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Canonical quantization of a quantum-chromodynamic effective Lagrangian
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We discuss the canonical quantizations of several slightly different effective "gluon" field terms which have been

used in connection with a model designed to mock up the axial anomaly in quantum chromodynamics. A recent
claim that one form of the model is inconsistent with the canonical quantization procedure is disputed.

I. INTRODUCTION

First consider an effective quantum-chromo-
dynamic (@CD) Lagrangian of the following type'.

Finally, it has been suggesteds that the theory
be formulated with the first term of (1.1) modi-
fied as follows:

g= —(s K)' —(s K)C+C
P

c = —(&~K„)(s„K„)—(s„K„)C + ~ ~ ~ (1.5)

4 = —(lndetM- indetM~).
12

In writing (1.2) we have specialized to a world of
three flavors and adopted the normalization of K„
given in Ref. 2 rather than Ref. 1. M is the ma-
trix' of spin-zero meson fields. The three dots
in Eq. (1.1) stand for "matter" terms which will
not concern us in the present note. An equivalent
Lagrangian was proposed in Ref. 3. One in-
teresting feature is the elimination, by the equa-
tion of motion for K„, of the quantity ~„K„ in
terms of the matter field 4 (which is approxi-
mately proportional to the q' meson). Since S„K„
gets eliminated it is natural to try to work with a
scalar field G =8„K„and write instead' ~

——G —G4 +'C

2
(1.3)

In fact one might want to work only with the ef-
fective Lagrangian which is obtained after all
"gluon" degrees of freedom are eliminated. A
derivation of this Lagrangian obtained without
consideration of the intermediate stage has also
been given. 4

In addition, a more elegant description of the
gluon field can be given" in terms of the so-
called "topological" gauge field:

-3c
4~i p +i ~~+

(1.4)
The "field strengths" &„„~, in (1.4) will be de-
fined later.

Here K„ is a well-known pseudovector combina-
tion of gauge fields, c is a positive constant, and
4 is a Hermitian combination of matter fields
given by

In this case the equation of motion for K„will not
eliminate it, but certain matrix elements of mat-
ter and gluon fields will coincide.

From the point of view of the kinds of practical
(tree or semiclassical) calculations which have
been made with the effective Lagrangian, it does
not seem to matter much which of the four de-
scriptions of the gluon field is used or whether
it is eliminated initially. A more relevant ques-
tion might be the one of the importance of possible
terms like G' (which is expected to be suppressed
by an order of I/N, ' compared to G'). Neverthe-
less, for the purpose of making a deeper analysis
of the structure of @CD at low energies it seems
to be interesting to ask about the consistency of
these Lagrangians as quantum theories. In par-
ticular we have in mind the question of the con-
sistency of the quantized Hamiltonian formalisms
obtained from the Lagrangians above. In doing
this one is assuming that the fields K„, G, or
A~„~ (to be discussed later} are to be treated as
canonical fields rather than as combinations of
the underlying Yang Mills fields.

In the preceding paper' it is claimed that the
quantization of (1.1}is inconsistent while the quan-
tization of (1.5) is consistent. Here we attempt
to show that the situation is the other way around:
(1.1) can be consistently quantized while (1.5),
strictly speaking, presents severe problems when
one goes to the Hamiltonian formalism. We will
also show that the quantization of (1.3) is (fairly
trivially} consistent and in a direct way that the
theory (1.4) is identical to (1.1). The latter result
is known but we emphasize that it leads to an
alternate method of quantization.

The "inconsistency" of (1.1) claimed in Ref. 7
is that since the momentum II4 canonically con-
jugate to the field K4 vanishes by the equation of
motion, we cannot satisfy the fundamental com-
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mutation relation

[K,(x, t), II,(y, t }]=i5'(x —y). (1.6) which gives the additional constraint

(2.7)

However, this is not really a difficulty. In fact
it occurs in ordinary Maxwell electrodynamics
where II, =0. The solution is well known and re-
quires us to set up the formalism using the theory
of constrained dynamics, as expounded by
Dirac, ' for example.

II. QUANTIZATION OF EQ. (1.1)

We will work with the variables K„(x) and ap-
propriate momenta II„(x) satisfying

(2.1)

Notice that we are using the metric with "imagi-
nary" fourth component so g&„=5„„.Our goal
is to find a Hamiltonian formalism which is con-
sistent with (2.1)and which reproduces the
Lagrange equation of motion

(2.2)

(2.8)

d~x II + V 4 VII4 (2.6a)

However, let us choose a gauge in which the
second of these extra terms vanishes. Then the
Hamilton equation for I)4 gives

(2.9}

Equation (2.8}is maintained in time so there are
no further constraints. Equations (2.4) and (2.8) com-
mute with each other so they are first class, in
the language of Dirac. Since they are four in
number they effectively eliminate all gluon de-
grees of freedom from the theory. Actually the
theory contains four arbitrary functions P, g4
which enter as the following additional terms in
the "total" Hamiltonian:

Equation (2.2) has as its simplest solution the
matter-gluon duality relation cs„K„=C. (Here
we are neglecting the effect of the parameter 8;
it can be reinstated by replacing 4 -4 + 8/6. )
%e start by calculating the candidates for the
canonical momenta:

while the Hamilton equation for E, gives

84 K4 = —[K4, H] = —V ~ K+ —(4 +io }.
C

(2.10)

(2.8)

The three space components of (2.3) vanish so we
must adopt the three constraints or supplemen-
tary conditions,

(2.4)

where
~ ) is an allowed state of the system. Note

that for compactness we are skipping the step of
first working with Poisson brackets and then re-
placing them by commutators, etc. The fourth
component of (2.3) shows that II, is a true dynami-
cal momentum given by

II~ = —i(cv K+cB~K4 —4). (2.5)

Eliminating S, K~ in favor of II, by (2.5) we con-
struct the Hamiltonian as

Taking (2.8), (2.9), and (2.10) together we see
that we have once more the Lagrange equation of
motion (2.2} (on allowed states). Thus the Hamil-
tonian treatment and hence quantization of Eq.
(1.1}appear to be consistent. Integrating the
second term of (2.6) by parts and using (2.8) shows
that (acting on allowed states) the Hamiltonian (2. 6)
plus (2. 6a) is manifestly positive definite. Finally
it should be remarked that in Dirac's formalism,
constraints are to be used only after evaluating all
relevant commutations. Thus we should set
II, =0 (or more generally II4 =const) only at the
end of the calculation. %ith the gauge choice
discussed above we then have for an allowed
state [):

(2.6}

Notice that the 4' j2c term is essentially the ri'

mass term so it requires c to be positive. In
order that the constraint (2.4) be maintained as
the system evolves in time it is necessary that

This shows how even though the starting La-
grangian has enough gauge freedom to eliminate
all four gauge fields, a physical effect (q' mass
term) remains. If one uses a manifestly co-
variant procedure to fix the choice of gauge (see
Refs. 5 or 9, for example) the description of the
same phenomenon appears to be considerably
more complicated.
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III. DISCUSSION OF EQ. (1.3)

The structure of this theory is much simpler
than the preceding case. It turns out that the
field G is eliminated by a second-class constraint
so it is unnecessary to impose supplementary
conditions on the states. Essentially one can then
eliminate G directly by algebraic substitution.
I et us demonstrate the existence of the two
second-class constraints at the classical level.
Introduce a canonical momentum LI obeying the
Poisson bracket relation

[G(x, t), II(y, t)] =5'(x —y).
The quantity -iSZ/&(&, G) vanishes so we have
the constraint

(3.1)

Z, (x)=-11(x)=0. (3.2)

The meaning of the "curly equal sign" is given in
Ref, 8. The Hamiltonian is simply

(3.3)

so the requirement that (3.2) be maintained in
time gives the additional constraint

Z2=- —CG+4 =0. (3.4}

Equation (3.4) is our desired matter-gluon duality
relation. Using (3.1) we find

[Z, (x, t), Z, (y, t)], =c5'(x —y),

so Z, and Z, are second class as stated.

(3.5)

128~ 412' 413~ 428 ' (4.1)

Alternatively the four independent components
may be taken as K„=ie„„p+„p„explicitly

4/k

+4 = ~~&ye&&ya ~

(4.2)

The field strength tensor appearing in (1.4) is a
completely antisymmetric four index object

defined by

+pvpa =Sp+)pa Sa+pvp +Sp+apv Sv+pap ~ (4.3)

Because of the antisymmetry, E has only one in-
dependent component and may be written as

E
p yp ~ E6

p pp ~ ~ (4.4)

The pseudoscalar quantity E is found by using
(4.3) and (4.2):

IV. QUANTIZATION OF EQ. (1.4)

The field variable in (1.4} is a three index com-
pletely antisymmetric object A. „p . Because of the
antisymmetry there are only four independent
components which may be chosen to be

1 iF 6pppfy pA ppg 6
8 pKjf (4.5)

Thus we calculate the quantities

e~„p~E~,p~ -24F = —4i bpEq,

EpvpaEpvpa =24F' = —~g(SpICp)2 ~

(4.6}

V. QUANTIZATION OF (1.5)

The canonical momenta resulting from (1.5) are

BZ

~R4+p )
(5.1)

All four components of II„ involve time derivatives
and are true dynamical momenta. Thus there
are no constraints in this theory. This means
that the theory based on (1.5) contains four real
gluon degrees of freedom. The Hamiltonian is
found in the usual way to be

1 . 1 2 cB= d x 4 +iII — —-- II2 ——8. jC.
2c ' 2c

——(B,. K )'+vv tc} (5.2)

The first term of (5.2) is the same as the first
term of (2.6); this again requires c to be posi-
tive. Then we see that the second and third terms
of (5.2) are each negative definite. Since there
are no constraints which could somehow lead to
special cancellations, the quantum theory built
from the Hamiltonian formulation of (1.5) seems
to be inconsistent as it stands. Finally one
might consider7 adding to (1.5) the additional term
(d/2)(epXp)' with c0-d. The above difficulty
still persists however. Again the theory has no
constraints [unless c =0 and then we are back to

By substitutingthe expressions for 8&K& and

(B„E„Pgiven by (4.6} into (1.1) we arrive at the
Lag rang ian (1,4):

Sc
4 jf vpa pvpo 4 pvpo pupa @+

(1.4)

In other words (1.4) is just a rewriting of (1.1)
with the identification of (4.2}. It looks nicer"
since the kinetic term displays the "right sign"
and it may have a deep geometrical meaning.
Since we have quantized (1.1) in Sec. II, the identi-
fication (4.2) furnishes us with a simple method
to quantize the Lagrangian (1.4) written in terms
of the topological gauge field. An alternative
method of quantization based on the Faddeev-
Popov technique is discussed in Ref. 5. Notice
that our choice of normalization of A. „„p given
in (4.2) was made arbitrarily.
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(1.1)] and the Hamiltonian is

d~» ' ————(s.K.)' -—(s.K )'(@ + ill, )' ll' c c
2(c+d} 2c 2 ' ' 2

(p K)(cc-idII, ) .2(c+d) c+d

(5.3)
The second term of (5.3) requires c&0 for con-
sistency while the fourth term requires c&0.

The basic difficulty with the theory based on
(1.5}is that there are no constraints. Thus one
is stuck with undesirable leftover terms. These
include unphysical (ghost) excitations. The latter
seem to be just the Kogut-Susskind ghosts' so it
may be reasonable to argue that the effective
theory should be augmented by statements that
they should not be observable and should not
couple to physical particles. However, these
statements do not follow from the effective I a-
grangian itself.

VI. OISCUSSION

One can take severalpoints of view about what
requirements to puton a low-energy effective
Lagrangian for QCD. The most straightforward
seems to be that all the fields (both of "matter"
and "gluon" type) which remain in the Hamil-
tonian should correspond to real physical states.
This is, after all, what one usually means by

"effective. " Both the Lagrangians (1.1) with a
"kinetic" term —,'c(S„K„) and (1.3) with a "kinetic"
term —,'cG' obey this requirement. The quantiza-
tion of these Lagrangians according to Dirac's
method' via the Hamiltonian route was shown here
to be consistent and to lead to the effective
elimination of the gluon degrees of freedom. On
the other hand, the Lagrangian (1.5}with a
"kinetic" term —,'c(S„K„) does not obey this
requirement.

The long term goal, of course, is to extend the
effective Lagrangian to give a description of as-
pects of QCD (like confinement, glueball states,
etc. ) other than its chiral properties. In this
connection the choice of a kinetic term may point
in interesting directions. The Lagrangian (1.1)
was noted to be identical to the one in (1.4) which
is written in terms of the topological gauge fields,
A „~,. This may provide' a promising fundamental
approach. The Lagrangian (1.3) has the advantage
of being the simplest. A possible technical reason
for preferring it when making an extension to also
mock up the trace anomaly was noted in Ref. 2.
Finally, the kinetic term itself may require modi-
fication when other gluon fields are present. "'
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