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Behavior of non-Abelian magnetic fields at high temperature
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We investigate the properties of non-Abelian magnetic fields at high temperature using
Monte Carlo simulation and finite-size scaling on SU(2) lattice gauge theory. Magnetic
flux is introduced using twisted boundary conditions. We find that color magnetic fields
are screened, not confined, at long distances, and measure the screening length.

In this paper we investigate the behavior of
non-Abelian magnetic fields at high temperature
using Monte Carlo methods. Recently, Monte
Carlo work has confirmed that a, high temperature
non-Abelian gauge theories undergo a transition to
a phase in which electric test charges are liberat-
ed. ' Here we examine the behavior of magnetic
test charges in this high-temperature phase of an
SU(2) lattice gauge theory. This subject is of in-
terest not only because of our desire to understand
non-Abelian gauge theories in all possible limits,
but particularly with regard to cosmology. The
lightest topological monopoles in grand unified
theories generally have non-Abelian magnetic
charges as well as their topological U(1) magnetic
charge. In the low-temperature phase it is gen-
erally believed from duality arguments that these
color magnetic fields are screened, so that the
color magnetic charge cannot play an important
role in monopole dynamics. However, these duali-

ty arguments cannot be used in the high-tempera-
ture phase. Linde has raised the possibility that
non-Abelian magnetic flux is excluded from the
high-temperature vacuum and focused into color
magnetic flux tubes, leading to a linear (confining)
potential between colored monopoles.

Perturbative calculations of the spatial com-
ponents of the gluon propagator on the other hand

suggest that the gluon acquires a "magnetic mass"
at high temperatures, i.e., the magnetic fields of
test charges are screened. The mass, or inverse
screening length, first appears in two-loop dia-
grams. Therefore, we expect the mass to be

m(T)=T[C2g (T)+C4g (T)+ ],
where g (T) is the QCD coupling constant renor-
malized at energy T and the C's are constants.
However, infrared divergences make perturbative

computation of even the lowest-order coefficient
C2 impossible. This makes a nonperturbative
study of non-Abelian magnetic fields attractive.

While this work was in progress, Billoire, La-
zarides, and Shafi reported a calculation very simi-
lar to ours. Our results are consistent with theirs.
We will comment later on the differences between
the two calculations.

We perform Monte Carlo simulation on an
SU(2) lattice gauge theory, using a variation of the
Metropolis method to carry out the updatings of
the links. In order to simulate the high-
temperature behavior of the theory, the size of the
lattice in the time direction is small compared to
the size in the spatial directions. To investigate
the behavior of magnetic fields, we measure the ef-
fect of imposing a twist in one of the spatial planes
(the xy plane). As discussed by't Hooft3 and by
Groneveld, Jurciewicz, and Korthals-Altes, the
dependence of the free energy and its derivatives
on the twist probes the behavior of the magnetic
field.

To understood what is meant by twisted boun-
dary conditions and how a twist affects the energy,
it is helpful to proceed using an indirect construc-
tion. Srednicki and Susskind have shown how
monopoles with charges in the center of the gauge
group can be embedded in a lattice gauge theory.
Figure 1 shows a single time slice of a lattice
gauge theory containing a monopole-antimonopole
pair, which can be thought of as living inside the
three-cubes of the lattice. A Dirac string runs
from the monopole to the antimonopole, passing
through the plaquettes shown in the figure. To
hide this Dirac string we multiply the product of
the link variables around each of these plaquettes
by an element of the center of the gauge group. In
the case of SU(2), the center is Z(2) and the only
nontrivial element is —1 times the identity matrix.
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FIG. 1. A monopole-antimonopole pair in a lattice.
The plaquettes drawn in solid lines have a modified ac-
tion S~ =g Uio~, where o~ is an element of the center
of the group. The lattice is translationally invariant in
the time direction, which is not shown here.

screened the effect of the twist will fall off ex-
ponentially with the size of the lattice. From
heuristic arguments such as this we are unable to
deduce the exact form of the effect of the twist in
the case. The analysis of't Hooft indicates that a
"zero" temperature, when the lattice is space-time
symmetric, the effect of the twist on the free ener-

gy per plaquette I' is

KNx N
E(twist} —F(no twist) cc e

E„Ny

(2)

and hence the effect on the internal energy BF/Bp
is

BE KN„N-
[F(twist) —F(no twist)] ~ e

As discussed by Srednicki and Susskind, this string
may be moved around the lattice by multiplying
plaquettes by elements of the center of the group.
The physical magnetic field lines emerge from the
string at the monopole end, and return through the
antimonopole.

Now let us imagine pulling the monopole and
antimonopole far apart in the z direction while
keeping the size of the lattice in the x and y direc-
tions fixed (Fig. 2). Then a segment of the lattice
between the monopole and antimonopole will just
be a lattice with twisted boundary conditions. The
twist, or string, can be moved around the lattice by
redefining variables, but cannot be removed entire-

ly. The point is that we can think of twisted boun-

dary conditions as a relic of a Srednicki-Susskind
monopole passing through the lattice. The expec-
tation value of the internal energy depends on the
behavior of the monopoles' magnetic field as it in-
teracts with the restricted size of the lattice in the
xy plane. Three possibilities exist: magnetic flux
tubes are formed (Meissner effect), magnetic fields
have Coulomb behavior, or magnetic charges are
screened.

If magnetic flux tubes are formed one such flux
tube will be left passing through the lattice. In
this case we expect a contribution to the total ener-

gy (extensive) which is independent of the size of
the lattice in the x and y directions. This means
that intensive quantities such as the average pla-
quette should show an effect proportional to
(N„N~) ', where N; is the size of the lattice in the
ith direction. If magnetic fields are Coulombic,
the flux will spread out over the available area and
the extensive energy differences will be proportion-
al to (N„N~) '. Finally, if magnetic fields are

where I/O E is the magnetic mass, here expressed
in dimensionless (lattice) units. The arguments
used to derive this form depend on the ability to
interchange the space and time axes, which is ab-
sent in high-temperature lattices. Although we
cannot give a rigorous justification, we will
nevertheless adopt Eq. (2) as our ansatz for the
high-temperature case. In any case, our data are
not good enough to distinguish between this form
and exponentials multiplied by other powers of the
area.

At zero temperature these space-time duality ar-
guments indicate that if electric test charges are
confined than magnetic test charges are screened,
and uice uersa. This relation has been checked in a
Monte Carlo study by Mack and Pietarinen. At
high temperatures, because the lattice is not space-
time symmetric, it is possible for both electric and
magnetic test charges to be screened.

We used the Wilson action for lattice gauge
theory

PTr g Uio'
plaquettes links in

plaquetts

(4)

where oz ———1 for the plaquettes in the Dirac
string and 1 otherwise. The lattice was translation-
ally invariant in the time direction (suppressed in
Figs land 2}.so, to be precise, oz was —1 for pla-
quettes in the xy plane with x =0, y =0, for all z
and t. The lattice sizes used were 4 &(2, 5 X2,
and 6 X2 with twisted boundary conditions and
ordinary periodic (although skewed' ) boundary
conditions at p=4/go ——2.6. We measured the
difference of the average plaquette between the
twisted and untwisted lattices, and the difference



528 T. A. DeGRAND AND D. TOUSSAINT

/

I

,
l

I
I

I
I

I
I

IO

FIG. 2. The monopoles have been pulled apart. The
center section of this lattice is a lattice with twisted
boundary conditions.

between the xy plaquettes and the plaquettes in the
other two spatial planes of the twisted lattice, as
suggested in Ref. 7. (Because our lattice was
asymmetric, we could not use the xt, yt, and zt pla-
quettes in this measurement. ) The results of these
measurements showed that the difference in inter-
nal energies arises mostly from the plaquettes in
the xy plane, so we also measured the effect of the
twist on the average value of these plaquettes. The
results shown here required about 25 000 Monte
Carlo passes for each size lattice, and were per-
formed using the CYBER 175 at Fermilab. To
update one link on this machine takes about 0.2
msec. Limited computing resources prevented us
from working at several values of P=4/go . We
used P of 2.6 because it is large enough to be in
the scaling regime (above the crossover) but not so
large that correlation lengths should be larger than
our lattices.

We now investigate the different hypothesis for
the behavior of the magnetic fields. If a flux tube
is formed, the effect on the intensive quantities
evaluated here should be proportional to 1/X,
where N=4, 5,6 is the spatial size of the lattice. If
the magnetic field has Coulomb behavior, the ef-
fects of twist should go as 1/X . In Table I we

U
O
I—
W 4
L IO
QJ

(o)

IO
(x)

IO 20

show X times effect and E times effect for the
various measured quantities. It can be seen that
the flux-tube hypothesis is completely inconsistent
with our data and the Coulomb hypothesis is ruled
out to a high degree of confidence. We are left
with the screening hypothesis. In Fig. 3 we plot
the logarithms of the various quantities as a func-
tion of the area N . It can be seen that all the
quantities are consistent with an exponential fall-

AREA (N~)

FIG. 3. The effect of twist as a function of lattice
size. The solid circles are the change in the average pla-
quette when a twist is imposed. The open circles are the
;change in the plaquette in the xy plane. The crosses are
the difference between the xy plaquettes in the twisted
lattice and the other spatial plaquettes in the twisted lat-
tice. This last quantity has been moved down one de-
cade to improve readability.

TABLE I. Measured quantities on N'X2 lattices. The subscripts "tw" or "no" label
twisted and untwisted lattices. ( Uii ) is the expectation value of plaquettes with an ij orien-
tation while ( U) is the average value of the plaquette.

Quantity

(U.,——,(U +U„)&,.
Quantity X )&quantity

4 (2.38+0.29) )& 10 (3.8+0.17) )& 10
5 (0.787+0. 163))& 10 (0.20+0.04) g 10
6 (0.013+0.159))& 10 (0.05+0.06) )& 10

cV &quantity

0.609+0.074

0.492+0.102
0.017+0.206

(U) —(U&.. 4 (1.31+0.27).10
5 (0.44+0.24) 10-'
6 —(1+1.5)-10

(2+0.4).10 ~

(1.1+0.6) ~ 10-'
—(0.36+0.54)-10

0.33 +0.07
0.27 +0.15

—0.13 +0.19

(U., ),.-(U.,).. 4 (4.09+0.43) 10
5 (1.22+0.35).10
6 —(0.7+2.4)-10 4

(6.5+0.7).10
(3.0+0.9).10
—(0.28+ 8.6).10

1.0 +0.1

0.76 +0.21
—0.09 +0.31
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TABLE II. Fits to quantities to a/N, b!N, or Ce, ~jfh P .

Quantity

(Uy ~(U +Uy ))t 00216+00027 265 053+006 75 0021 0, 136+0021 1,1

( U),„—( U)„, 0.0112+0.0028 12.6 0.28+0.06 5.1 0.0187 0.165+0.054 1.3
( Uy)t ( U y) 00367+0045 38 6 0,89+009 12 3 00507 0 157+0031 1 5

off, and all the slopes are approximately equal.
Fits to the data for the three hypothesis are given
in Table II. Notice that the values for the 6 )&2
lattice are only upper limits. For the effect of
twist on the xy plaquette, the best fit to our data
of the form

—kN~
xy )untwisted '( Uxy ~twisted=ce (5)

has k=0.156+0.031 (C=0.051). X2 for this fit is
1.5 (one degree of freedom). In contrast, the best
fit to this quantity using the Coulomb ansatz has
g =12 and the confinement ansatz gives g =38
(each with two degrees of freedom).

We expect the temperature to set the scale of
physical masses, so if we write k =m, =A T

1

with T= —, we find 3=0.7+0.08 for

P=4/gp ——2.6.
We can now make contact with the work of Bil-

loire, Lazarides, and Shafi. These authors assume
that m, g

is proportional to the lowest order in g
found in perturbation theory: m =Bg (T)T, where

g (T) is the coupling constant renormalized at
momentum scale T. They then use the one-loop
renormalization-group equation and the relation
between the lattice renormalization scale and the
continuum renormalization scale" to compute

g (T) from the bare lattice coupling gp . The re-
sult of these approximations is an equation predict-
ing the effect of the twist as a function of the bare
coupling go for constant lattice size. Using Monte
Carlo data from 4 g2 lattices at several values of

the bare coupling, they measure the difference in
the total energy between twisted and untwisted lat-
tices, finding a good fit with B=0.24. If we re-
move a factor of g (T),„,i„„——2.959 from our A,
we find 8=0.27+0.03, in good agreement. Al-
though both investigations measured the effect of a
twist on the lattice, they are in a sense complemen-
tary. In this work we varied the spatial size of the
lattice, which allowed us to demonstrate magnetic
screening directly, using only a few assumptions.
Billoire, Lazarides, and Shafi, on the other hand,
fixed the lattice size and varied the bare coupling.
When the bare coupling is changed, the renormal-
ized coupling, the physical (dimensional) tempera-
ture, and the spatial size of the lattice in dimen-
sional units all change, so some additional assump-
tions about the physics must be included in order
to interpret the results. The agreement of the re-
sult of these assumptions with the data, however,
is evidence that the magnetic screening length, a
dimensionful quantity, is varying with the bare
coupling in the manner demanded by the renormal-
ization group. The agreement beween the results
of these two different methods is grounds for hav-

ing more confidence in the results than we would
have from either investigation alone.
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