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Fourth-order quantum-chromodynamic corrections to the
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We calculate the first non-leading-logarithmic corrections to the nonsinglet longitudinal

structure function of deep-inelastic scattering, using the operator-product expansion and

the renormalization group. We use dimensional regularization to regulate both ultraviolet

and infrared divergences. We discuss the renormalization-scheme dependence of our re-

sult and its phenomenological implications.

I. INTRODUCTION

The longitudinal structure function is defined to

where o.T and o.
L are the total cross sections for

transverse and longitudinal virtual photons. Ex-
perimentally OT and o.

L can be extracted from the
data using

4M x
FL (x,Q ) = 1+ F2(x,Q )

—2xF, (x,Q ) .

s g 4T(R)
16~' (n+ l)(n+2)

To compare this prediction with experiment, we
look at the ratio of longitudinal- to transverse-
photon cross sections. This is given by

R =err /o'T

F~

2xFi
(1.2)

Neglecting 0(M /Q ) effects, the naive parton-
model result is just zero, as follows from the
Callan-Gross relation. ' The moments of FI are
given by

(F,(Q'))„=Cps (F,(Q'))„

+aCL „(xG(Q ) )„,
where a = g e& for electroproduction, G(Q ) is

the gluon distribution function, and x is the Bjork-
en scaling variable. The nonsinglet (NS) and sing-
let (S) coefficient functions are given to order g
b 2—5

Ns g' 4C~
CL, n =

16~' ~+1

o =1 (o T+eo L, ),
dQ dv

where e is dependent on the beam energy and I is
a flux factor. For several different e's a straight-
line fit will yield o.l as the slope and o.z. as the in-

tercept. The measurement is difficult, however,
since the cross section depends only weakly on R
and is, therefore, susceptible to large systematic er-

rors.
The first-order QCD prediction is consistent

with the data for small x. For x )0.3 the predic-
tion of the theory is systematically lower than the
data ' even with its large error bars. The source
of the disagreement may lie outside perturbative,
twist-two QCD, being due, as some have suggested,
to nucleon-mass effects, to the intrinsic transverse
momenta of the constituent partons, to higher-
twist effects, ' or to diquark systems in the nu-

cleon. ' The source of the disagreement may also
lie in large higher-order QCD corrections.

Indeed, it is clear by now that no meaningful
comparision of a QCD-motivated scaling violation
and experimental data is possible unless the
theoretical prediction is extended beyond leading
logarithms. " In this paper we calculate the first
higher-order contribution to the Q dependence of
the moments of the nonsinglet longitudinal struc-
ture function Fl (x,Q ) of deep-inelastic scattering.
These moments are inverted to give FJ {x,Q ) to
order g . We then calculate R to this order.

Our procedure follows closely that of Ref. 12 ex-

cept that we use on-shell, massless target quarks
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instead of off-shell quarks. Both infrared and ul-

traviolet divergences are regulated by dimensional
regularization. This has the advantage that all
one-loop and many two-loop diagrams can be easi-

ly calculated analytically. In addition the handling
of infrared divergences and their ultimate cancella-
tion appear to us to be significantly simplified in
this approach. This scheme has also been used in
many perturbative cross-section calculations'
because of the simplicity of the massless phase-
space integrations.

Our paper is organized as follows. In Sec. II we
detail the formalism of this calculation and present
the renormalization-group results. In Sec. III we
give the order-g results for the coefficient func-
tions C2 „and CL, „as a demonstration of our
method. The order-g results and specific details
of the calculation are discussed in Sec. IV. In Sec.

V we present the order-g nonsinglet correction to
R and discuss its phenomenological implications.
We briefly summarize our results in Sec. VI.

Finally, Appendix A contains our basic integrals
and in Appendix 8 we collect the contributions
from the individual Feynman diagrams for the
order-g calculation.

II. FORMALISM

A. Fundamentals

We consider the forward scattering of a photon
current J& from a target of momentum p. The
spin-averaged amplitude T&, for this process can
be written as

T„„(q,p)=i J d ze'~'(p
~
T(J„(z)J„+(0))~p}, ;„,„„,s,d

=eq„TL (q,v)+d„,T2(q, v), (2.1)

where q is the photon momentum and v=p q.
The tensors e» and d» are given by

2epv =gpv qpqv ~q—
and

(2.2)

I

where g is the renormalized coupling constant, p
is the renormalization point, Ck „ is the Q-
dependent coefficient function, and A„ is the re-
duced matrix element of the nonsinglet, twist-two
operator,

Tg —g Tkg p k —2L
X

(2.4)

The Tk „are the moments of the deep-inelastic
structure functions F2(x,Q ) and Fl. (x,g ) (Ref.
16):

Tkn ™kn
= f dxx" 'Fk(x, g'), k =2,L, (2.5)

dp = (gp (Ppq—+P q—p)~v+(P P ~v )q 1 .

(2.3)

Specializing to nonsinglet amplitudes (e.g.,
TP' T2"), we expa—nd the invariant amplitudes T2
and TI in inverse powers of x, the Bjorken vari-
able ( —q /2v). This gives

(p
~
O~ '

p ~p)=Asap~
' ' '

p~ +traces,

24X p v (n)Tl.,n=
2 p p Tpv (2.7)

and

where A„does not depend on Q . Thus, the Q
dependence of the moments Mk „ is calculable
when we know the coefficient function Ck „.
These are most easily determined by choosing
quarks as target states. This means that TI, n and
A„are calculable in perturbation theory so that the
Ck „are obtained order-by-order from Eq. (2.6).

Using Eqs. (2.1)—(2.4) and (2.6), we can project
out the invariant amplitudes giving (in 4—2e
dimensions)

where Q = —q . At this point we are neglecting
target-mass corrections. These will be discussed in
Sec. V.

On the other hand, applying the operator-
product expansion for currents to Eq. (2.1}gives'7

where

n

(n)T„„QT„,. —
X

I+~
( pvT(n) )

3+e T2,n=
2 g» +

2 I.,n (2.8)

Tk„(g,v)=Ck„(g Ip,g )A„(p }, k=2,L,
(2.6) Quark masses are set equal to zero.
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B. Renormalization-group results

The Q dependence of Ck„(Q /p, g ) is deter-
mined by the renormalization-group equation

p +p —Y„Ck„(Q'/P, g ) =0,
Bp Bg

Ck„(Q /P, g )=Ck„(l,g )

s y„(g')
)(exp — dg'

g

where g is given by

(2.10)

where y„(g} is the anomalous dimension of the
nonsinglet operator and P(g) is defined by

g' P p(g)
8( )

Bp

(2.9)

with

dt
=P(g), g(t =0)=g,

1t= —1n2
p

(2.1 1)

The solution of Eq. (2.9) is Expanding Eq. (2.10} in powers of g gives

2

and

=1+
2

(0)

ln
2

+B2'„' +O(g )
p

(2.12)

C,,(Q /p, g )= C,„+ C,,+O(g )
16m

' (16 )

2 4
&(i) +162 ' (16m. )

Po 2B—I'„'l—n
z +BI.„' +O(g ) .

2 p
(2.13)

Here we use the expansions

16m 16
2 4

( )
(0) g (1) g

166 (166)2

+O(g'),

2

C2„(1 g )=1+ 2B2'„'+O(g ),
16m

and

16m. ' (16 )

(2.14)

2

T2,» =1+
2

T2'„'+ O(g ),
16m

2 4
g T(&) + g T(2)

16m
' (16~ )

(2.18)

n

y„=2CF 1 — +4 g — . (2.17)n(n+1) 2 j
The coefficients P~ and y„'" are given elsewhere. '9

For a SU(N) gauge group we have Cz N, ——
CF (N 1)/2N, —a—nd T—(R)= ,f for f flavors —of
quark s.

Finally, we define the expansions in g of Tk „
and A„:

+O(g ), (2.15) ~O(g ), (2.19)

where' and

and

Po
———, Cg —, T(R)— (2.16) 2

W„'"+O(g'} .
16m

(2.20)
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In Sec. III we review the calculation of B2'„' and
BL'„'. In Sec. IV we present an original calculation
of BL„'.

III. ORDER-g RESULTS

(&) 4CF
C n+1

From Eq. (2.13) we see that

4CF
BL,n =

tl +1

(3.1)

(3.2)

The original calculation of Bz'„' used off-shell,
massless quarks to regulate potential infrared diver-

gences. ' We use instead on-shell, massless quarks
and let the infrared divergences be regulated by
dimensional regularization. '

B. Calculation of B2', „'

Combining Eqs. (2.6), (2.8), (2.18), and (2.20), we
have to order g

(1) (&) (&)
C2,n=T2, n

—~n (3 3)

A. Calculation of BL,'„'

Combining Eqs. (2.6), (2.7), (2.19), and (2.20), we
have to order g

(&) (&)
CL, n TL,n

The pzp, projection in Eq. (2.7) means that only
the Feynman diagram in Fig. 1(a) contributes to
TL'„', In this case there are no divergences and we

get the well-known result5

The Feynman diagrams contributing to T2'„' are
shown in Fig. 1. These are calculable analytically
in terms of gamma functions, beta functions, and
hypergeometric functions. The relevant integrals
are given in Appendix A. Diagrams with virtual
corrections to the external quark legs will be dis-
cussed below. For clarity we distinguish the 1/e
divergences due to the ultraviolet (UV) and in-
frared (IR) regions of the momentum integrations.
Using Eq. (2.8) we get before renormalization

T2n CF ' +
~UV ~IR

2 Q2+4S„—4 + ln4m —yz —ln
n (n +1) p

+4S —3 +B,2

n(n+1)

(3.4)

where

1 2 4 2B =Cp 3S„—4 g —2— S.+4+ —. g —+—+ +
&j2 n(n+1)"

1 &j k &k n n+1 n2
(3.5)

yE is Euler's constant, and S„=g". ,1/j.
The diagrams of Fig. 2 contribute to A„"'. Since

we are using one-shell, massless-quark target states,
each diagram is formally zero. This is due to the
cancellation of an ultraviolet pole with an infrared
pole. In order to keep proper account of the dif-
ferent divergences we write the contributions of
these diagrams as being proportional to

An = —CF
(&) 2

+4Sn —4
n (n +1)

1 1

~UV ~IR

1 1

~UV ~IR

The result for 2„"' is, thus,

(3.6)

(c)

FIG. 1. Diagrams which contribute to T&'„' and T2'„'.
Crossed diagrams are assumed.

C.C.

(a) (b)
FIG. 2. Diagrams which contribute to A„'".
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with B given in Eq. (3.5). Comparing this with

Eq. (2.12), we see that

(0)

B2'„' —— (ln4rl yE)+—.B . (3.7)

This result agrees with that of Ref. 12, but in our
opinion the present calculation is considerably
easier than the one presented there.

Diagrams with virtual corrections to the external
quark legs for both T2'„' and A„'" are also formally
zero. The infrared divergences exactly cancel in
the subtraction of Eq. (3.3) and, thus, these dia-

grams make no contribution to 82'„'. The same
will also hold true for BL, „'.

IV. CALCULATION OF BI., „'

This calculation is the main object of our paper.
Because of the p&p„ in Eq. (2.7), only the Feynman
diagrams shown in Fig. 3 contribute to Tz „'. We

+ C.C.

(o) (b) (c)

In contrast to the results of Ref. 12 there is no
constant piece contributing to A„"' in our scheme.

After renormalization in the minimal-subtraction
scheme we find from Eq. (3.3} that

y(0) Q2 y(0)
C2'„' ——— ln + (ln4ir yE—)+B,

2 ' 2p

have evaluated the diagrams of Figs. 3(a}—3(i}
analytically and those of Figs. 3(j)—3(n) numerical-

ly. In the following subsections we discuss our
methods for evaluating these diagrams and present
the somewhat lengthy results in Appendix B.

A. Analytic calculation of TI.,„'

The Feynman diagrams of Figs. 3(a) —3(i} were
calculated analytically as products of hyper-
geometric functions, gamma functions, and beta
functions. The relevant integrals are given in Ap-
pendix A. In this method it is easy to distinguish
ultraviolet and infrared divergences since they ap-
pear as poles of gamma and beta functions, respec-
tively. The algebraic tedium was alleviated to a
large degree by extensive use of the algebraic-
manipulation programs MACSYMA and
GAMALG.

Not included in the diagrams of Fig. 3 are those
with self-energy corrections to the external quark
legs. As discussed above these make no net contri-
bution to Bl „'. In addition the tadpole diagram is
not shown since it is trivially zero.

The unrenormalized results for TI „' for the dia-

grams in Figs. 3(a)—3(i) are given in Appendix
B 1. In Appendix B2 the counterterms in the
minimal-subtraction (MS) scheme for those dia-

grams with ultraviolet divergences are displayed.
Included in Appendix B2 is the counterterm for
the diagram in Fig. 3(n). Even though we calculat-
ed this diagram numerically, we were able to ex-
tract the pole piece analytically.

anDD
+ C.C.

B. Numerical calculation of TJ „'

(e)

~ c.c.
O O OODDD OOOO

/

(h)

~~ c.c.

(j)

(m) ( f})

FIG. 3. Diagrams which contribute to TI. „'. Crossed
diagrams are assumed.

For the Feynman diagrams of Figs. 3(j)—3(n)
the propagator structures are sufficiently compli-
cated that we were unable to calculate them analyt-
ically using the integrals of Appendix A. We ex-

plored several other means of analytically evaluat-

ing these diagrams, including the use of Gegen-
bauer polynomials. ' This latter method failed
because it required either an integration over three
Gegenbauer polynomials for Figs. 3(m) and 3(n), or
an application to nonplanar diagrams [Figs.
3(j)—3(1)], both of which present formidable diffi-
culties.

We did find, however, that by using the
parametrization method of Ref. 25 we could write
the integrands such that all momenta could be fac-
tored out leaving integrals of Feynman parameters
only. Specifically, a typical integral has the form
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I ac dzo
(A 3+34'�)

I= Q I„ccg co" I dzG(A5+2 sc0),

where ro= 1/x, the 2; are functions only of the
Feynman parameters z;, m is a function of the
space-time dimension, and

6

dzG ——gdz; .

The integrands A5 and A6 are still sufficiently
complicated so as to defy an exact evaluation. We
chose, therefore, to use Monte Carlo integration.

To extract the divergences we evaluated the in-

tegral I„ in 4—2e dimensions. Specifically we cal-
culated I„(e) for several values of e and fitted the
results to the polynomial

EIq =Pg+E~e+C~e, e &( 1,
a form convenient for extracting the quantities of
interest, P„and E„. A typical set of results is
shown in Fig. 4. The technique proved sufficiently
accurate that we were able to guess the analytic
form of P„as a function of the integer n for the
diagrams in Figs. 3(j)—3(m). As mentioned above
we were able to determine the pole structure of the
diagram in Fig. 3(n) analytically. We then used
these analytic pole pieces to give a better deter-
mination of F„. In addition we have also checked
several of the analytically evaluated diagrams using
this method. The answers agreed to within the
Monte Carlo integration errors, typically a few per-.

cent.
The results of our numerical calculations are

given in Appendix 8 3. We have evaluated the
first five even moments for each of these diagrams
for f=4 flavors. The errors shown result from
the uncertainties of Monte Carlo integration.

C. Results for SL „'

At order g we have from Eqs. (2.6), (2.19), and
(2.20)

(2) (2) (&) (&)
L,n L, n L, n n (4.1)

The sum of all the diagrams in Fig. 3 yields for
TP „', before renormalization,

I I l

0 i 2

lO

FIG. 4. Typical numerical evaluation of a diagram,
showing a linear fit to the Monte Carlo integration
"data" points. The error bars are too small to be seen
on this scale. This figure corresponds to the n =2 mo-
ment of the diagram in Fig. 3(n).

X=C C 44/3 1
2~ CT(R) 16/3 — 1

n +1 EUv n +1 QUv

4
n+1 +4S„—4

2
n n+1 &rR

1
+21( + +2/ +gP;„,4 1

n +1 6'Uv

Q2
t/i= —In z +in'. —y~ .

p

The F; „are the finite pieces given in Appendices B 1 and B 3. The ultraviolet counterterms (MS scheme)
are given in Appendix 82 and sum to give

r

44/3 1 16/3 1
+Q CpT(R)—+g +CF'

n +1 evv n+1 e&R n+1

where the F „are also given in Appendix 82. The renormalized TL „' is,

1
+1( +gP. ,

&Uv

thus,
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TI „—X—X

4CF, &(0) 4CF2

,
'

Po+ g+n+1 2 n+1 +4S„—4
2

n n+1
1 + g(F, F.' )

~IR
(4.2)

For the second term of Eq. (4.1) the result of Eq. (3.1) for Cz'„' is not sufficient. Because of the infrared
pole in A„"' [Eq. (3.6)], we must keep the O(e) piece of Cl'„'. The product CL'„'A„"' is given after renormal-
ization (MS scheme) by

(}) (}) 4CF
CI.,n~n =

n+1
2 —4S„—4

n(n+1)
1

+tI') +F)R,n
~IR

where

4CF'
~IR, n n+1 +4S„—4 (S„+1).2

n n+1

The final answer for Cl „' is

Ci „——g(F; „F/ «) —F—)R„+
l

(0)
XnPo—

2

g2
ln

2
—1I147T+yE

p
(4.4)

Comparing this with Eq. (2.13), we see that the coefficient of the in(Q /p, ) is as expected from the
renormalization-group equation and that

(0)

BL, ~ = g (F —F' ) —F' ta + Po+ (ln4n' —y@)
l

(4.5)

In the MS scheme of Ref. 12 the final term con-
taining (1n4nyE) is ab. —sent.

Using Eq. (2.15) we can write

—2 —2

CL „(l,g )= 81.„1+g (t) g
16 ' 16

where

(2) (2) (})
RL, „——Bl. n/B2

The numerical results for RI „' in the MS scheme
and the momentum-subtraction (MOM) scheme are
given in Table I. Here we have used f=4 for the
number of flavors. The errors shown are Monte
Carlo integration errors.

We summarize the renormalization-scheme
dependence of our results by relating the MS and
MOM schemes to the MS scheme. In the MS
scheme

1

AMs ——exp[ ——,(ln4m. —yF )]AMs

1
MS

(0)

RL n, Ms =Rl n, Ms+ ~o+ (1n4~ yE) . —(2) (2) 'Yn

In the momentum-subtraction scheme

TABLE I. Numerical results for RL „' for n =2, 4, 6, 8, 10 in the MS and MOM renor-
malization schemes corresponding to f=4 flavors.

(2)
L,n, MS

(2)
RL, n, MOM

2

6
8

10

17.6+0.6
31.0+0.8
37.9+0.7
43.9+0.8
49.4+1.0

—0.8+0.6
7.3+0.8

11.0+0.7
14.8+0.8
18.5+1.0
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and

AMoM =exp[ &
( 1.55) ]AMs

2. 17AMs

(O)

RL„n,MoM Rl..—n. Ms
—po+ (1 5S) .(2) (2) Xn

V. PHENOMENOLOGY

In this section we describe the procedure used to
determine (approximately) Fz(x, Q ) and FI.(x,Q )

using the moments we have calculated. Combining
Eqs. (2.5), (2.6), (2.10), and the expansions of P(g),
yn (g ), and Ck „(l,g }, we find

d8

Mz„(Q )=A„
16m

—2 (&) ~ (0)
g (&) Vn vl Yn

(5.1)

—2 ~+'
gC —2 (&) a

M (Q)=A g '
1

g R() y" P'y
n +1 16~z "

2P0 2p, z
(5.2)

where d„=y'„'/2Po.
In terms of experimentally measured distributions Fz(x, Q ) and FI (x,Q ), these moments are given by the

Nachtmann formulas

P+' 3+3(n +1)r +n (n +2}r z zdx Fz x, =Mz'„
0 x (n +.2)(ll +.3)

(5 3)

n+1

f dx rFz(x, Q"—) FL(x&Q ) —= —,Mz„(Q )—ML n(Q ), (S.4)

where (=2xl(1+r) and r =(1+4M x IQ )'

Setting M =0 we regain Eq. (2.5). We will show

results corresponding to both M =0 and

M =0.88 GeV.
Given a function Fz(x, Qo ) at some Qo as in-

put, we may easily use Eqs. (5.1) and (5.3) to deter-

mine the constants 3„. For the purposes of this

paper we have chosen simply

Fz(x, QO
——5 GeV ) =2x'~ (1—x)

This function has roughly the shape expected for a

nonsinglet quark distribution in a nucleon. Note

that the overall normaliZatiOnn will not contribute

to R =O.L /O. z-.

To invert the moments in Eq. (5.1), we follow

the method of Ref. 27. The inversion follows a

simple two-step procedure. First we make the pro-

visional assumption that the structure function

Fz(x, Q') has the form

Fz(x, Q )=Ax (1—x)~.

We fit the moments [Eq. (5.3)] of this equation for
2 &n &n,„ to the results of Eq. (5.1) to determine

a and P. We next assume a parametrization for

Fz(x, Qz) of the form

Fz(x, Q )=x (1—x)~ g a x
m=0

(5.5)

where M &n,„—2 with a and p as determined

ahorse. A fit of the moments of this equation to
the results of Eq. (5.1) now involves only a simple

linear least-squares fit to determine the a 's. Gen-

erally M-3 —5 will give sufficiently accurate resu-

lts. For our calculation n,„=10and M =3.
We now repeat this procedure for FL (x,Q ) us-

ing Eqs. (5.2), (5.4), and the Fz(x, Q ) just deter-
mined.

Before we can invert the moments, one further

point must be specified. We need the odd as well

as the even moments to carry out the inversion.

The odd moments were eliminated in the calcula-

tions of Secs. III and IV when we added a diagram

with its crossed version. This sum has the general

form

8„+( —I )"8„.
In practice we calculate a diagram, multiply by

two, and restrict the expansion in ~=1/x to even

powers. To analytically continue the results to odd

moments we assume they have the following form
for odd n (Ref. 28):
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We now calculate a diagram and multiply by two
for all n.

This procedure is straightforward for the planar
diagrams of Figs. 1 and 3. For the nonplanar dia-

grams of Figs. 3(j) and 3(l) the situation is more
complicated. Factors of ( —1)"are present in the
results of these diagrams as well as between the
sum of a diagram and its crossed version. We did
not isolate these factors in our numerical integra-
tions, but chose instead to interpolate by smooth
curves the values of the odd moments from the
even moments. We also applied this method to the
other diagrams we calculated numerically, Figs.
3(k), 3(m), and 3(n). Since these diagrams have
only a small effect on the total results, we feel jus-
tified in using our approximate interpolation.

Using the method just described we have ap-
proximately reconstructed F (x2, g ) and Fl. (x,g )

in leading and next-to-leading orders both with and
without target-mass corrections. For the leading-
order (I.O) reconstruction the running coupling
constant g is specified by

gLo 1

16ir Poln(Q /ALo )

For the higher-order (HO) calculation g is obtained

by solving numerically

both leading and next-to-leading order, which
determines our choices of A. Including the target-
mass corrections also produces similar results for
the two orders.

In Fig. 5 we present our theoretical predictions
for R. Curve (a) has no target-mass corrections,
while curve (b) includes them. As mentioned, the
leading and next-to-leading-order results are essen-
tially the same for both cases. The data are from
SLAC and are shown for comparison.

VI. SUMMARY

In this paper we have presented a calculation for
the nonsinglet, longitudinal, Wilson coefficient
function CL „(Q /iu, ,g ) to order g . The use of
massless, on-shell target quarks and of dimensional
regularization for isolating both the ultraviolet and
infrared singularities enabled us to do all one-loop
and many two-loop diagrams analytically. The
handling of infrared singularities was particularly
simplified in this approach in comparison to the
method of using off-shell quarks for regularization.

For those diagrams which could not be done
analytically numerical techniques were employed.

0.40

16ir Pi 16m. Pi Qln + =ln
PogHO I 0 PogHO Po

0.56-

0.32-

Q =5 GeV

For the case of no target-mass corrections (M =0)
we used ALO ——650 MeV and A~& ——500 MeV. For
a target mass of M =0.88 GeV we chose
ALo ——550 MeV and AMs

——450 MeV. These values

of A were selected so that the predicted evolution
with Q of Fz(x, g ) was approximately the same
in the four cases.

As an example of the effects of our choices for
the A's on g, we get for Q =5 GeV the values

gLQ /1 6m =0.049 and gHo /1 6 ir =0 029 for the.
case of M =0. The combined effect of this de-
crease in the size of the coupling constant and the
positive contributions from the higher-order
corrections (see Table I) means that, in fact, the
leading-order and next-to-leading-order predictions
for R =crL, /crT are essentially the same (to within
a few percent). This is not to say that the order-g
corrections to I'I are insignificant. Indeed, as indi-
cated by the numbers in Table I they are large.
This result is more a reflection of our requiring
F2(x,g ' to have approximately the same form for

0.28-

0.24-
b

0,20-
b

0.16-

O. I 2-

0.08-

0.04-

0.00 0.6
X

0.8 I.O

FIG. 5. Theoretical predictions for R. (a) No target-
mass corrections with Aqo ——650 MeV or AMs=500
MeV. (b) Including target-mass corrections with

AL,0 ——550 or A—s=450 MeV. As discussed in the text,
when all the higher-order corrections are included, there
is essentially no change with respect to the leading-order
prediction. The data are from SLAC (Ref. 29).
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In the course of the numerical part of the calcula-
tion we used a general fitting procedure for deter-

mining the e dependence of the Compton ampli-
tudes. This technique proved sufficiently accurate
that we were able to surmise the analytic form of
the 1/e terms. This, in turn, was useful in allow-

ing us to compare the Q dependence of our results
with the renormalization-group prediction.

The order-g corrections to the coefficient func-
tion were large as indicated in Table I. We found
that the non-Abelian graphs of Fig. 3 dominate the
results by virtue of their larger color factors. In
addition the importance of the uncertainties due to
the Monte Carlo integrations required for the dia-

grams calculated numerically is reduced since the
contributions of these diagrams are small in com-
parison to those calculated analytically.

Finally, in Sec. V we calculated R =oi. /o'r to
order g . This involved using our results for

CL, „(Q /)M, g ) and the moment-inversion tech-
nique of Ref. 27. We found that R is essentially
insensitive to the higher-order corrections because
of the significant cancellations of these corrections
in the numerator and denominator of the ratio

aI. /ar
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APPENDIX A: BASIC INTEGRALS

The following integrals are used in calculating
the analytic results of this paper:

k„ kq

(2~)" k"(k+ )"
i( —1) +" 1(a+b n/2)—B n

b
n a+~ ( 2)a/2 —( +ab) +I,

(4 )" ' &(a)&(b)

where p @0. Those terms proportional to g„„were not needed in our calculation and are collected in the
quantity I',

k k
i d "k
J (2~)a k2a(k + )2b(k + )2c

i( —1) +"~ I'(a+b+c n/2)—
(4~)" &(a)&(b)&(c)

&&B(a, )bF2& a+b+c — ,b;a+b'a (—q )«2 —~a+b+c)2'

where p =0, q @0,and

&p q

q

1. Unrenormalized contributions to TI. „'.
Analytic results

The contribution of Fig. 3(a) is given by

Those terms proportional to g&„and p& were not
needed in our calculation and are collected in the
quantity E'. CF2 8 1 +2/ +I', „,

n +1 &Uv

APPENDIX 8: RESULTS FOR
THE FEYNMAN DIAGRAMS OF FIG. 3

The Feynman diagrams of Fig. 3 are referenced
by their figure numbers.

where 1(t= —ln(Q /p )+1n4m. —yE, and

8
~a n

—CF ~n — +n+1 " n+1 2

The contribution of Fig. 3(b) is given by
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where

4
n + I tv

1 +2/ +Fg, , I"d „C——FT(R) — 2S„———16/3 1 1

n+1 "
n n+1

25+

FQ g —Cp 2' +4 5

n+1 2

The contribution of Fig. 3(c) includes the combina-
toric factor of —, and is given by

'I

The contribution of Fig. 3(e) is given by

1/3 1 +2/ +F,„,
n +1 evv

CFC
19/3 1 +2/ +F,„,
n +1 tv

where

where

I'..=CFC~
1/3 1 1 31

n+1 "
n n+1 6

I'.,n =CFC~
19/3 1 1 5172S„——— +n+1 "

n n+1 114

The contribution of Fig. 3(d) is given by
r

(C P C C /2)
8(2—2/n)

n+1
1 +2/

The contribution of Fig. 3(f) is given by

CpT(R)

where

16/3 1 +2 ++d, nn+1 eUv

where

+ +2/ +Ff8 1

n+1

Fr „=(CF CFCg/2)—2 8

n+1

The contribution of Fig. 3(g) is given by

1 —— 2S„———2 1 1

n n n+1
7 13—S ——+
n 2

where

8(S„—1)

n+1 +21(
12 1

n +1 6'Uv
+21( +E,„,

4 1
Fs q =CFCA (1+2S„) S„— +—+2 g —Sk )+ S„+—+2n+1 " " n+1 2, k "

n

The contribution of Fig. 3(h) is given by 2. Counterterm contributions to TI „'

CF2

I'h, .=CF2

8 1 +2/ +I'
n (n+1) &rR

8 1 1 32S„——— +
n(n +1)~ "

n n + I 2

1
+p ++.', ,

8

n+1 evv

where

The contribution of Fig. 3(a) is given by

The contribution of Fig. 3(i) is given by
F,' „=CF — (1+S„)n+1

The contribution of Fig. 3(b) is given by

where

=C 4

) k(n —k+1) where

4 1

n+1 evv
+1( ++I.. .



82 D. W. DUKE, J. D. KIMEL, AND Q. A. SOWELL

TABLE II. The values F; „ for those diagrams calculated numerically [Figs. 3(j)—3(n)].

Fk, n F

2

6
8

10

0.7+0.1

0.7+0.1

0.5+0.1

0.4+0.1

0.2+0.1

—0.7+0.1

—0.5+0.1

—0.4+0.1

—0.4+0.1

—0.3+0.1

—7.9+0.2
—8.0+0.2
—7.3+0.1
—6.9+0.1
—6.2+0.1

—16.1+0.2
—9.4+0.3
—6.4+0.3
—5.0+0.3
—4.3+0.3

17.7+1.0
13.1+0.7
8.5+0.4
6.8+0.4
5.9+0.4

F'b „CF ——— (1+S„)n+1

1
+1 +Fc,n ~

19/3
F A

n +1 &Uv

where

F,' „=CFcg (1+S„)19/3
n+1

The contribution of Fig. 3(d) is given by
r

The contribution of Fig. 3(c) including the com-
binatoric factor of —, is given by

where

Fs „——CFcg (1+S„)12

n+1

The contribution of Fig. 3(n) is given by

CF
8 1 +f +F.'. ,

n +1 &Uv

where

F„' „=Cp (1+S„)11,5

CF T(R)

where

16/3 1 +g +Fd.. .n+1 eUv
3. Contributions to T~ „'. Numerical results

The contribution of Fig. 3(j) is given by

Fd „CFT(R) ——— (1+S„)16/3
n+1

1 +P +F.', ,c,c„
n +1 6'Uv

where

F,' „=CFC~ (1+S„)1/3
n+1

The contribution of Fig. 3(f) is given by

(CF CFCg /2)—2 8 1
+pn+1 e„v

where

The contribution of Fig. 3(e) is given by

+Ff,n ~

(Cp CFCq /2)—2 16 1
+2|t' ++),s

n (n +1) etR

where F, „ is given in Table II for n =2, 4, 6, 8,
10. The contribution of Fig. 3(k) is given by

Fk, n

where Fz „ is given in Table II for n =2, 4, 6, 8,
10. The contribution of Fig. 3(1) is given by

16S„
(Cp CFCg /2) — +2/ +Fi „,

n +1 ~IR

where F~ „ is given in Table II for n =2, 4, 6, 8,
10. The contribution of Fig. 3(m) is given by

Fr „=(CF Ceca /2)—8 (1+S,)n+1
where F „ is given in Table II for n =2, 4, 6, 8,
10. The contribution of Fig. 3(n) is given by

The contribution of Fig. 3(g) is given by

12 1
CF&~

1
+0 +Fs. ,

n +1 eUv

1
+21( +F„„,S

F
n +1 evv

where F„„is given in Table II for n =2, 4, 6, 8,
10.
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