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Recent effective-Lagrangian formulations of the U(1) axial anomaly are examined to determine their consistency
and the extent to which the fundamental quantum-chromodynamics theory is replicated. One formulation is shown
to possess the desired properties, and some difficulties with two other formulations are pointed out.

I. INTRODUCTION

Here A,'is the time component of the symmetry
current 5", which is obtained from the gauge-in-
variant current A", by subtracting the QCD topo-
logical current density K~~. Thus one has

3",(x) =A",(x) —(-',)' i' N, IC;„. (1 2)
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(1.3)

In Eq. (1.2), N, (=3) is the number of light quarks,
A"„(x), A = 1, . . . , 6 is the octet of color gluons,
and E~» are its field strengths.

In order to reproduce correctly this aspect of
the QCD theory in the effective-Lagrangian formu-
lation, one is led in a natural way to introduce a
phenomenological four-vector field K"(x) which

plays the role of the topological current density

Effective Lagrangians which obey the principles
of current algebra and the PCAC (partial conserva-
tion of axial-vector current) condition" have had
a long history of successful applications for low-
energy hadronic phenomena. Recent work of
Witten' has made it possible to relate these pre-
vious effective-Lagrangian approaches to the
fundamental quantum-chromodynamic (QCD) theory
under the assumptions of color confinement and
the 1/N expansion. However, the earlier effective
Lagrangians" did not include effects of the U(l)
axial anomaly, and hence the topological aspects
of QCD were not treated in these effective-La-
grangian methods.

As one attempts to extend the effective-Lagran-
gian formulations so as to encompass the topo-
logical aspects of QCD one would like to preserve
as much of the structure of the original Lagran-
gian as possible. In particular, the original
theory allows for U(1) symmetry transformation
and possesses the charge Q', which accomplishes
this, i.e. ,

O', =- J d'xA'. (x) .

I.~= (B~K„) +GB~K" + L „-8B~K".1
(1.4)

Here G and L«are functions of all the other J
= 0' and 1' meson fields and 6I is the CP-violating
coupling constant of QCD. (The determination of
G and I,cA by current algebra is discussed in Sec.
II below. ) The formulation of Ref. 4 also intro-
duces a four-vector field K" but with a kinetic
energy term which depends only on its divergence:

I,=
2

(BqK")'+ GBqK" + I, —HBqK (1.5)

Both L, and L, allow the construction of a g5
generator of the U(1) symmetry transformations.
However, because Eq. (1.5) of Ref. 4 depends
only on 8&K", the K" canonical commutation re-
lations are actually inconsistent with the field
equations. Thus the dynamics allows one to
eliminate K" in terms of the other meson fields,
but as we will see, in some calculations one gets
the right answer by carrying out calculations
prior to the elimination while in other situations
one may eliminate B„K"and perform the calcula-
tions. One of the purposes of this paper is to ex-
plain how one is to use I., so that one does not
get incorrect results.

In the third effective-Lagrangian formulation
of the U(1) anomaly of Ref. 6, the axial four-
vector field K" does not appear at all. Rather
only a pseudoscalar constraint field Q(x) repre-
senting the topological charge density is intro-
duced:

analogous to the role that Ko o plays in QCD.
Further, as in QCD the topological charge density
Q(x) must be given by the divergence of K", i.e. ,
q(x) = B„K".

Recently, three detailed models" ' of the U(1)
axial anomaly have been proposed and applica-
tions of these formulations to a number of phe-
nomena have also been made. "' The formulation
of Ref. 5 introduces a four-vector field K" and a
corresponding kinetic energy (B„K„)'/2C where C
is an a Priori undetermined constant. It can be
characterized by the Lagrangian'
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f q(x)]'+ Gq(x)+ I,,„—eq (x) .1
(1.6)

Because of the absence of the K" field, this for-
mulation does not possess the generator of U(1)
symmetry transformations, and hence, does not
replicate @CD in this regard.

Thus, only the formulation of Ref. 5 can repre-
sent fully the topological properties of the original
QCD theory, i.e. , it both possesses the generator
of U(1) symmetry transformations, and is free
of inconsistencies.

II. MATRIX ELEMENTS OF TOPOLOGICAL CHARGE

- a [~.b+~,'(g 'E)~ (g 'E).b]r."ri b

2 0abXaXb+'I X(taar&Haua)

and V," are the 18-piet of U(3) x U(3) currents

Va (X) gab Vb +Eab Xb '

(2.1)

(2.2)

In Eqs. (2.1) and (2.2) X, and v~, a =1,. . . , 18 are
the 18-piet of fields for the physical 4~=0' and
1' mesons, " M, are the vector masses and W„
g„gb,(M,'+E„Eb,—. Further, y," and H„„,ap-

pearing in Eq. (2.3) have the definitions

ya = ~ Xa Eca W cy V& —
Z&dap W dc Xb Vc

We begin by briefly reviewing the determination
of Ic„and G of Eq. (1.4) from the current-algebra
constraints. IcA turns out to be governed by the
nonanomalous sectors of the current-algebra
conditions and hence is unchanged from its pre-
vious value" while G is subject to the anomalous
PCAC condition. ' ' The most general determina-
tion of L« is given in Ref. 2 where it was found
that

1 P -1 1
LCA ~ Va Wab V]I& & +a +WVa

is required by the current-algebra commutation
relations only' and is thus unchanged from the
earlier current-algebra evaluation. ' On the other
hand, G of Eq. (1.4) and Iz of Eq. (2.1) are left
undetermined by commutation relations and one
needs the PCAC condition for their determination:

Sp Va =Eac&.b Xb+ (a)' 'W~.aSa&" (2.6)

[In Eq. (2.6) p„ is the chiral 0' mass matrix and

5„is unity when a is in the ninth axial channel
and zero otherwise. ] Thus it is only here that the
anomaly enters the discussion. The function G

is assumed to have the general functional depen-
dence G= G(X„y,",H„„,). Then Eq. (2.6) implies
that it obeys the equation"

BG ~G &G
= —Zla&c Xc+

g p yc
~Xy ~Xo ~ys

Cabcgbd (g )ac SHpc Ha (b) +l6aa'
d

The complexity of Eq. (2.7) arises due to two
causes: the inclusion of SU(3) and chiral breaking
in Z„b, of Eq. (2.6) and the presence of nonmini-
mal couplings due to the dependence of G on y,"
and H&„, in Eq. (2.7). The nonminimal couplings
are consistent with the 1/N expansion and a com-
plete description of the low-energy domain should
of course include them. However, if one ignores
these couplings (and assumes that G is a function
of X, only) one may integrate Eq. (2.7) in closed
form. Thus defining u&, = (u„v, ) by

v, = (SX),+G, , (2.8)

where G, ={0~+,~0') arises from the chiral-break-
ing condensate, "one sees that the u, and v, trans-
form as the 0' components of a (3, 3*) multiplet
and G(X,) obeys

(2.3) 8G
A, b S (g =- 6 (a) N). {2.9)

IIpva &~Vva v Vva+g ad W ed Cetic Vpy Vvc ~

(2.4)

Z„b, = (S 'A, S)b, ,
,I

where A,b, =f,b, when a =natural parity and A,b,
= d„, when a, b =unnatural parity and S,~ is the
wave-function renormalization matrix of Glashow
and Weinberg. "

The form of Ic„stated above [Eqs. (2.1)-(2.5)]

(2.5)

where C,b, are the U(N, ) xU(N, ) structure con-
stants. The coupling constant Z„b, in Eq. (2.3) is
determined through the current-algebra commuta-
tion relations obeyed by currents of Eq. (2.2)
which give

Integration of Eq. (2.9) gives

G= —,
' (Indetg —Indetg~), {2.10)

where $ —= (u, +iv, )A., and X, are the Gell-Mannma-
trices.

Equation (2.10), arising when nonminimal coup-
lings in G are ignored, is similar to, but more
general than, the o-model analyses used by the
authors of Refs. 4 and 6 since it includes the chi-
ral and SU(3) symmetry-breaking effects involved
in relating the (3, 3*) densities to the physical
18-piet of meson fields X . [See Eqs. (2.5) and
(2.8).] For example, if one expands Eq. (2.10) in
a power series, one finds
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G=- H"~, [(F-')..x.

- (F -').„z,„,.(F - )»x.x.+ ]
(2.11)

As discussed in Ref. 7, these symmetry-breaking
effects are numerically considerable. Thus the o
model may be viewed as a very interesting but
unrealistic model since it does not represent
the reality of the low-energy domain. Of course,
one may extend the analyses of Refs. 4 and 6 to
include these symmetry-breaking and nonminimal
coupling effects. We will assume in the following
that this has been done [i.e. , that the functions
G and I,c„of Eqs. (1.5)' and (1.6) are the same as
the ones determined above for Eq. (1.4)] so that
the three models, Eqs. (1.4), (1.5), and (1.6), can
be directly compared.

We first compare the matrix elements of the
topological charge between physical meson states,
and show under the above assumption it is the
same for the three models. First, in the forma-
lism of Eq. (1.4), K" obeys the equation

Thus all three effective-Lagrangian formulations
give the same matrix elements for the topological
charge density Q(x) = B„K"between physical states.
Next we discuss questions of quantization and in-
ternal consistency of the three formulations.

1
II~ = —B K~ + G(X)5p, (3.1)

which implies the equal-time relations

[ff",B,Z'„]= zC6,"5 '. (3 2)

Equation (3.2) is consistent with the field equations
and thus the theory of Eq. (1.4) is internally con-
sistent.

Next in the theory of Eq. (1.5), the canonical
momenta conjugate to E" are

III. QUANTIZATION OF TOPOLOGICAL VARIABLES

For the Lagrangian of Eq. (1.4), the quantiza-
tion of the axial four-vector field K" is quite
straightforward. The canonical momenta II„cor-
responding to the four-vector K" is

Q 2

E„(x)= B„G(x) (2.12)
liq = —Bq8„K"+ G (X)5q .1

(3.3)

and so the matrix elements of K„between physi-
cal meson states give

&a I &p I 5& = i ~2 c&a I G(x, ) I 5), (2.13)

where q„—= (q, —q,)„. Equation (2.13) exhibits
explicitly the ghost pole of Kogut and Susskind. "
The divergence of Eq. (2.13) gives

&aIB„ff"IB& =-c&aI G(x,)IB). (2.14)

Thus C represents the strength of the coupling
of the topological charge density to the mesic
fields of G(x, ) in all mesic matrix elements.

In the formulation of Eq. (1.5) one may similarly
calculate the matrix element of „E". Here K"
satisfies the equation of motion

B„—B„Z"+G(x,) =O
1

(2.15)

and integration gives

1—B~K" + G(x,) = C, (2.16)

(2.17)Q(x) =- CG(X.)

which again yields Eq. (2.14) with B„K" replaced
by Q.

where C, is a constant. " If one chooses C, =0
(as in the analysis of Ref. 4), one has precisely
Eq. (2.14). Finally, in the formulation of Eq. (1.6)
one has on varying the equation

[Z', ll,]= W'. (3.4)

Then the essential problem for the Lagrangian of
Eq. (1.5) arises when one combines Eq. (3.4)
with the equations of motion Eq. (2.16). Choosing
C, =0 (as in the analysis of Ref. 4), one may write
Eq. (2.16) as

II, =O (C, =O) (3.5)

and so the equations of motion are inconsistent
with the canonical commutation relation of Eq.
(3 4)

Finally, in the effective-Lagrangian formulation
Eq. (1.6), Q is a constraint variable, and its
commutation relations with the other fields are
determined by solving for Q according to Eq.
(2.17). Thus, here, since the field K" is dis-
pensed with altogether, the quantization of the
theory is safe, and consistent with equations of
motion.

IV. THE U(1) GENERATORS AND CP-VIOLATING
INTERACTION

In the fundamental QCD Lagrangian it is found
useful to perform a U(1) rotation to transform

Here there is only one canonical variable II, which
is conjugate to K' while the remaining components
II, all vanish, i.e. , II,. =—0. Thus the Lagrangian
of Eq. (1.5) contains no variables that determine
the dynamics of K', and one has only the canonical
commutation relation for 0, and K'.
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the CP-violating interaction from the gluon sec-
tor to the quark sector. " The generator which
allows one to effect this transformation is the
generator of U(1) symmetry transformation de-
fined in Eq. (1.1). This generator requires in
its definition the existence of an explicit K'
which is defined in the Lagrangian of Eq. (1.4)
as well as of Eq. (1.5). For the Lagrangian of
Eg. (1.4) one can show' using the canonical com-
mutation relations that [q', , B„K„]=0.

The generator of the U(1) symmetry transforma-
tion in the formulation of Eq. (1.5) also yields

(4 1)

upon using the canonical commutation relation
Eg. (3.4). However, there is once again a con-
sistency problem here. Thus if one uses the
field equations of Eg. (2.16) one has"

(4.2)

I = (B„K„)'+G(q, q) Bq K"—gsq K"

(4 3)

where M is the quark mass matrix with diag I
= (m„,m~, m, ). Equation (4.3) obeys the PCAC
condition

8~A =qiy ~,M q+ Q 3 Pf)8~K" . (4.4)

Thus two ways of computation lead to conflicting
results. This pitfall may, of course, be avoided

by simp1y arranging the calculations based on

Eq. (1.5) so that the results identical to that of

Eq. (1.4) are reproduced. In the third formula-
tion, i.e, of Eq. (1.6), only the topological charge
density enters the Lagrangian and an explicit
representation of the symmetry charge Q,' does
not exist there. Thus one cannot carry out the U(1)
symmetry transformations in this theory. How-

ever, the analog of the! Baluni transformations
consists here of actually eliminating the con-
straint variable from the effective Lagrangian.

Finally as an illustration of the essential cor-
rectness of ideas of representing the topological
aspects of QCDby effective-field methods, we

shall apply the effective-field method to the
fundamental Lagrangian itself to show' that we11-
known results may consistently be derived. We
shall represent the topological aspects of QCD by
effective-field methods of Eq. (1.4) and thus
write the modified fundamental Lagrangian in the
form

In an analysis parallel to the one that gives Eq.
(2.10) one has

G(q, q) =—(Tr In@&q„—Tr In q„ql, ), (4.5)

(H')z --2Lm, cosg, +8 —g p).B„K"
5

(4.6)

One now minimizes the vacuum energy with re-
spect to P, which gives m, sinP,. =m& sinP&
=m» sinPz =—A~ and chooses QP, = 8 to eliminate
the CP-, violating interaction out of the K" sector.
For P, small one determines

(4.7)

Next, one makes a transformation q~&», ql, &»,
x exp[+( —)ip&/2] to eliminate the CP-violating
phases from the vacuum expectation value of the
quark fields and finds a CP-violating interaction
in the quark sector;

6L =ikey qgysq( .
i

(4.8)

Equation (4.8) is identical to the result of Baiuni"
and so one finds that the effective -field treatment
of the topological aspects of QCD parallel cor-
rectly the treatment of the original theory.

V. CONCLUSION

We have compared three different effective-
Lagrangian treatments of the U(1) axial anomaly.
In many respects the three approaches give iden-
tical results. Thus the matrix elements of the
topologica& charge density are the same in all
three formulations if the same functions of the
meson fields are used for C and IcA of Eqs.
(1.4), (1.5) and (1.6). The apparent complexity
of Ref. 5 is due to the fact that there 6 and I-c„
include effects due to chiral and SU(3) breaking
as well as couplings to higher spin mesons. Since
these effects can be shown to be large, ' only Ref.
5 represents a realistic model in the low-energy
domain.

where q~ = (1 —r,)ql2 and q~ =(1+ 'Y,)ql2. Next
we wish to make a U(1) transformation that elimi-
nates the 8 dependence from the K" sector and
introduces it in the quark sector. Following the
method of Coleman and Crewther, "it is found
convenient to introduce a set of CP-violating
phases in the vacuum expectation value of ql. ,q„,
(i,j =1,2, 3) so that (0(q~&qz&( 0) =6&& exp(-i P&).

The vacuum expectation value of the interaction
Hamiltonian in the presence of the phases is then



In addition, one encounters some formal diffi-
culties in the formulation of Ref. 4. In this formu-
lation, the canonical commutation relations in-
volving K and its conjugate momentum II o are seen
to be inconsistent with the field equation which de-
termines 8„K". In order to get the correct re-
sults from this formulation, one must some-
times do the calculation first and eliminate 8„K"
only at the end. At other times (e.g. ,

' in computa-
tion of meson matrix elements of &„K" in Sec. II)
initial elimination of B„K"leads to correct re-
sults.

While the formalism of Ref. 6 is internally con-
sistent, it does not produce a full realization of
the symmetry structure of the original QCD
theory. Specifically, one does not have a field
realization of the generator of the U(1) symmetry
transformation here. In a sense the formalism of
Ref. 6 is complementary to that of Ref. 4 in that
it overcomes the inconsistency of canonical com-
mutation relations with field equations by never
introducing the K" field, but because of that it
also cannot define the U(l) generator. It is only
in the formulation of Ref. 5 that the inadequancies
of both formulations, i.e., of Hefs. 4 and 6, are
overcome.

Note added in Proof. In the following paper,
J. Schechter has reformulated the model of
Rosenzweig et al. by making use of Dirac's
theory of constraints. " We agree that this
formulation eliminates the inconsistencies of
Ref. 4, and is indeed equivalent to the prescrip-
tions proposed in our Comment above. We
believe, however, that the statement made in the

following paper that an inconsistency can arise
when the Kogut-Susskind ghost field K is included
in the U(1) effective Lagrangian" "' is incorrect.
This is because the anomalous PCAC condition
implies that only „K' couples to the physical
mesic fields X, (r). Thus if one makes the gauge"
tr ansf ormation

K =X +B„A, (N1)

where o'A= -C G(X, ), one finds that Eq. (1.4)
above reduces to (neglecting 8 effects)

f„= —(s„K„)' —,'C [C(X.) ] (N2)

and the Kogut-Susskind ghost field can be de-
coupled completely from the mesic interactions.
Hence no inconsistency is possible due to the
ghost nature of the K, field (as happens also in
the fundamental QCD theory) No.te that the mesic
interactions of Eq. (N2) are identical to those of
Ref. 4.

The advantage of treating the K, field in the
fashion of Ref. 5 is that it shows quite directly
how the Kogut-Susskind mechanism" operates
to eliminate the q- Sm and other U(l) paradoxes
[This is the content of Eqs. (2.13) and (2.14)
above. j Thus it adds additional insight into the
possible workings of the fundamental QCD.
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