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The orders of magnitude of decay rates for relatively light neutrinos are studied in the
framework of the SU(2) X U(1) gauge group. The assumption is made that a hierarchy
parameter € (~ (muon mass)--[some new mass scale (possibly much smaller than the
grand unification scale)]) plays a meaningful role in the full theory. For orientation it is
first noted that the traditional vy decay channel as well as the 3v decay channel give neu-
trino lifetimes which for “typical” parameters are substantially longer than the age of the
universe. Then we examine in detail some recent proposals which are claimed to result in
greatly speeded-up decays into v+ Majoron, where the Majoron is a true Goldstone boson
associated with spontaneous breakdown of lepton number. In a theory in which the usual
Higgs doublet is augmented by a complex singlet (1-2 model) it is noted that the decay
width into v+ Majoron actually vanishes to order €. In a theory where the doublet is
augmented by a complex triplet (2-3 model) this decay is shown to vanish exactly, neglect-
ing radiative corrections. A more general Majoron theory (1-2-3 model) is constructed
and shown to also yield a vanishing tree-level decay rate for v+ Majoron decay to order
€. Finally, the tree amplitudes in the 1-2 and 1-2-3 models are shown to give decay
widths for v+ Majoron of order € which correspond to lifetimes much greater than the

age of the universe.

I. INTRODUCTION

If neutrinos have mass' the heavier ones should
decay into lighter ones. These decays are quite in-
teresting from the standpoint of cosmology as well
as elementary-particle physics. Let us discuss the
general situation in the framework of the
SU(2) X U(1) gauge theory of weak-electromagnetic
interactions. We shall assume that the theory con-
tains n two-component neutrino spinors belonging
to SU(2) doublets and n two-component neutrino
spinors which are singlets under SU(2) X U(1). The
mass term in the Lagrangian has the following
general form? in terms of the column vector of
two-component bare spinors p:

L mass=—3p 0:Mp+H.c. , (1.1)
M, D
M=|proa | (1.2)

Here o, is the Pauli matrix. M is in general a
complex symmetric matrix wherein the first » in-
dices refer to SU(2)-doublet fields. The sub-blocks
D and DT are the ordinary Dirac terms while M,
is a Majorana piece which arises from an invariant
term when the neutral member of a complex Higgs
triplet acquires a vacuum expectation value. M, is
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another Majorana piece which is already
SU(2) X U(1) invariant without the need for any ex-
tra Higgs fields. Physical neutrino fields v are de-
fined by

p=Uv, (1.3)
where U is a unitary matrix satisfying
UTMU =real , diagonal . (1.4)

The description above is quite general and can ac-
commodate many models of interest. In a large
class of models the theory is arranged so that
M, =0, giving

0 D I

M=lpr M,

(1.5)

First consider models of type (1.5). The order of
magnitude of the entries of D is about 100 MeV
(muon mass) while the order of magnitude of M,
represents new physics. One could work only in
the group SU(2) X U(1) and choose this magnitude
arbitrarily, but it seems more reasonable (or in any
event quite interesting) to imagine a model in
which SU(2) X U(1) is embedded in a larger group
and where the magnitude of M, is associated with
an appropriate larger scale. The latter scale need
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not, of course, be the scale of grand unification.

In fact, our discussion is more interesting when the
scale M, is considerably lower than 10'* GeV. Let
us define the hierarchy parameter

D ] : (1.6)

=0 |—
€ M2

in an evident symbolic notation. We shall assume
that € is small. Then, when (1.5) is brought to di-
agonal form there will be n “superheavy” Majora-
na neutrinos whose mass scale is M, and n “light”
Majorana neutrinos whose mass scale is of order

D2
2

m (light neutrinos)=0

=20 (M,) . (1.7)

We will concentrate our discussion on these n light
neutrinos. For orientation, if the light-neutrino

mass scale is 100 eV we find M, ~ 10 MeV and
€=10"5. It is algebraically trivial but very useful
to notice that (1.7) enables us to rewrite (1.6) as

=0 _l_ight-neugino mass | (1.8)

Since the order of magnitude of D is known the
entire discussion can be given in terms of the scale
ratio €.

Now consider the decays of vy, one of the
heavier light neutrinos into v, one of the lighter
of the light neutrinos. The standard mode for this
decay is

vE—vL+Y, (1.9

which arises due to radiative corrections involving
charged intermediate boson virtual emission and
reabsorption. The order of magnitude of the decay
width for (1.9) is estimated® as

5

I'(vyg —v; +7) ~a(mixing factor)

In (1.10), az%, m (vy) is the vy mass, m (u) is
the muon mass, while the mixing factor involves
elements of the leptonic Kobayashi-Maskawa-
Cabibbo matrix. With “reasonable” numbers and
using (1.8) one has roughly

vy —v +7)~10" 2T (p—e +7, +v,)
~10"8c’MeV . (1.11)

It has been noted* that in a model of the present
type the leptonic Glashow-Iliopoulos-Maiani
mechanism does not hold due to the fact that only
n independent linear combinations of the 2n neutri-
no fields interact with the W and Z intermediate
vector bosons. This leads to Z-boson-mediated
flavor-changing neutral-current decays of which
the dominant type is ’

Vg —vL +VL +VEL (1.12)

where v, is another (or even v, itself) of the light
neutrinos. The width for this mode is estimated’

4
charged —lepton mass | | m(vgy)
W —meson mass

Nu—ev,v,) .

m ()
(1.10)

as
mvg) |
Vv
Mvg—3v,)~€* m(:) Nu—e+v,+u)
~10"1%°MeV . (1.13)

Comparing (1.13) with (1.11) shows that the v,y
mode will dominate the 3v; mode for sufficiently
small hierarchy ratio € (i.e., sufficiently high new
energy scale). However for roughly € > 1073, the
3v, mode will dominate.® Of course both of these
decays are extremely slow for small €. As an ex-
ample, take €=107%in (1.11) to predict a lifetime
I'~'~10°® MeV~!. This is much longer than the
age of the universe which is usually estimated as
10% Mev . ,

Thus, it is interesting to ask if there exist possi-
ble extensions of the standard weak-interaction
theory which can speed up neutrino decay. Re-
cently Chikashige, Mohapatra, and Peccei”® have
proposed adding to the theory a complex
SU(2) X U(1) Higgs singlet ® which carries lepton
number minus 2. We will refer to this as the 1-2
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model. The Lagrangian is arranged to be invariant
with respect to lepton-number transformations.
When @ acquires a vacuum expectation value the
lepton number is broken spontaneously, the subma-
trix M, in (1.5) is generated, and a massless Gold-
stone boson, the “Majoron,” appears. It is expect-
ed that the interactions of the Majoron with ordi-
nary matter are sufficiently weak that it ought to
have escaped detection. The authors claim howev-
er that the decay vy goes to v, plus Majoron is
rather rapid. Their estimate® is

[(vy—vy +J)~ 1072k X (mixing factor)
Xetm(vy) , (1.14)

where we have denoted the Majoron by J. 4 is a
dimensionless coupling constant whose value is not
very severely restricted. Taking h*(mixing factor)
~107% and using (1.8) would give

D(vyg—v, +J)~107%MeV . (1.15)

This has the same € dependence as the v,y mode
(1.11) but may be very much stronger, implying
lifetimes less than the age of the universe. Howev-
er a more detailed analysis to be presented here
shows that I'(vyg —v; +J) actually vanishes to ord-
er € in the 1-2 model. This means that the life-
time for a neutrino to decay into a lighter one plus
Majoron will not be less than the age of the
universe in the present scheme (for typical parame-
ters).

A natural question to ask then is whether one
can find a different Majoron scheme in which a
formula like (1.14) or (1.15) holds true. One Ma-
joron scheme (2-3 model) involving a complex
Higgs triplet was proposed by Gelmini and Ron-
cadelli.’ Their model is essentially the same as a
usual Higgs-triplet model'® with the restriction
that the lepton-number-violating term in the Higgs
potential is deleted. In this model, however, it is
easy to see that the decay vy —v; +J is completely
forbidden at tree level. We shall also construct a
generalized Majoron scheme by including all three
Higgs multiplets—singlet, doublet, and triplet—in
a lepton-number-conserving Lagrangian. This
theory (1-2-3 model) is characterized by (1.2) rather
than (1.5) and also yields the result that the decay
vy —v +Majoron vanishes to order €.

In Sec. II the mass terms and Majoron interac-
tion terms of the general 1-2-3 model are dis-
cussed. It is necessary to know which linear com-
bination of the Higgs fields corresponds to the Ma-
joron. This is worked out in the Appendix.

Section III contains the specialization of the gen-
eral discussion to the 1-2 model. The transforma-
tion matrix in (1.3) between bare and physical neu-
trino fields is calculated to an accuracy of order €.
This is used to demonstrate that the amplitude for
vy —vp +J vanishes to order €2, which implies the
stated result. The transformation matrix is also
used to demonstrate the validity of (1.13), which is
independent of the Majoron scheme. In Sec. IV we
demonstrate the vanishing of the amplitude for
vyg—vp +J in the 2-3 model. The vanishing of
the amplitude for vy —v; +J to order € is
demonstrated in Sec. V for the general 1-2-3 model
in the nontrivial case when M| is assumed to be of
order €’M,. It is also shown that the coupling of
the Majoron to ordinary (charged) fermions is
drastically suppressed in this model. In a recent
paper Georgi, Glashow, and Nussinov!! examine
the 2-3 model in great detail. They claim that the
vanishing of the Majoron coupling to two different
fermions in tree order is guaranteed by the fact
that it is a Goldstone boson. While this holds
trivially in the 2-3 model it does not hold in the
more complicated 1-2 and 1-2-3 models. We shall
demonstrate in the discussion of Sec. VI how the
usual argument fails for these two cases and why a
more detailed discussion of the type given here is
required. We shall also explicitly calculate the
off-diagonal Majoron couplings to order €*.

II. THE NEUTRINO YUKAWA TERMS
IN THE 1-2-3 MODEL

Both the neutrino mass terms and neutrino-
Majoron interaction terms are assumed to arise
from the most general SU(2) X U(1) X lepton-
number invariant Yukawa Lagrangian in the usual
way. We shall first write these terms for the gen-
eral case when the Higgs singlets, doublet, and tri-
plet are all present and then we shall specialize to
the 1-2 and 2-3 cases. Our notation and lepton-
number (/) assignments for the Higgs multiplets
are as follows'%:

@ (I=—2),
¢+
=40 | =0, @.1)
h+/VE Rt
=| w0 vz U=

We assume that the theory breaks down in such a
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way that the vacuum values of the neutral fields
are real (no spontaneous CP violation):

(P)=(P)=x,
(%) =(F°) =A=2"4G~' 2, 2.2)
(h®)=(h*) =y .

Here Gr is the Fermi constant and we have as-
sumed that y is so small that it does not contribute
much to Gz~!/2. Tt is convenient to separate the
neutral fields into their real and imaginary parts:

O=P,+id;,
$°'=¢r+id; , (2.3)
ho=hl+in? .

In the Appendix we show that the zero-mass parti-

cle corresponding to the Majoron is given by the
linear combination:

J=[47&2y4-_+—x2(K2+4y2)2+y27»4]_1/2
X[—2Ap2%2 +x (A2 +4p2)®; +yA%h0] . (2.4)
This holds in the 1-2-3 model. We can specialize

to the 1-2 model’ by setting the triplet vacuum
value y to zero:

J=®; (1-2 model) . 2.5)

We similarly arrive at the 2-3 model® by setting x
to zero:

J=(4p2+ A~ —2p¢?+AhY) (2-3model) .
(2.6)

Now let us write the part of the invariant lepton-
Yukawa interaction involving the neutral Higgs
fields. Absorbing the arbitrary coupling constants
into equivalently arbitrary mass parameters in a
manner consistent with Egs. (1.1) and (1.2), we
have

M <:Z> b <¢Z>
F = %pTO'2 ¢0 * P +H.c.
DT M,
(%) (®*)
2.7)

A more detailed discussion of this notation and re-
lated topics is given in Ref. 2. Note that the quan-
tities M| and M, may be arbitrary complex sym-
metric #n X n matrices, while D is just an arbitrary
n X n matrix. The fields p are the bare ones, relat-
ed to the physical ones [see (1.3)] by

v

N

Ua Ub

U, U, (2.8)

p=Uv=

The ¥ are the n light neutrinos we are interested in
here while the N are the n superheavy ones. The
unitary matrix U is determined by requiring

UTMU =real positive, diagonal

m 0 (2.9)

0 my

We previously showed? that such a U can always
be found for a general M.

ITII. SUPPRESSION OF vy —v,J
IN THE 1-2 MODEL

In this case the triplet 4 is absent and the upper
left submatrix in (2.7) should be deleted. It is pos-
sible to diagonalize the resulting mass matrix M of
the type (1.5), neglecting terms of order €3 [where
€=0(D/M,)], by making the ansatz

U =(expiH)V ,

0 S
St 0

v, 0 (3.1

0 ¥,

b

Here S is taken to be O (¢€), while V| and V, are
unitary and O(1). Substituting (3.1) as well as
(1.5) into (2.9) then determines S (from the require-
ment that the off-diagonal sub-blocks vanish) to be

S=—iD*(M3)"!. (3.2)

V, and V), are the diagonalizing matrices which
satisfy

—VIDM, 'DTV,=m =real positive, diagonal , (3.3)
VIIM,+5(M%)='D+D + +DTD*(M%)~']V,=m, =real positive, diagonal . (3.4)

The transformation matrix U is then!?
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Ua Ub

U=lu, v,

—M,~'DTy,

[1—5D*(M3%)~'M,~'DTIY,
[1—3M,~'DTD*(M3)~'1¥,

D*(M3%)" 'y,
+0(€Y) . (3.5)

We are interested in the Yukawa coupling to the Majoron J which is given by (2.5) in the 1-2 model. Us-
ing this as well as (2.8) in (2.7) gives the Majoron Yukawa interaction

um,U, UIM,U,
UIM,U, UM,U,

v
N

L= -;—x'l-(TITNT)az

+H.c., (3.6)

where x is the ® vacuum value [of O(M,)]. For the decay vy —v, +J to take place one requires nondiago-
nal elements in the upper left submatrix in (3.6). However with U, from (3.5) and (3.3) we obtain

UIM,U, = —m =diagonal .

(3.7)

Thus there are no transitions from one generation of light neutrinos to another correct to O (m /x)=¢€? in
amplitude. Note that the result in (3.7) does not follow to all orders in € just by diagonalizing the mass ma-

trix. The latter would require
u/pu,+UD"U, + UM, U, =diagonal ,

which does not in general coincide with (3.7).

(3.8)

The estimate for ['(vy;—v; +J) in (1.14) and (1.15) was based on an amplitude of O (e?). We shall see in
Sec. VI that T will start at O(€). For a typical vy of mass about 100 eV we had e~10~°. The extra
suppression of a factor 10™2* would then give I' "'~ 10 MeV~!, which is substantially longer than the age
of the universe. Thus the Majoron decay channel in the 1-2 model seems much less spectacular than before

from the standpoint of cosmology.

The matrix U in (3.5) is also useful for discussing the vy —3v; decay which takes place by Z-boson ex-
change. We showed'* that the neutrino neutral-current — Z interaction term is

ig' _
= Z
2sinfy, " V¥u

1+7s

Pv,

where we have switched to the standard four-component notation for the neutrino fields, and
g'=—e/cosOy is the weak-hypercharge U(1) coupling constant. The matrix P is given by

ul

a
P= U}I (Ua Ub)=

viM,~'DTy,

The last term in the upper left sub-block of (3.10)
differs from (3.3) so we now expect

vy —vy, +virtual Z with amplitude of O (€?).
Since the first term in the upper left sub-block
gives virtual Z—2v; with O (1), we find the am-
plitude for vy —v; +2v; to be of O(e?). This ex-
plains the €* factor in (1.13). Note that the validi-
ty of (3.9) and (3.10) is completely independent of
the Majoron scheme.

IV. ABSENCE OF vy —v.J
IN THE 2-3 MODEL

In this case the two-component neutrino singlet
fields are simply absent from the theory. Equation

1—ViD*(M%)~'M,~'D Ty,

(3.9
viD*m,*-v, 3
V;MZ"IDTD*(M’S)_IVz +0(€’) . (3.10)
I
(2.7) for the Yukawa term becomes
1 ho T
_?9=—7Wp o,Mp+H.c., 4.1)

where M is an arbitrary symmetric matrix. From
(2.6) we find that the field £° contains a piece of
the Majoron J:

iA

h°=h9+ih,~°= WJ

+o L (42)

Substituting (4.2) into (4.1) gives the interaction of
the Majoron with the “bare” neutrinos:

ik
2y

Finally we must rewrite [see (1.3)] p in terms of

L=——=(4* 4+ UpT,Mp4+He.  (4.3)
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the physical fields v as p=Uwv. U, which now is
an n Xn (rather than 2n X 2n) unitary matrix, is to
be chosen to make UM, U = real positive, diago-
nal. But this transformation also diagonalizes the
Majoron Yukawa interaction in (4.3). Thus the
amplitude for vy —v; +J vanishes in this model,
neglecting radiative corrections.

V. vg—v J IN THE 1-2-3 MODEL
Now we must deal with the full mass matrix in
(1.2). Clearly if M, is of order less than €20 (M)

the results will be the same as for the 1-2 model
and the vy decay will be similarly suppressed.
Thus let us make the assumption

O(M,)=€’0(M,) . (5.1)

In this case it is easy to see that the transformation
matrix U in (3.5) still diagonalizes the full M with
neglect of terms of (€®), provided that (3.3) is re-
placed by

VI(—DM,'DT+M,)V,=m =real positive, diagonal . (5.2)

In other words, V; is determined from a different formula.
The Majoron Yukawa interaction is to be extracted from the following specialization of (2.7) to the light-

neutrino sector,

F=—Vo h um,u, L(UTDU uIpTu,) QliUTMU v+H (5.3)
=2 Z(h())a 1a+(¢0) a ¢+ Ue a+(d))c 2Ue |v+H.c., .

where (2.8) was also used. We write the normalization factor in (2.4) as

A =[4)»2y4+x2(7»2+4y2)2+y27»4]_1/2

(5.4)

[roughly one has 4 ~(xA?)~'] and notice that each of the fields in (5.3) contains a piece of the Majoron,

O* = —iAx (A +4yHJ + - -, $O=—2idlpT + - - -

, hO=idyA2 4 - -+ . (5.5)

Substituting (5.5) into (5.3) and using U, and U, from (3.5) gives finally the Majoron Yukawa interac-

tion!?

L= éA.n&vTan.T(M1 —DM,~'DT\V, %+ H.c. +O(€) . (5.6)

Comparing this with (5.2) shows that the Yukawa
interaction in the 1-2-3 model is again proportional
to the mass matrix m correct to order €.

We conclude this section with a remark about
the Majoron coupling to charged fermions. In ei-
ther the 2-3 »r 1-2-3 model the neutral member of
the ordinary Higgs doublet is seen to contain a lit-
tle piece of the Majoron. Thus the ordinary Yu-
kawa interaction of the standard theory gives a
Majoron Yukawa interaction with charged fer-
mions. Using (2.6) ones finds this interaction in
the 2-3 model to be’

21ym,,, —_

F~F TJ:[:)/S:/) , (5.7)
where m, is the mass of fermion ¢ and the upper
(lower) sign corresponds to a positively (negatively)
charged fermion. The magnitude of (5.7) has al-
ready been noted to be rather small. Using (5.5)

[

we find that the result (5.7) should be multiplied
by approximately y /x (which is of order €?) in the
1-2-3 model. Thus in the 1-2-3 model the magni-
tude of (5.7) is further suppressed, making the Ma-
joron even harder to detect.

VI. DISCUSSION

We have shown that Majoron schems do not, for
reasonable parameters, yield lifetimes for
vy —v +J shorter than the age of the universe.
More precisely we have found that in the 1-2 and
1-2-3 models the Yukawa coupling matrix in the
light-neutrino sector is essentially given by
(@) ~!'m (m being the diagonal light-neutrino mass
matrix) correct to order €2. It is given exactly by
(h°)~'m in the 2-3 model. Since
(@) >> (¢°) >> (h°) the latter coupling (al-
though exactly diagonal) can be rather large and
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this may have important phenomenological effects.

One might, based on experience with the proper-
ties of U(1) Goldstone bosons in other contexts, ex-
pect that their tree couplings to fermions are exact-
ly diagonal. Hence it might be considered unneces-
sary for us to have discussed the properties of the
transformation matrix U of (3.5) in detail. Howev-
er in models involving Majorana neutrinos such as
the 1-2 and 1-2-3 theories the usual arguments fail
for an interesting reason and the diagonality of the
Yukawa matrix only holds to a certain order in the
scale hierarchy parameter. We shall demonstrate
this now for the 1-2 model and also use this tech-
nique to calculate the Yukawa matrix to order e*
where it is explicitly seen to be nondiagonal in gen-
eral.

In the 1-2 theory let p; stand for the » bare light
neutrinos and pj, stand for the n bare heavy neutri-
nos. The lepton-number current computed from
Noether’s theorem is

n

n
i +
LIJ :IE pIUppI_hz PrOuPh
=1 =1
420,38, P+ > 6.1)

where the ellipsis represents the charged fields
which will not concern us. It is crucial that the
first and second terms differ in sign. This is be-
cause p; and p; have opposite lepton numbers as
one notices from (2.7) and that the usual Higgs
field ¢° carries zero lepton number while ® and 4°
each carry —2 units. Because the total Lagrangian
is lepton-number invariant we have d,L, =0 even
in the presence of spontaneous breakdown where
®, ~(®,)=x. Then (6.1) yields

n n
9y Izlp;raﬂpl—hzlp;r,a#ph +2x0J =0,

(6.2)

where we have identified J =®; [see (2.5)]. Now
suppose that the relative sign between the first two
terms of (6.2) were positive (or that the second
term was absent as in the 2-3 theory). Then we
could use the transformation (2.8) to replace the
first two terms by

9., v;rouvi ,

all i

where the v; are the physical (mass diagonal)
fields. Sandwiching (6.2) between two different
neutrino states would then result in a contribution

only from the field O0J and we would conclude
that the off-diagonal Majoron-Yukawa couplings
vanish. However, the minus sign in (6.2) invali-
dates this conclusion. To carry this approach
further substitute (2.8) into (6.2) and specialize to
the light-neutrino sector. In matrix notation (v
stands for the light-physical-neutrino fields)

3,70, RV +2x0J + - - - =0, (6.3)
where the matrix R is given by
R=U/U,-UlU,
=1-2ViD*M:—'M,~' DTV, &+ -+ . (64

Equation (3.5) was used in the last step. We have
in mind to take matrix elements of (6.3) between
any two neutrino states. This can be simplified by
using the free equation of motion? for the physical
field

~f
9, vjo,= —Imjvaa2 R (6.5)

and by writing the Majoron Yukawa interaction
with light physical neutrinos as

W < ~T ~
L Yukawa= 7 2 V502Vngkn +H.c., (6.6)
k,n

thereby defining the coupling matrix g;,. The
quantity [/ is to be replaced by

d
. — cee
oJ Yukawa 1
using Lagrange’s equation. Then (6.3) simply be-
comes,

—i X V405 (my Riy + X1 W, + Hoc. =0 ,
k,n

6.7)

which evidently results in the final formula

1 2 _ _
&in=— ;mkak,, -+ ;mk( VI-D*M; IMZ 1DTVI )kn

+ e (6.8)

The first term of (6.8) has a leading contribution of
order € [see (3.3)] and agrees with our previous re-
sult in (3.6) and (3.7). The second term is of order
€* and represents the leading amplitude for the tree
contribution to vy —v; +J. It contains a factor
which is identical to the matrix P in (3.10) restrict-
ed to the light-neutrino sector. Notice that the
present technique has enabled us to “escalate” our
knowledge of U [given in (3.5)] to order € to a re-
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sult for the nondiagonal Yukawa matrix g, accu-
rate to order €*. A similar argument can be car-
ried out in the 1-2-3 model with essentially the
same result.

As remarked before the above amplitude leads to
['(vyg—vy +J) of order € and for reasonable
parameters a numerical value of roughly 10~
MeV. Such an extremely low rate makes it com-
parable to the width for I'(vy—v; +7). In fact at
this level the radiative correction (by W exchange)
to I'(vyg—v; +J) [which is expected to be similar
to I'(vyg —v; +7) in magnitude] is comparable to
the tree contribution. In the 2-3 model, as
remarked by Georgi et al.,!! the radiative contribu-
tion is the only one. These authors have also in-
vestigated the cosmological implications in the 2-3
model of the processes vy +vy—J—v +v; and
vy +v; —J +J. The amplitudes for these in the
1-2 model involve the “square” of (6.8).

Throughout this work we have assumed that it
is sensible to organize things by the hierarchy of
scales given in (1.6), (1.8), and (5.1). This of course
may be questioned since, for example, the spread
of masses in the known three-generation structure
is a factor of 10°. Nevertheless the assumption of
the existence of a new scale is perfectly in tune
with the idea that SU(2) X U(1) is embedded in a
larger group which does not show up at usual
“resolutions.” We do not, however, want to rule
out the conservative possibility that the
SU(2) X U(1) structure is the only correct feature of
the present fashion in gauge theories. Then one
might want to allow, e.g., M, to be of the same
order as D and to have special mixing angles, etc.
Such a possibility is more difficult to analyze in
general but Hosotani® has recently shown that
some relaxation of the bounds on neutrino masses
may be obtained due to the reaction (1.12). A con-
ceptually straightforward experimental test for
such a situation would be the observation of neu-
trino oscillations in neutral-current hadronic in-
teractions.*

Note added. In our discussion we have assumed
that only a single Higgs multiplet of each isospin
was present. One might wonder whether decays
into Majoron + lighter neutrino are also
suppressed in the 17293" model which contains p
isosinglets, g doublets, and r triplets. In this
multiple-Higgs-field case the general discussion of
Sec. VI should still be applicable. In particular,
Eq. (6.2) will continue to hold if J is the particular
linear combination of fields corresponding to the
Majoron and x is its “decay constant.” The dis-
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cussion which follows (6.2) only requires us to as-
sume that a single hierarchy parameter exists.
Thus (6.8) would predict a tree level decay ampli-
tude for vy — v, v of order €*0O (M, /x). Generally
x should be of the same order as M, if only a sin-
gle hierarchy exists so we expect the same suppres-
sion to hold. For example, in the case where two
| = —2 singlets, ® and ¢’ (with vacuum values x
and x') are present, x is simply to be replaced by
(x2+x’2)1/2.
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APPENDIX

We will identify the correct combination of
Higgs fields to give the Majoron by using the in-
variance properties'® of the Higgs potential V. In
order that V be invariant under lepton number
[taking SU(2) X U(1) for granted] it is necessary
that terms such as

c1¢'¢®+cr0'he, +H.c.

(where ¢, =7,0*) be excluded. In fact, to convert
the general SU(2) X U(1)-invariant 2-3 model into a
lepton-number-conserving one it is only necessary
to remove the ¢, term from the Higgs potential.
An interesting lepton-number-conserving term in
the 1-2-3 model is, however,

c36'h¢. d* +H.c.

The possibility of such a term illustrates the need
for mixing among neutral fields belonging to all
three Higgs multiplets.

The invariance of ¥ under an infinitesimal glo-
bal lepton-number transformation leads immediate-
ly [see (2.1) and (2.3)] to the equation

0 0V

614 Vo0V o

(> h
la(pr r +

® ; —
aP; oh?

h 0.

(A1)

The ellipsis in (A1) represents the contributions
from fields which are electrically charged. Simi-
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larly the invariance of ¥V under weak-hypercharge
gauge transformations leads to (¥ has Y =1, 4 has
Y =2, and ® has Y =0)

Oﬂ o9¥ 14 h() av hO 14

_ - =0.
L3¢ ’a¢, on 77 an

(A2)

Differentiating (A1) with respect to ®; and
evaluating the resulting equation in the vacuum
state gives

%>_( <a<1>2> Chy ><aq>ah°>~

Here we have assumed no spontaneous breakdown
of CP conservation as discussed in Sec. II. Using
(2.2) and setting {3V /0®, ) =0 gives

<a<1>2> <aq>ah°> 0 a3

By differentiating (A1) and (A2) we easily find
four more relations:

<ah°a<1>> <ah°ah°>
< $209) >+ <a¢?ah°>
<a¢oaho>+ <ahoaho>

2o+ Gy )=0

(A4)

Equations (A3) and (A4) yield enough information
so that the mass squared matrix of neutral (ima-
ginary part) Higgs fields is completely determined
in terms of a single parameter, e.g.,

< a¢?a¢, 7

In the basis ¢9,®;,h; this matrix is

LA

2x 2y
A A? A
£ L S g, A5
2x 4x? 4xy a4 (A3)
o
2y dxy  4p?

The determinant of (AS) vanishes so there is at
least one Goldstone boson. Trying to solve for it
uncovers a two-dimensional null subspace so there
are in fact two. The linear combination which is
absorbed by the Z° vector boson is defined from
the feature that it cannot contain any component
of ®; (which does not couple to the Z). The ab-
sorbed Goldstone boson is proportional to

AG{+2yh (A6)

while the Majoron given in (2.4) is orthogonal to
this. Finally the massive linear combination is
proportional to

Ay A

¢+ oo » n. (A7)

1An up-to-date survey of the situation is given in
Proceedings of the Neutrino Mass Miniconference,
Telemark, Wisconsin, 1980, edited by V. Barger and
D. Cline (University of Wisconsin, Madison, 1981).

20ur notation follows that given in several earlier pa-
pers, J. Schechter and J. W. F. Valle, Phys. Rev. D
22, 2227 (1980); 23, 1666 (1981); 24, 1883 (1981). In
these papers we have attempted to give fair references
to the already extensive recent literature on the theory
of massive neutrinos.

3Calculations of this decay mode done almost 20 years
ago are discussed in the talk of M. Nakagawa in Ref.
1. The most recent discussion is given by P. B. Pal
and L. Wolfenstein, preceding paper, Phys. Rev. D
25, 766 (1982).

4In addition to the first of Ref. 2, see V. Barger, P. Lan-
gacker, J. P. Leveille, and S. Pakvasa, Phys. Rev.
Lett. 45, 692 (1980); M. Gell-Mann, G. Stephenson,
and R. Slansky (unpublished); D. D. Wu, Phys. Lett.

96B, 311 (1980).

5See the first of Ref. 2 and Y. Hosotani, Enrico Fermi
Institute Report No. EFI 81/12, 1981 (unpublished).
Also 1. Y. Kobzarev et al., ITEP Report No. ITEP-
90, 1980 (unpublished). Earlier related references are
given by S. Pakvasa, in High Energy Physics—1980,
proceedings of the XXth International Conference,
Madison, Wisconsin, edited by L. Durand and L. G.
Pondrom (AIP, New York, 1981).

%0f course if € becomes this large the concept of a scale
hierarchy becomes blurred. Also the important decay
channel vy —e*e ~v, opens up when e~ 10~2.

7Y. Chikashige, R. N. Mohapatra, and R. D. Peccei,
Phys. Rev. Lett. 98B, 265 (1981).

8Y. Chikashige, R. N. Mohapatra, R. D. Peccei, Phys.
Rev. Lett. 45, 1926 (1980).

9G. B. Gelmini and M. Roncadelli, Phys. Lett. 99B,

411 (1981).
10See, for example, Ref. 2 above; T. P. Cheng and L. F.




25 NEUTRINO DECAY AND SPONTANEOUS VIOLATION OF ... 783

Li, Phys. Rev. D 22, 2860 (1980).

11H, Georgi, S. Glashow, and S. Nussinov, Harvard Re-
port No. HUTP-8/A026, 1981 (unpublished).

12Equation (1.2) of Ref. 2 should be replaced by the ex-
pression for A given here.

13The same result for the special case when M is real
has been obtained in a slightly different way by Hoso-
tani in Ref. 5.

14See Eq. (3.15) of Ref. 2. Notice that Eq. (3.9) is writ-
ten in terms of the Majorana field operators v. We
may take matrix elements of this equation by using
(A4) of Ref. 2 to arrive at the more complicated
structure proportional to (4.10) of Ref. 2.

15Equation (5.6) is written in terms of Majorana field

operators. We may take matrix elements and express
the result in terms of auxiliary four-component Dirac
spinors by using

EE,

’

mm

172
| o5 s sens

=—2a" (8" )ImFu"(F)

+2i7" (B ReFysu () .
Here F is a symmetric matrix in neutrino generation
space and »'"(P) is an ordinary Dirac spinor.
16This method was recently used in a similar problem by
J. Kandaswamy, Per Salomonson, and J. Schechter,
Phys. Rev. D 19, 2757 (1979).



