which is singlet under Gs (for instance for the ad-

joint representation of Giv) the second sum in Eq.
(2.8) is inoperative. Equations (2.6) —(2.9) lead

then to

=0.22+0.014 . (2.28)

sin 9s.(Mii )=R sin 9ii (2.29)

Equation (2.20) together with K,K' y 0 (see Sec. VI)
tells us that

TIT
[«w }'+«w)']

Trg'
(2.25)

with R ~ 1. Furthermore, for M = 10 -+' GeV and
M=300 GeV —few TeV,

where T3 belongs to any subgroup of G~. Thus fi-

nally our basic formula for sin 8~ is given by
(2.20} with

0 95 Cs =
6 ~

0.85, Cs =
3

0.65, Cs2=
3

(2.30)

sin 8~ ——
Tl T3

Cgj ~

Trg
(2.26)

For the unlocked standard model (El) C~2=1
and Eqs. (2.20) and (2.26) give the formula (1.2).
In the case of the locked standard model (E2)
C~ +I and Eq. (1.2) is modified by an overall fac-
tor in addition to a change in the parameter E.

0.23 (sin 0~ &0.30

for Cs ———,, —,, and

(2.31a)

where the numerical values of Cs are the only
ones encountered in our study (see Sec. IV). Con-

sequently only the gauge groups which give



810 P. Q. HUNG, A. J. BURAS, AND J. D. BJORKEN 25

0.30(sin 0~ (0.40 (2.31b}

for Cs ———, have a chance to satisfy Eq. (2.28).
Therefore, our first task will be to find gauge
groups G~ which have sin 0~ consistent with Eq.
(2.31).

values for dift'erent 0..
Next (TrT3I ),d„is obtained by considering any

of the factors G to which the standard SU(2)L be-
longs. We find [Tr(T3I ) = —, for the fundamental

representation]

(TrT31. ) dj gf3bpf3bg C2(G )
b, c

(3.6}

III. sin g~ AND Gg

The aim of this section is to derive a formula for
sin Ow for Gw ——[SU(N)]" and subsequently find
which pairs (N, k) satisfy Eq. (2.31). We begin
with the unlocked standard model.

A. Unlocked standard model

sin 0~ ——
C2(G )

g Tr[Qw'«}].d;
o=l

(3 7)

where C2(G) is the eigenvalue of the quadratic
Casimir operator for the adjoint representation of
the group G. Combining (3.2), (3.5), and (3.6) we
finally obtain

In this case we have

Cw'= &

and consequently

(3.1)
B. 6 =SU{X)(3 ~ ~ SU{N)

1. Basic formula

sin g~=~ 2
TrT31

TrQ, d, 1+Cw
(3.2)

We shall now evaluate (3.7) for Gw ——[SU(N)] .
We immediately obtain

IJ

Q.d,
= g Qw«}.di. (3.3)

where T3c, is the diagonal generator of SU(2)1. .
This equation determines C~ once sin I9~ is
known.

Now in the case of G~ ——G {3G. . . G, where
there are p identical factors of G, the "charge" gen-
erator for the adjoint representation of G~ can be
written as

Cp(SU(N))=N . (3.8)

The calculation of Tr(Qw ),z&
is slightly more in-

volved. We first notice that since the quarks and
leptons are in separate (but identical) representa-
tions of G~ the gauge bosons of G~ have integer
electric charges. Allowing for arbitrary integer
charges of the gauge bosons we can write generally,
for each SU(N),

T«Qw') I.d;= y i'n, , (3.9)

Here Qw(o. ) corresponds to the oth factor G and is
given in an obvious notation as follows:

(3.4)

where i runs over all diagonal generators in the 0.th
factor G.

Using Tr[Qw(cr)Qw(cr ')]=Tr[Qw (cr)]5«, we
obtain

(3.5)

Notice that Tr[Qw (o)],d; can take on different

where a is the maximal gauge-boson charge in-
volved and n; is the number of gauge bosons with

n; can be calculated straightforwardly as follows.
We first recall that the adjoint representation can
be constructed from the product of the fundamen-
tal representation N and its conjugate N. There-
fore, n; can be found by considering the "charge
distribution" in the fundamental representation of
G =SU(N).

Denote by rj (0 &j& u } the number of elements
in the fundamental representation with the charge
Qw J~ ie~

[Qw Qw Qw —1, Qw —1,.
~o

,Qw —&, Qw —~]
p~

CE
(3.10)
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with

n; =2 g rjrk, 1&i &a,
k —j=i

(3.11)

where Qir is an eigenvalue of Qir. The gauge-
boson charges are

IQ I
=i = l(Qw —i) —(Qw —k)

I

= Ik —J I.
Then it is easy to show that

ceptable" values of sin28~ [see Eq. (2.31)].
(i) We first find that gauge bosons with charges

+3 and higher are not allowed in the "unlocked"
version (El) of our scheme. Indeed if a=3, one
can derive an upper bound for sin 0~ which is ob-
tained for any X & 4, k = 1, rp ——r3 ——1, and either
r

&

——1 or r2 ——1, and which reads as follows:

rj ——X, (3.12)

1 1sin't9~ (
12—(8/N) 10

' (3.16)

j=p

where the factor 2 in Eq. (3.11) comes from the
fact that both the positively and negatively charged
gauge bosons contribute to Tr(Qir ). In Eq. (3.12)
the summation is over all pairs rj, rk which satisfy
k —j =i.

In order to illustrate the formula (3.11) and its
derivation let us consider a few examples.

(a) a =l. In this case the fundamental represen-
tation consists of ro fermions with charge Qir and

r, fermions with charge Qir —1. Therefore, the
charges of the gauge bosons in this case are 0, +1
and the number of charged gauge bosons (n i ) is
obtained by counting how many different gauge bo-
sons connect the ro fermion with charge Qir to the
ri fermions with charge Qir —1. One obtains

(Qw Qw —», Qw —I, Qs —2) (3.17)

For any single SU(N) with N & 3 (3.17) leads to
Tr(Qiv2) =4N which implies

sin L9~ ——0.25 . (3.18)

The cases with four or more doubly charged gauge
bosons or k & 1 are excluded since they lead to
sin 0~ (0.20.

(iii) If a= 1 one can derive the following bounds
for sin t9~ corresponding to k =1 and any X:

(ii) The maximal allowed number of doubly
charged gauge bosons is tioo with Q =+2.
only value of sin |)ii consistent with Eq. (2.31) is
obtained for k =1 and a unique charge distribution
in the fundamental representation

n& ——2rorr, ro+r] ——N . (3.13)

(b) a=2. In this case the charges of the gauge
bosons are 0, +1, +2. Proceeding as in the previ-
ous case we obtain

N 2[1—(1/N)) '

(3.19)

with

ni =2(rori+rir2),

7f 2 =2rprp,
(3.14)

(3.20)

rp+r) +rp =X . (3.15)

2. Implications for Gg

Having explicit formulas for sin 8~ at hand we
can easily find which gauge groups G~ give "ac-

It is now clear how to obtain the formula (3.11)
for arbitrary a [for a single SU(N) group].

In summary sin Bir for [SU(N)]" groups is given
(in the case of the unlocked standard model) by
Eqs. (3.7)—(3.9), (3.11), and (3.12). Note that for a
given group [SU(N)] there is a set of values of
sin 0~, each value corresponding to particular
charge distributions either in the adjoint or in the
fundamental representations.

Notice that for N =2, i.e., SU(2), the upper bound
in (3.19) and (3.20) is 1 and becomes smaller with
increasing X.

The upper bounds correspond to the charge dis-
tribution in the fundamental representation charac-
terized by ro ——1, ri N —1 (or roar——i). The lower
bound for even sV corresponds to the symmetric
charge distribution rp ——r1 ——X/2. For odd X the
lower bound corresponds to ro =(N —1)/2 and
r i ——(N + 1)/2 (or roar, ).

It follows immediately from the above bounds
that if a=1 and k =1, i.e., G~ is a simple gauge
group, only groups SU(N) with N & 7 have values
of sin Oir consistent with Eq. (2.31). Furthermore,
combining Eqs. (3.19) and (3.20) with the general
formula (3.7) we find that the maximal allowed
value of k in the product Gir ——[SU(N)]" is k =4.
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TABLE I. The weak groups G~——SU(X) with X(8 which give sin 0~ consistent with

Eq. (2.31). ro is defined in Eqs. (3.10) and (4.9). The last two columns give the values of the

weak charges Q~ in the case of representations (4.7) and (4.8), respectively.

sin 0~
(f, 1 )+(1,f )

Qw

[SU(2)]3

[SU(2))

[SU(3)]

[SU(3)]3

[SU(4)]'

SU(4), e SU(4),

[SU(5)]

SU(5), SSU(5)

[SU(6)]

SU(7)

[SU(7)]2

SU(8)

SU(8)

1,2

12

0.333

0.250

0.375

0.250

0.250

0.286

0.313

0.250

0.300

0.292

0.292

0.267

0.250

1+——2
1+——2

2 1

3' 3
2 1

3' 3

1+——2

4 1

5 1

6' 6
4 3
7P 7
6 1

7' 7
S 3
8' 8

1+——2

0, +1

0, +1

0, +1

0, +1

0, +1
1 S 3
4'4~ 4

0, +1
4 1

s' s

0, +1

0, +1

In addition if k =4 only the group [SU(2)] gives
sin 8~ consistent with Eq. (2.31). All other
groups with k =4 and N&3 have sin 0~&0.20
and are of no interest to us. Finally in Table I we
list all the groups Gs ——[SU(N}] with N & g

which gave sin 8~ consistent with Eq. (2.31}. The
relevant charge distributions in the fundamental
representations are also listed there.

C. Locked standard model

In this case Eq. (2.26) applies with

g [C' w]'=—Cw'=rn (3.21)

where m is the number of disjoint SU(2) subgroups
of Gs, whose diagonal generators enter Eq. (2.7).
Therefore, for a fixed value of [(TrT3L )I
(Trg )],d„,the value of sin 8s is rn times larger in
the locked case than in the unlocked case. For
a = 1 (singly charged and neutral gauge bosons)
this implies that the groups G~ which give sin 0~
consistent with Eq. (2.31) must now be large. For
instance, if m =2 the smallest acceptable weak
groups are [SU(2)], and [SU(4)] which give
sin 0~——0.25. Therefore, the locked standard
model is not economical and we shall not consider

it any further. It should be, however, remarked
that smaller weak groups consistent with (2.31) can
be obtained in the locked case at the cost of intro-
ducing doubly (a=2) and triply (a=3) charged
gauge bosons. For instance, if m =2 and e =2 any
[SU(N)] (N & 3) with the charge distribution
(3.17) will give sin 8s ——0.25. Also by choosing
ro ——r] ——1 and r2 ——X —2 some of the simple
groups SU(N) with N & 6 and doubly charged
gauge bosons satisfy Eq. (2.31). Similar comments
apply to the case a=3 if I )3 is chosen. Perhaps
one interesting and economical case would be
SU(3) IR SU(3) (Ref. 17) with two doubly charged
bosons since sin 8~——4, but as we shall show in

Secs. IV and VI this case turns out to be also unac-
ceptable.

D. Summary

The study of this section leaves us with the fol-
lowing candidates for the weak group G~.

(a} Unlocked standard model. (i} Groups listed
in Table I; and (ii} SU(N) groups with N & 3, fun-
damental representations of Eq. (3.17), and two
doubly charged gauge bosons. The corresponding
sin 8~——0.25.
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(b) Locked standard model. [SU(N)]2 groups
with N & 3, m =2 [see (3.21)] and two doubly
charged gauge bosons. The corresponding
sin 8~——0.25. As discussed in Sec. III C other
groups in the "locked" version of our scheme are
not economical and will not be considered further.

IV. CONSTRAINTS FROM THE CHOICE OF Gg

To proceed further we have to choose Gq. As
discussed in the Introduction the minimal strong
gauge group turns out to be SU(4). We shall now
show that if (i) the strong gauge group Gs is
chosen to be SU(4), (ii) each standard quark SU(3),
triplet is put with a lepton in the fundamental
representation of Gs (lepton number being the
fourth color), ' and (iii) electric charges of quarks
and leptons are restricted to

Qq
———+n, Q& =n',

3

(4.1)

n, n' integer, d =1,2,
then many of the groups G~ listed in the Table I
can be eliminated.

In order to show this we first write the electric
charges of quarks and leptons in terms of their
weak charges (Qw) and the strong charges (Qs),

and I stands for a lepton. From Eq. (4.3) it follows
that

(4.5)(Qs 4 =—3(Qs }, ,

where Qs is an eigenvalue of Qs. Taking next into
account that the weak charges Qw of q~, q2, q3 and
I in the representation (4.4) are the same and using
(4.1) we obtain

Qw= 4(d+3n +n ), d=1,2, (4.6)

(i) (f, l, l, . . . , 1), (l,f, l, l, . . . ) (4 7)

and

where Qw is an eigenvalue of Qw corresponding to
the ith fermion.

We conclude therefore that if Gs ——SU(4) and the
quark and lepton charges are given by Eq. (4.1)
then the G~ is restricted to groups and representa-
tions for which Qw are multiples of —,. Thus it is

enough to calculate Qw in order to decide whether

a given group G~ and its representations can lead

[in the case of Gs =SU(4)] to acceptable charges of
quarks and leptons. This is what we shall do now.
To this end we have to specify the fermion repre-
sentations.

We shall consider two classes of representations
which we symbolically denote as follows':

Q =Cs~is+Qw=Qs+Qw, (4.2) (ii) (ff 1, 1, . . . , 1) . (4.8}

1
~15 (4.3)

The coefHcient C~ will be determined later on.
Now the content of the fundamental representation
of SU(4) is [see (1.6)]

where T&5 is the diagonal generator of SU(4) which
commutes with SU(3), generators. Using the nor-
malization of Eq. (2.10) we have (A, = —, )

Here only the transformation properties under G~
have been shown. Each entry in (4.7) and (4.8}
corresponds to the group G in the product
Gw ——G 8 G 8 G 8 G. In class (i) quarks and

leptons transform nontrivially under one of the
groups G and are singlets under the rest. In the
class (ii), which includes only semisimple groups,
fermions transform as (f,f ) under any pair
G 13 G CG~ and are singlets under the rest.

We begin by discussing the case of singly
charged gauge bosons (the case a =1 of Sec. III).
In this case each fundamental representation of the
groups G has the charge distribution

(4.4}

[Qw Qw. ~ Qw Qw —1. , Qw —1]
ro r&

(4.9)

where q~, q2, q3 is the standard color quark triplet

with ro+ r&
——N. This is also the charge distribu-

tion for the class (i). In the case of class (ii) we
have to consider the matrix



814 P. Q. HUNG, A. J. BURAS, AND J. D. BJORKEN 25

I'p

~
Qw Qw

Ir

i, Qw Qw

Qw+1 ' ' Qw+1

Qw —1 Qw —1

Qw-1' ' ' Qw —1

Qw
' Qw

Cs=2Tr(QT») . (4.16)

Choosing next in accordance with Eq. (4.4) the fol-
lowing form for Q,

~
Qw+1 ' Qw+1 .Qw

(4.10)
0

(4.17}

where the rows refer to f and the columns to f.
Furthermore,

(4.11)

It is now a trivial matter to calculate Qw by us-

ing the tracelessness condition for the charge
operator Qw. For the class (i) we obtain

where

Qs, t =(Qs)s I+Qw
and using Eqs. (4.3) and (4.5), we obtain

Cs'= —,(3Q» —3Qt')'

(4.18)

7'p

w
—I (4.12)

3 (Qw Ql}
8= 3(Qs4 (4.19)

The other eigenvalue is Qw —1. Using Eq. (4.12)
for the groups listed in Table I we obtain the
relevant values for Qw which are shown in the
third column of this table.

For the class (ii) Qw is found from condition
that the sum of charges is zero,

rprpQw + rpr i (Qw+ 1 ) +'rpri (Qw —1 )

+r I r, Q w 0. (4.13)——
Eliminating, by use of Eq. (4.11), ri an«i »
favor of X we obtain

where Cs is independent of i In Eq. .(4.19) the re
lation

Qw = —,(3Q,'+ Qi')

has been used.

(4.20)

TAB1-E JI. The values of lepton (QJ) and quark (Q')
electric charges corresPonding to the weak charges Q w
discussed in the text. The values for Cq have been ob-
tained from Eq. (4.19).

I"p
—l'p

(4.14) 1

2

Qt

2

3

Cs

w=1. (4.15)

The other two eigenvalues are 0 and —1. The
same eigenvalues are obtained for the "locked"
cases mentioned at the end of Sec. III C.

Before discussing the implications of these re-
sults let us calculate the coefficient Cs of Eq. (4.2).

%e first obtain

Two other eigenvalues are Qw+ l.
Using these equations for the groups of interest,

we obtain the last column of Table I.
For the case of doubly charged bosons in the un-

locked standard model only the class (i} applies.
The charge distribution in the fundamental
representation is given in Eq. (3.17). Using the
tracelessness condition we obtain

1

2

1

2

5

4
I

4
3

4

1

3
1

3
2

3

4
3
1

3
2

3
2

3
1

3
4

3

4
3
1

3

2

3

1

6
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In order to simplify the discussion of the groups
in the Table I and of the assignment of the known

quarks and leptons into various representations we
have listed in Table II possible weak and strong
multiplets, the corresponding weak and electric
charges and the values of the parameter Cs . Only
cases which satisfy Eq. (4.6) and for which

~ QI ~

(2 and
~ Q» ~

(—, have been shown there.

Having the Tables I and II at hand we cari now
enumerate good and bad features of the groups list-
ed in Sec. IIID. We shall only discuss the groups
which give Qs which are multiples of —, [see Eq.
(4.6)]. In particular we do not consider the group
[SU(3)] any further.

(a) Certainly the most attractive ones are the

groups [SU(2)] and [SU(4)] . They do not require
other electric charges than the known 0, +1 for

1
2—

leptons and antileptons and + —, and + —, for

quarks and antiquarks, if the representations of the
class (i), i.e., (f, 1, 1, 1,. . .)+(l,f, 1, 1,. . . ) are used.
Because for these representations the parameter

Cs ———, is small, the resulting value for sin 9~ is

in very good agreement with the experimental data
(see Sec. VI for details). Also, the group SU(8) has
the same features as the two groups above. But
SU(8) is a very large group and for that reason

perhaps less attractive. The representations of
class (ii), i.e., (f,f, 1, . . . , 1) are not acceptable for
the groups [SU(2)] and [SU(4)) . They lead to a
large value of C& ———, and the resulting

sin 8~ (M~ ) is at least three standard deviations
below its experimental value (see Sec. VI). Furth-
ermore, in the case of these representations legtons
with charges +2 and quarks with charges + —, are

required.
(b) The groups [SU(5)], [SU(6)], and [SU(7)]

with Q~ =0,+1 lead after renormalization to
sin 9~&0.20 if M &10 GeV. For M &10 GeV
sin 0=0.22 can be obtained but such a low value
of M is inconsistent with our analysis of rare de-
cays (see Sec. VII). Furthermore, these groups are
large and require leptons with charges +2 and

4
quarks with charges + 3.

(c) Among the groups in Table I which have

Qs ——0, +1 only [SU(2)] and [SU(3)] give for
M =10 GeV acceptable values of sin 0~.
These are 0.20—0.21 for [SU(2)] and 0.21 —0.23
for [SU(3)] . However, these groups require lep-
tons with charges +2 and quarks with charges

4+——3 '

(d) The groups with doubly charged gauge bo-
sons which have sin 8~——0.25 are excluded'be-
cause they have a large parameter Cs ———, and

8

therefore lead to sin 0~ &0.18 after renormaliza-
tion eA'ects are taken into account. Furthermore,

4
these groups also require +2 and + —, fermion

charges. The same remarks apply to the "locked"
cases mentioned at the end of Sec. III C.

(e) In the case of the group SU(4)& S SU(4)2
[rp+rp, Eq. (4.10)] the parameter Cs2 is very
small (Cs ———, ) and the resulting sin Hs (M~ )

turns out after renormalization to be larger than
-0.27 for M & 10 GeV. Smaller values of sin g~
can be obtained at the cost of increasing substan-
tially the scale M which is against our philosophy.
Furthermore, for the group in question the quarks
with charges + —, are required.

In summary, the considerations of Secs. III and
IV leave us with only two economical candidates
for the group 6 =Gs 8 G~. These are

and

(i) G =SU(4) 8 [SU(2)] (4.21)

V. MINIMAL PETITE-UNIFICATION MODEL

In the previous sections we have found that the
minimal petit-unification gauge group consistent
with the measured value of sin 8~ (see also Sec.
VI) and which did not require other than the con-
ventional values of quark and lepton charges was
the group SU(4}s S [SU(2)] . We shall discuss it
here in some detail. '

More explicitly we take

G = SU(4)s SSU(2)1 SSU(2)g

S SU(2)l 8 SU(2)g, (5.1)

where SU(2)l S SU(2)z may be identified with the
SU(2)1. 8 SU(2)R part of the well-known left-
right-symmetric model and SU(2)I ~ 8 SU(2)~
constitutes a "mirror" left-right-symmetric coun-
terpart. The group 6 is broken down to
SU(3), 8 U(1)aM in three steps as follows:

G~ SU(3), 8 U(1}s8 [SU(2)]

~ SU(3), SSU(2)1 8U(1)

~ SU(3), SU(1)aM .
~w

(5.2)

(ii) G =SU(4) 8[SU(4)] . (4.22)

Furthermore, as we shall show explicitly in Sec.
VI only the fundamental representations of Eq.
(4.7) are consistent with the experimentally mea-
sured values of sin 0~.
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We shall first present the fermion and gauge-
boson content of the model. Subsequently we shall

discuss the Higgs system necessary for the break-
down (5.2) to occur.

A. Fermions

Fermions transform under 6 as follows.
(i) Light fermions P; (n) (a=1,. . .4; i =1,2) are

grouped in n =1,2, . . . generations and transform
under 6 according to

g; (n) =(4,2, 1,1,1)l,
(n)=(4, 1,2, 1, 1)l ',

(5.3)

(5.4)

ltd' (n) =(4;1,1;2,1)1,

(n)=(4;1,1;1,2)i .

(5.5)

(5.6)

where %eyl fields are used.
(ii) Heavy "mirror" fermions lA (n) are grouped

in mirror generations which transform under G ac-
cording to

mions have ordinary electromagnetic and neutral-
current interactions.

The mirror fermions have to be heavy enough to
escape detection. On the other hand, they have to
be lighter than M. This is due to the assumed per-
mutation symmetry among SU(2) groups which re-
quires the equality gL, (Q ) =ga(Q ) =gz (Q )

=ga (Q )=gn (Q ) for scales Q )M, where
[SU(2)] is a good symmetry If. some of the mir-
ror fermions had the masses larger than M they
would not contribute to the relevant renormali-
zation-group functions which govern the evolution
of the gL ~ and gal couplings for Q )M . Conse-
quently the equality gL

——g&
——gL ——g& would no

longer be true for scales larger than M even if it
was true at M. Thus we expect the masses of the
mirror fermions to populate the energy range from
M~ to M but it is not excluded that the masses of
the lightest of the mirror fermions could be as low
as 20—30 GeV. Some phenomenology of these
light mirror fermions is discussed in Sec. VII C.

Examples of the first light generation and of its
heavy mirror counterpart are given in Eqs. (1.6)
and (1.7), respectively.

Recall that the existence of the mirror group
SU(2)l Ce SU(2)ll and its fermions is required in
our scheme by the measured value of sin 8~. The
assignment (5.3) accommodates known quarks and
leptons (n =1,2, 3) with conventional charges. The
mirror fermions have no ordinary SU(2)L weak in-
teractions. Of course both the light and mirror fer-

8. Gauge bosons

1. Gluons and leptoquarks

+ + + (5.7)

and the corresponding gauge fields A&s are
represented by

The SU(3), content of the adjoint representation
15 of SU(4)s is as follows:

SU(3),

G+,
P

G+„' SU(3),
I Aqs(i =1,. . .15) I = (i =1, . . . , g)

G+'

Gp' G~' Gp' A~s U(1)s

(5-&)

Here the octet A&s stands for the gluons,

+1 i 9 ~ 10
Gp — ~ (A ps + lA ps )P (5.9a)

Gp' = (Aps+iAps) 1

+ 2 1 11 12
P (5.9b)

(5.9c)
+,3 1 ~ 14Gq' ——~ (+iAps),

and g„s—g„'sis the neutral gauge boson which

corresponds to the generator Tl5 of SU(4)s and
equivalently to the generator of U(1)s. The lepto-
quark gauge bosons 6&' carry charges + —, and
connect quarks to leptons. They are responsible
for the rare transitions, the phenomenology of
which is presented in Sec. VII A. Under the break-
ing of SU(4)s down to SU(3), Q U(1)s the lepto-
quarks G;+-gain masses of order M whereas the
gluons and the gauge boson A„sremain massless.
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2. Electromeak gauge bosons C. Higgs bosons and symmetry breaking

The model has twelve massive electroweak gauge
bosons in addition to the massless photon. These
include (i) six charged gauge bosons Wz, RL, , Wz
and three neutral gauge bosons Z~, Z2, Z3 all with
masses of order M, and (ii) the standard W+-and
Z gauge bosons with the conventional masses of
order M~.

It should be remarked that the field 8& of the
standard model is expressed in terms of the fields

A&s and (A&w)z 1. z, which couple to the diagonal3

generators of U(1)s SSU(2)z S SU(2)L, 8 SU(2)z,
respectively, as follows:

8& = A&s cos8s

4=(15;1,1, 1, 1) (5.17)

and

P; =[4;2CSU(2);], (5.18)

where 2&SU(2); means doublet under SU(2); and
singlet under the remaining SU(2) s, i.e., each P; is
a 4)&2 matrix. The charge structure of P; and 4
is the same as that of the fermions and the SU(4)s
gauge bosons, respectively. In particular we have

The breakdown (5.2) can be accomplished by the
scalar multiplets 4 and P; (i = 1, . . . , 4) which
transform under SU(4)s 8 [SU(2)] as

sin8s+ (Aqg+A„l +Aug ),V3
(5.10)

p d

o (5.19)

where the mixing angle 8s is defined by

Ss 3
tan8s ——

g~ &2

Recall that gs is the U(1)s coupling constant.
Furthermore, we have

Z1& = Aps sin8s

cos8s
(A„g+A~l +Aug ),v3

1 3 3
Z2i =

v2

(5.11)

(5.12)

(5.13)

where P denotes a color triplet.
The study of the symmetry breakdown (5.2) by

the multiplets 4 and P; is essentially a hybrid of
the analyses of Li with that of Buccella et al. '

Li made a general analysis for the case SU(n)
S SU(m) with a scalar multiplet transforming as
(n, m). On the other hand, Buccella et al. analyzed
breakdown of SU(n) by an adjoint and a funda-
mental scalar multiplet. We shall not present the
details of our analysis, which is lengthy. We only
remark that the desired asymmetric vacuum is
characterized by the following scalar vacuum ex-
pectation values:

Z3„—— (Ale 2A„L, +A„—z ) .
6 P P (5.14)

Whereas the gauge bosons Zz, Z3y JVg y II I, IV@

have a common mass which we denote by M, the
mass of Zi is given by

(5.20)

M(zi) = M
cos8s

(5.15) and

Equation (5.15) is the analog of the standard-model
relation M~ ——Mz cos8~. As discussed in Sec.
VII 8, M must be larger than 300 GeV in order for
the model to be consistent wiia the experimental
data. Finally, notice from Eq. {2.13) that the hy-
percharge U(1)r coupling constant g' is defined in
terms ofgs and g~ by

gwgs~&g'=, =gw sin8s/W3, (5.16)
{9gs'+2gw')'"

where Eq. (5.11) has been used. Equation (5.16) is
analogous to the well-known relation e =g sin8~.

0 0
0 0
0 0

u;/i/2 0

{5.21)

and that it is essential for the avoidance of mass-
less physical Higgs particles that the cross cou-
plings between 4 and P; are present in the Higgs
potential. In particular the colored, charged Higgs
particles P" and P receive masses of order u,

through these cross couplings.
The physical Higgs content of the model is as

follows:



818 P. Q. HUNG, A. J. BURAS, AND J. D. BJORKEN

(i) Color triplet: eight with charges + —,, eight
1

with charges + —,, mass of the order v, .
(ii) Color octet: one neutral color octet with

mass of the order u, .
(ii) Color singlet: one neutral singlet with mass

-u, and four neutral singlets with mass -v;, one
of which is the steinberg-Salam Higgs boson.

Finally, we should also remark that we may
need additional Higgs multiplets such as
(1,2,2, 1, 1), (1,1, 1,2, 2), etc., to provide the fermion
masses. One might also expect that (15,2,2, 1,1),
etc., Higgs fields may have to be introduced.
However, if new SU(4) I81 SU(2) singlet fermions
(e.g., "generation" fermions) with a large intrinsic
mass are added to our scheme, there are several po-
tential mechanisms for radiatively generated fer-
mion masses available. In such a case it appears
that no (15,2,2, 1,1), etc , Hig. gs multiplets are re-
quired. %e leave the study of fermion-mass gen-
eration for the future.

VI. RENORMALIZATION-GROUP ANALYSIS

In this section we shall present the results for
sin Oii (M~ ) for G =SU(4)s S [SU(2)] and
G =SU(4)s S [SU(4)] . In these cases the group
Gs of Sec. II is just Gs ——U(1)s. The basic formu-
la for sin Oii is given in Eq. (2.20). The various
parameters which enter there are for the cases in
question as follows:

E= (88—4nf )
1

48vr

1
64' nf 6

X '

48' 56, nf ——8 (6.4)

fo C = —,, and

E= (154—8nf )
1

48m

106, nf ——6

486
(6.5)

for Cz ———,. Furthermore,

gl C 2
S

48m
(6.6)

a(Mg )= „, (6.7)

as obtained in Ref. 23. The fact that a(M~ )Q»,
is due to QED renormalization effects. For
as(M+ ) we have used the standard QCD expres-
sion

2 12m
&s(Mw }=

(33—2nf)ln(Mg /A )
(6.8)

independently of the number of flavors.
In order to complete the analysis we still need

the values for a(Ms ) and as(Ms ). For a(M~ )

we take

sm Hg ———,, Cg ——3, C~ ——1 (6.1)

and if only gauge-boson and light-fermion contri-
butions to the relevant P functions are taken into
account:

10 nf 2nf —22
b = —-- b =

48ir 48m

(6.2}

2nf —33 2nf
b3 —— —, b=

48m'
'

48vr'
'

0.25—

0.24—
0.23—
0.22—

0.21—
0.20—
0.19—

0.17

0.16

0.15

0.14

0.13

A =0 30 GeV
Sin g„(M„) nf =6

nf =8

)I'D

p
C~ = —, (M = 300 GeV)

Cs=
&

(M =10 TeV)

2 8
C =—and —,S

for representations (4.7) and (4.8}, respectively.

(6.3)

Combining Eqs. (2.23) and (6.1)—(6.3) we obtain

where nf is the number of light flavors (the effect
of the mirror fermions is discussed at the end of
this section). From the analysis of Sec. IV we
also have

20 TeV 100 TeV

M

1000 TeV

FIG. 1. sin 0~(M~ ) as given by Eq. (2.20) as a
function of M for M =300 GeV, nf ——6 and 8, and
Cg ——

3
and 3. For the case Cq ——

3
also the curve

2 8 2=2

corresponding to M =10 TeV is shown. In all cases
A=0.3 GeV has been used. As discussed in the text the
inclusion of mirror fermions in the evolution of sin 8~
changes the above curves by at most 1%.
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2nF
(~I )mirror +

48m
(6.9)

where + and —correspond to Cz ———, and2

Cg 3 respectivel y. Here nF is the number of
mirror flavors which is equal to n~. Furthermore,
Ir." of Eq. (6.6) remains unchanged. Combining
Eq. (6.9) with (6.4) —(6.6) we find that the in-
clusion of the mirror fermions in our
renormalization-group analysis lowers (increases)
the value of sin 8~(Mii ) in the case of Cs ———,

(Cs ———, ) by at most 0.002.

with a typical value for the scale parameter A
equal to 0.3 GeV. We have checked that varying
A in the range from 0.1 to 0.5 GeV changes our
results for sin 0~ by at most one and five percent
for Cz ———, and C~ ———,, respectively.2 8

Choosing finally M~ ——80 GeV we have calculat-
ed sin 8ii (Mii ) as a function of M for nI ——6 and
n~=8, the values of Cs given in (6.3), and
M =300 GeV. The results are presented in Fig. 1,
where also the experimental range for
sin 8ii (M~ ) [Eq. (2.28)] is shown. We note the
following features.

(i) The case Cs ———, is ruled out. The corre-
sponding sin 0~ is by at least three standard devi-
ations below the experimental data. Slightly higher
values of sin 0~ could be obtained by decreasing
M below 10 TeV but such low values of M are ex-

eluded on the basis of our analysis of rare decays
(see Sec. VII).

(ii) The case Cs ———, is in agreement with the

experimentally measured value for sin 0~ for both

n~ ——6 and n~ ——8 and for the ~hole range
10(M & 1000 TeV considered.

Increasing M from 300 GeV to 1 TeV would de-
crease the predicted values of sin 0~ as shown in
Fig. 1 by at most 0.005 and hence would not
change our conclusions. We also find that the
maximal value of M consistent with the experimen-
tal data for sin 0~ is roughly 10 TeV.

These results are essentially unchanged when the
contributions of the mirror ferrnions to the relevant

P functions are taken into account. As discussed
in Sec. V we expect the masses of these fermions to
populate the energy range from M~ to M. There-
fore, the contributions of the mirror fermions to
the b; coefficients of Eq. (6.2) are in the energy
range from M~ to M suppressed by mass effects as
compared to the corresponding light-fermion con-
tributions. In the approximation of neglecting
these mass effects we find

VII. PHENOMENOLOGY

A. Rare decays of EC mesons

Rare decays of E mesons serve as a strong con-
straint on our ideas of petite unification. Specifi-
cally, we concentrate on the E—+pe, ape modes
whose experimental upper bounds on branching ra-
tios are given by

8(KL ~itic) &2X10

8(K—+~e+p +a+) &7-)&10

(7.1)

Such decays have been considered in Ref. 25 in the
context of generation-changing horizontal gauge
groups. In our case, the elementary processes

q + l~6-+~l'+q' become, after a Fierz-Michel
rearrangement, q+q'~l+I'. Here 6+-are the
massive SU(4)/[SU(3), 8 U(1)s] leptoquark gauge

bosons of Eq. (5.9).
According to Sec. V, we have the following

SU(4) light-fermion representation for each genera-
tion:

Qi d]

Q2
SU(4),

~3 3

~ SU(2)L ~

where Q(u)= —, , Q(d)= ——,, Q(e )= —1, and

Q(v) =0. To simplify the discussion, we make
some sort of "kinship" hypothesis whereby we have

(d;, e ), (s;,iM ), . . . . In principle we could have
generation mixing but this could only complicate
our estimates of E~pe, ~pe. Specifically, the
Lagrangian describing the interaction of light fer-
mions with the SU(4)/[SU(3), SU(1)s] gauge bo-
sons is given by

(7.3)

where G~+; are defined by Eq. (5.9), while a and i
are "generation" and color indices, respectively.

For q «mG, we have the following efFective
Lagrangian:

N 3

W=(gs/&2) g g (u; y„P+dy„e')G+;+H.c.
a=1 i =1
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N 3

ff—W2Gs P P (u' y&v'+d y„e')
a'=1i =1
a=1

X(v y"u +e y"d ),

We are particularly interested in that part of Eq.
(7.4) which describes d +p~e +s, namely

3"=v 2Gs g (d(yqeP y&sg+H. c. ) .

where Gz is defined by

gs /2mG ——v 2Gs

(7.4)

(7.5)
I

(7.6)

A Fierz-Michel rearrangement of Eq. (7.6) gives

3
ds —+pe
ff

——'~ 2Gs $ (d;sp e d—'yssp y,e ,—d;—y„s;py"e 2—d'yp5sp y"y5e +H.c.) (7.7)

Equation (7.7) is the basic formula which we now

use to describe K—+pe, ~pe.

1. EI -+pe

For simplicity, we ignore the effect of CP viola-
tion here and use

(7.8)

With our "kinship" hypothesis, we have the follow-

ing transitions K ~p+e and K —+p e+. In
reality we are looking at KLg~p+e +p e+
with a 50% probability in each mode.

From Eq. (7.7), we learn that there are two con-
tributions to the amplitudes T(KL s~p+e
p e+), one coming from the axial-vector-current
part and the other from the pseudoscalar density
part. To see the relative importance of these two
contributions, we need to evaluate (0 (dy yss
+H.c.)

~

'K' ) and (0
~
(dyss+H. c.) 'K' ). Us-

ing PCAC (partial conservation of axial-vector
current), we obtain

(Opsy„y5d iK ) =(Oi dy„yss iK )
K='f»pp . (79)

With the use of the equation of motion and PCAC,
we also obtain

(0~sy5d ~K ) =(0 ~dy5s ~K )
2

mK
if»

ms+my
(7.10)

where mK is the kaon mass and m, and md are the
current-algebra masses of the s and d quarks,
respectively. Since

p& ( y„Juy,e) = (m„+m, )py5e—

I

(7.10), and (7.11), we see that the contribution of
the pseudoscalar density of the decay amplitude is
larger by a factor [2m» /m&(m, +md )] than the
contribution coming from the axial-vector current.
With m, =200 MeV, md 10 MeV,
[m» /m&(m, +md)] 23. The axial-vector-
current contribution will be neglected from here
on.

From Eqs. (7.7), (7.9), and (7.10), it is straight-
forward to obtain the following amplitudes:

A (KL s~@+-e+)

'
py5e

=iGsm» [f»/(m, +md)]
+ey5p

(7.12)

where the + and —signs in the curly brackets
correspond to El. and Xz, respectively. We have
to compare Kl ~~p+-e+ with EI q~p+p . It is
generally accepted that the dominant contribution
to EL q~p+p comes from the two-photon inter-
mediate states, i.e., EL z~yy~p+p, giving the
following estimated amphtudes:

A(KI s —+pp)

A pysp
=iGFm» sinec (mplm»)

'

7T . pp
(7.13)

B(KI ~pp ) =(9.1+1.8) X 10 (7.14)

giving

This estimation correctly predicts
B(KI ~pp)=10

Since Kz is so short-lived, we will concentrate on
the comparison of EL ~p-+e+ with EL ~pp. Ex-
perimentally, it is known that

(7.11)=—m&py5e,

using Eq. (7.7) in conjunction with Eqs. (7.9),

I (KL, ~p+e +p e+)
(0.2,

1 (Kl ~pp)
(7.15)
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where I (Kl ~p+e +p e+)=I (Kz~p+e )
+I'(Kr ~p e+) and where B(KL,~pe) is given
by Eq. (7.1). Using Eqs. (7.12), (7.14), and (7.15)
we obtain

Gs 26 fx
GFa sin 8~ Elle +Nlg

&0.2 . .

(7.16)

as (mg)
& 10 GeV

Plo

where as(mg)=gs (mg)/4m.
Now, according to our "minimal" petit-

unification scheme,

as(mg) =ai(rng),

(7.17)

(7.18)

where ai(mg) is the SU(3), coupling evaluated at
the mass scale mG.

a&(mg ) can be estimated by using the formula

1 1 M—8mb3 ln
a3(mg ) as(Mii ) Mp

Mg—8mb3 ln
M

(7.19)

where

With fz 1.3f [the factor 1.3 is due to flavor

SU(3) breaking] and Gs ——gs /2v 2mg, the bound
(7.16}is translated into

mG &300 TeV . (7.22)

For nf =8 the bound (7.22) is changed to 350 TeV.
These estimates are consistent with those of Ref.
27.

Whereas the rare decays of E mesons give the
louIer bound (7.22) on mg-M, the renormali-
zation-group analysis of sin 0~ of Sec. VI gives an
upper bound on IG. This upper bound is shown
in Fig. 2 as a function of M. It has been obtained
from the requirement sin 6(MIi ) & 0.206 [see
(2.28)]. Combining this upper bound with the
lower bound on mg (horizontal line in Fig. 2) as
given in (7.22) and with the lower bound on M
(vertical line in Fig. 2) as obtained from neutral-
current phenomenology we observe that only a cer-
tain range of mG ——M values is allowed. %'e can
also see that as M increases the allowed range of
mo values decreases. In any case it is important to
notice that our model can be made simultaneously
consistent with the value of sin 0~, the rates for
the rare E-meson decays and with the low-energy
neutral-current phenomenology.

Is there any interest on a narroto range for mg?
The answer is yes. The reason is the following:
I'(KL ~pe) behaves like mg and any increase in

mg by a factor of 10 will bring down the rate by
four orders of magnitude. For example, if 300
&mg &3000 TeV, then 2.0X10 ' &B(KL,~pe)
&2.0)& 10 . Experimentally it would be hard to
reach the sensitivity of B(KL~pe)- 10 ' or less.

2nf —33

48m

2(nf +nF }

(7.20)

(7.21)

9
10

&=0.5 GeV

nt =6---- n -8
f

and nF is the number of mirror flavors which is
equal to nf, the number of light flavors. As dis-
cussed in Secs. V and VI the masses of mirror fer-

mions are expected to populate the energy range
from Mq to M. Therefore, the contributions of
the mirror fermions to the coefficient b3 are in the
energy range from M~ to M suppressed by mass
eAects as compared to the corresponding light-
fermion contributions. In order to simplify our
analysis in writing Eq. (7.19) we have neglected the
contributions of mirror fermions in the evolution of
a3 from M~ to M. On the other hand, we have
included the mirror-fermion contributions to the
parameter b3 which characterizes the evolution of
ai from M to mg. Using M =1 TeV and Eq. (6.8)
for as(MII ) with A =0.3 GeV and nf ——6 we find
from (7.17) and (7.19}

3
g+

O
3

10

Allowed region

10

10
5

Mrn;n from rare decays

}02
I I I I I Ill(

}03
I I I I IIIII I I I I IIII

M [GeVj

10 10'

FIG. 2. The allowed region {shaded triangle) in the
M-M plane as obtained from the measured sin 0~,
KL —+pe, and electroweak phenomenology.
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Looking at Fig. 2, we can see that the most experi-
mentally interesting allowed range for mg is
300 TeV&m~ ~1000 TeV. This is the range for
which M-1 —10 TeV, for nf (light)-6 and 8,
respectively. In this range of mG, 2.0)& 10
&8(EL, +pe—) &2.0X10 . It would be interesting
if future experiments on E-meson rare decays can
reach the above sensitivity.

Owing to theoretical and experimental uncertain-
ties in the calculation and observations of the "nor-
mal" rare decay E~mpp, it is hard to use the
mode E~~pe to set a useful bound of mG. We
will therefore rely only on the previous decay
mode, El.~p-+e+, which has less theoretical un-

certainties.

B. Corrections to normal charged-
and neutral-current processes

Let us recall that in the minimal petite-
unification mode1 considered here the light fer-
mions have SU(2)L and SU(2)ii weak interactions.
There have been numerous studies on the effect of
right-handed currents to neutral-current interac-
tions. %e will not repeat the analysis here but
only summarize the results. It has been shown
that in a typical SU(2)L 8 SU(2)ii 8 U(1) model,
the mass of the heavier of the Z bosons must be
larger than -300 GeV. Similar lower limits are
found for 8'z. In conclusion, we have to have

m~, mz y 300 GeV. This bound sets a lower
R R

limit for M discussed earlier.
We conclude this section by mentioning that the

contribution to neutral-current interactions coming
from the effective Lagrangian (7.4) which is parity
conseruirig, is negligible in view of the large
leptoquark-gauge-boson mass. Furthermore, since
it is parity conserving, its eAects would be com-
pletely overwhelmed by the electromagnetic in-
teractions in atomic physics and SLAC polarized
eL, ~ D experiments.

C. Remarks on mirror fermions

The value of sin 8~ forces us to introduce mir-
ror fermions whose weak interactions are described
by SU(2)L, 8 SU(2)ii. These fermions do not in-

teract directly with the electroweak W~ bosons.
As we have explained earlier, their masses could
range anywhere between 20 GeV to a few TeV.
%'e have seen earlier that these mirror fermions are
the exact duplicates of the ordinary ones as far as
SU(4) interactions and electric charges are con-
cerned. How then can one distinguish experimen-
tally these genuine "new" fermions from the ordi-
nary heavy sequential fermions7

Let us consider the lightest among the charge
mirror fermions which we assume to be the mirror
electron (positron) E+. If the-y exist and are light
enough, they could be produced in a reaction such
as e+e —+E+E . Since E+ and E do not cou-
ple directly to 8'L, they presumably live longer
than one would expect on the basis of an ordinary
weak decay. The only question is whether or not
there is any substantial mixing between 8'L and
8'L-+~ which could be induced by a Higgs repre-
sentation which transforms as (2,2) under
SU(2)L, 8 SU(2)L, ii . Such mixing is expected to
be small in order to keep M + small compared to

L

M~+ . More serious is the question of how small
L', R'

or how big is the possible Yukawa coupling of the
(2,2) Higgs to ordinary and mirror fermions. On
one hand, such a Yukawa coupling may naturaHy
be expected to be small if the (2,2) Higgs is dynam-
ical, i.e., it arises through higher-order corrections
of the simplest Higgs system. On the other hand,
the masses of all these mirror fermions are large,
suggesting a relatively large Yukawa coupling. Ir-
respective of these considerations, it is clearly of
interest to see if the next heavy leptons (if any)
have any unexpected long lifetime. Similar con-
siderations apply to mirror quarks.

VIII. SUMMARY

In this paper we have studied a possibility of a
quark-lepton unification characterized by the gauge
group Gz SG~ with two coupling constants gz
and g~ and by the unification mass scale
M =10 -+' GeV. We call such a possibility petite
unification. In this scheme the SU(3)„i„andthe
standard SU(2)L group are embedded into the
strong group Gz and the weak group G~, respec-
tively. The generator of the standard U(1)r group
is a linear combination of the generators of Gg and
G~. The latter property allows us to put quarks
and leptons into identical representations of the
weak group G~ and consequently make the quarks
and leptons to be indistinguishable when the strong
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interactions are turned off. The simplest candidate
for Gs turns out to be the SU(4)ps of Pati and
Salam, in which the fundamental representation
consists of a standard quark SU(3), triplet and a
lepton (lepton number being the fourth color). The
choice of G~, the type of the fermion representa-
tions under G~, and the charges of weak gauge bo-
sons are quite restricted by the measured value of
sin Ogr.

This restriction becomes even stronger if we
want at the same time to satisfy the experimental
bounds on reactions induced by leptoquark ex-

changes and right-handed gauge-boson exchanges.
In particular we have found the following.
(i) Weak gauge bosons with electric charges

~ Q ~

& 2 are not allowed in our scheme (unlocked
standard model) since they would lead to a too
small value of sin 8~.

(ii) If Gip is a pseudosimple group (i.e., a direct
product of simple groups G~ with identical cou-

pling strength) then certain fermion representations
are favored. These are the representations in which

quarks and leptons transform nontrivially under

one of the groups G~ and are singlets under the

rest.
We have analyzed the general case of

6@ ——[SU(N}]"and have found that the most

economical and at the same time realistic models

are Gip ——[SU(2)] and Gs ——[SU(4)] .
We have presented in some detail the minimal

petit-unification model SU(4)ps 8 SU(2)i
8 SU(2)s 8 SU(2)I ~ 8 SU(2)ii, where the first

three factors constitute the well-known Pati-Salam

group. ' The presence of SU(2)l ~ 8 SU(2)„ is re-

quired by the measured value of sin I9+. For
M =10 -+' GeV, as assumed in our paper, the
Pati-Salam group by itself would give
sin Os (Miv ) =0.45 which is inconsistent with ex-

periment.
Our minimal petite-unification group

G =SU(4)ps 8 [SU(2)] is broken down to
SU(3), 8 U(1)EM in three steps as follows:

6 —+ SU(3), 8 U(1)s 8 [SU(2)]

~ SU(3), 8 SU(2)L, 8U(1)
M

~ SU(3), 8U(1)EM,
w

where the mass scales M, M, and M~ characterize
the masses of leptoquarks (M), the weak gauge bo-

sons of SU(2}z 8 SU(2)1 8 SU(2)s (M), and the
standard weak gauge bosons (Ms ).

The following properties of the minimal petit-
unification model should be emphasized.

(i) It accomodates all known quark and lepton
generations, which are assumed to transform non-
trivially under SU(4)ps 8 SU(2)L, 8 SU(2)s and are
singlets under the rest.

(ii) It implies the existence of mirror fermions
whose masses may range from 20—30 GeV to a
few TeV. The mirror fermions carry the standard

2 1

electric charges (+—,, ——, for quarks and 0, —I

for leptons) and transforming nontrivially under
SU(4)ps 8 SU(2)L, 8 SU(2)g are singlets under
SU(2)L 8 SU(2)a. As discussed in Sec. VII C the
lightest mirror fermions might be relatively "long"
lived, as opposed to an ordinary sequential heavy
ferrnion with the same mass.

(iii) It gives the correct value of sin Hip(Ms )

=0.22 and at the same time can be made con-
sistent with the experimental bounds on rare de-

cays induced by leptoquark exchanges such as
K~pe and K~ape.

(iv) In our model as it stands the proton is
stable. However, by complicating the Higgs sys-
tem it is in principle possible to generate induced
Yukawa couplings between quarks and leptons
which in higher orders could lead to proton de-

cay.
The study of fermion-mass generation in our

scheme is left for the future. Similar comments

apply to a possible embedding of our petite-
unification model into a grand-unification gauge
group or to exploration of synthesis at a higher
mass scale based on composite structures for
quarks, leptons, and/or gauge quanta. Much work
has to be done to explore the ideas presented in
this paper. The class of models presented here im-

ply a lot of new physics in the 10 —10 GeV re-
gime without assuming what happens in the
10 —10' GeV range. For this reason it may well
be that experimental hints for the relevance of the
petite-unification models will be sooner visible than
in the case of their grand sisters and brothers such
as SU(5), SO(10), and E6.
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