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The effects of a net background charge on ideal and interacting relativistic Bose gases

are investigated. For a non-Abelian symmetry only chemical potentials that correspond

to mutually commuting charges may be introduced. The symmetry-breaking pattern is

obtained by computing a p-dependent functional integral. We find that p always raises

the critical temperature and that below that temperature the existence of a ground-state

expectation value for some scalar field produces Bose-Einstein condensation of a finite

fraction of the net charge so as to keep the total charge fixed. (In the special, but fami-

liar, case of total charge neutrality, the condensate contains equal numbers of particles

and antiparticles. ) There are four classes of results depending on whether volume or en-

tropy is kept fixed and on whether the quadratic mass term m is positive or negative.

I. INTRODUCTION

I

Many of the gauge and global symmetries which
are broken in the currently observed universe are
thought to have been exact symmetries in an ear-
lier, hotter epoch. The critical temperature at
which a particular phase transition occurs is deter-
mined (to leading order) by the vanishing of a
scalar-boson effective mass of the form'

O=m'+(C]e'+C, f'+C, 1)Tc',
where e, f, 1], are typical gauge, Yukawa, and quar-
tic couplings of the scalar bosons and where m &0
in order that there be a phase transition.

We shall investigate how these phase transitions
could be affected by the presence of finite densities
of the various conserved charges. A chemical po-
tential p(T) must be introduced into the functional
integral for each type of background charge. We
find it useful to characterize a charge as either bo-
sonic or nonbosonic, according to whether it is car-
ried by some boson in the theory or not. For ex-

ample, in the standard SU(2) )&U(1) model with

one scalar doublet the bosonic charges are T3 and
Y (or, equivalently, Q =T3+ Y and Q'= T3cot8~
—Y tan81 ); the nonbosonic charges are baryon
number and the separate lepton number of each
generation (e,p, r, . . . ). Obviously gauge sym-
metries are always bosonic but, in general, a global
symmetry may be either bosonic or nonbosonic.

The effect of a net background of nonbosonic
charge was investigated by Harrington and Yildiz.
The effects are quite small; precisely because the
scalar bosons do not carry the charge, the only way

with C4 )0. This lowers the critical temperature

(Tc (Tc) but the effect is usually negligible due

the the smallness of the Yukawa couplings f. The
nonbosonic charge (e.g., baryon or lepton number)

remains conserved at T & T& and the correspond-

ing fermions remain in thermal equilibrium, essen-

tially unaffected by the phase transition.
In this paper we shall investigate the effects of

bosonic charges and will find very different effects
than those above. Our central results will be more
obvious if we first discuss a toy model. The model
consists of a two-component real scalar field ]I),
(a =1, 2) with O(2)-invariant Hamiltonian and
conserved charge Q:

A =-, m.,~, + —,(VP, ).(V])), )

(1.3)

Q= Jd x (])]]~p—])]2m.]) . (1.4)

The effects of a net background of this charge are
computed in the grand canonical ensemble from
8—]]tQ. The corresponding ]M-dependent, Hamil-
tonian density may be thought of as

A (/l) =4 p(y]7r2 —$277])—. —

in which the chemical potential p can contribute to
the effective mass (1.1) is through fermion loops.
Consequently the equation for the modified critical
temperature T~ becomes

O=m'+(C]e'+ C2f'+ C3&)Tc'+CD'lj, ',
(1.2)
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We will now show that the presence of p in (1.5)
actually modifies the classical potential. Applying
Hamilton's equation yields

I NR=p

The conserved charge

(1.11b)

Q= Jd x Ptf5A (p)
4a ~a+peabkb ~

5m,
(1.6)

where @~2———
e2& ——1. A proper functional integral

calculation requires integrating out the canonical
momenta. In either approach one obtains a p-
dependent Lagrangian density

W(p) =ir, (I), —4 (p, )

(1.7)

where the classical potential that results is

~(4)=-, (~'—p')N. 4.+ 4, (0.0.)'.

From this potential it is already obvious that the
critical temperature mill be determined by a rela-
tion of the form

O=m p+(C—ie +CQ +Cia )Tc' . (1.9)

There are a number of consequences: (i) if m &0
the background charge raises the critical tempera-
ture (Tc' & Tc}and this shift may be appreciable
since there is no coupling-constant suppression. (ii)
For all T & T~' the ground-state expectation value
(0

~ P, ~
0) =—P, ( T) is nonzero and larger in magni-

tude than when p=0. (iii} For all Tc & Tc' the
canonical momenta defined by (1.6) have expecta-
tion values (0

~
n,

~
0) = pe,blab(T—) and conse-

quently there is a net charge

—=p(k'+02') (1.10)
V

stored in the ground state. (iv) Even if m & 0 the
symmetry will break once p(T) becomes larger
than m. What we find, in short, is that finite-
temperature symmetry breaking in the presence of
a background charge is just a form of Bose-
Einstein condensation. Indeed, for the standard
case of no background charge [p(T)=0] the Bose-
Einstein ground state is a superposition with equal
probabilities for particles and antiparticles.

That nonrelativistic Bose-Einstein condensation
is a broken-symmetry phenomenon was originally
shown by Bogoliubov. ' There one is interested in
the behavior of a complex (nonrelativistic} field
operator P with p-dependent Hamiltonian density II. THE IDEAL BOSE GAS WITH p+0

A. Derivation via the functional integral

We analyze the model field theory (1.3) with
conserved charge (1.4). To study the thermo-

I ~& I '+, , (A)' pNRA, —

(1.11a)

generates U(1) phase transformations and
corresponds to particle number. Here the standard
results are that at high temperatures p & m and the
symmetry is exact but at low temperatures p & m
and the symmetry is broken. The theory described
by (1.5) is just the relativistic version of the Bogo-
liubov model; the essential new feature that com-
plicates the analysis of (1.5) is the option of taking
m &0.

Our approach is as follows. In Sec. II we com-
pute the grand partition function for the ideal Bose
gas using a functional integral. We use (1.5) with
A, =O and m &0. For small charge densities
(p « m ), Bose-Einstein condensation occurs at
nonrelativistic temperatures (Tc« m ) and the
usual textbook results apply. For large charge den-
sities (p » m ), Bose-Einstein condensation occurs
at relativistic temperatures (Tc» m). This sec-
tion and the appendices on the high temperature
expansion are a fuller account of some results
quoted in a recent letter.

In Sec. III we examine the interacting Bose gas
with an O(N) non-Abelian symmetry We s. how
that one cannot introduce a chemical potential for
every group generator but only for those generators
that are mutually commuting (i.e., the Cartan
subalgebra}. To determine the pattern of symme-
try breaking a p-dependent effective potential is in-
troduced and is explicitly computed in the large-N
limit. ' The potential depends on an effective mass
function M(T} that provides a close analogy to the
ideal-gas case in that at high temperature p(T)
&M(T). However, at low temperatures p(T)
=M(T), the field operator acquires an expectation
value, and a finite fraction of the charge is in the
Bose-Einstein condensed ground state. For m &0
the previous high-temperature expansions apply be-
cause Tc»M(Tc) and p »M (Tc). We discuss
the distinctions between keeping Q and V fixed or
keeping Q and S fixed.

In Sec. IV we suggest various extension of these
ideas, particularly the inclusion of fermions and
gauge bosons.
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dynamics of these bosons at finite charge density
and temperature, we compute the grand partition
function

exp( —PQ) =Trt exp[ —P(H —pQ}] j, (2.1)

P:—1/T, (2.2)

where p is the chemical potential and fi=c =k =1.
The thermodynamic potential is denoted by
Q(T, Vp). Following Bernard, "we write e ~ as
a functional integral:

exp( PQ—)=N f [dn][ .dg]e xp f dr fd x[i~,P, M—(~,P)+p(P, ~z Pz—~l)]
P

(2.3}

where r is real Euclidean time and the integration variables P, are periodic in r with period P. Note that

j.-=ay. /ar.
We first derive the standard thermodynamics of an ideal Bose gas by putting A, =O in (1.3). Then all the

integrations in (2.3) are Gaussians and can be done exactly. First the integrations over vr~ and vrq are per-
formed. Next, we expand tI), (x,r) in a Fourier series,

(2.4)

where co„—=2n.n /P, n =0, + 1, +2, . . . . We find

—1 d k
exp( PQ) =—N'(P)f [dP]exp g f 3 P, ( —k, n)A, s—gs(k, n)

2P „(2')' (2.5)

where

N~ +k +01 —p

(2.7)

The determinant is defined over the appropriate
function space spanned by the P(n, k ). Using
ln DetX=tr lnX we obtain

d kPQ= —g f 31nI g"[(co„~k ~m —p )
(2m )

~4p2~ 2] j (2 8)

(2.6)

The sum over a, b = 1,2 is implied and E'(P) is a
P-dependent factor arising from the integration
over the m, .'

We now make an important observation. If the
integration in (2.5) is to be convergent, the argu-

ment of the exponential must be negative definite.
Because the sum over n and integration over k in-

clude the points n =0 and k =0 we must require
that m —p &0. Thus

~ p ~

&m is required in

order to obtain sensible results.
Performing the integration in (2.5) (and dropping

P-independent constants), we find

pQ= —,ln Det(A IIApp —A]~A~, }—1ILV'(p) .

where V is the volume of x space. As shown by
Bernard, ' the effect of the inN'(P) term in (2.7) is
to provide the appropriate factors of P inside the
argument of the logarithm in (2.8) so that the ar-

gument is dimensionless. The sum over n in (2.8)
can be performed after factoring the argument of
the logarithm into two factors by solving for
P co„. The end result is

dkk
1 P(g P)

(2m )

+Tin[1 —e ~' +"'] j, (2.9)

where E=(k +m )'~ . The factor of E is simply

the sum of the two zero-point energies for the two

charged particles. This piece is irrelevant for the

discussions of thermodynamics (it is absent in the

free-field theory if the Hamiltonian is normal or-

dered); so we will drop it for the remainder of this

section. What remains is a result similar to the

standard one given in textbooks of statistical
mechanics. ' The only difference is that in (2.9)
(neglecting the zero-point energy) we have two

terms rather than just one. The correct interpreta-

tion is to identify one term corresponding to parti-
cles (with charge + 1) and the second term

corresponding to antipatricles (with charge —1).
Loosely speaking, we may say that particles and

antiparticles have equal and opposite chemical po-
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tentials p. More precisely, only one chemical po-
tential p decribes a system of bosons. As we have
seen, p is constrained such that

~ p ~
& m; the sign

of p indicates whether particles outnumber an-

tiparticles or vice versa. The appearance of two
terms related to each other by p~ —p is a conse-
quence of the fundamental structure of relativistic
field theory which requires that the eigenvalues of
the charge operator Q for particles and antiparti-
cles are equal in magnitude and opposite in sign.
This can be seen by realizing that the argument of
the exponents in (2.9) are in fact —P(E~ —q~p)
where q is the charge of particle a. If we change

particle to antiparticle, E and p are unchanged
whereas q~ changes sign.

B. Calculation of the thermodynamic
potential in the high-temperature limit

(2.10)

We now evaluate the integral in (2.9) (neglecting
the zero-point energy). We define dimensionless
variables x =Pk, m =Pm, r =p/m (note that

~

r
~

& 1). Integration by parts gives

A(T, V p)= H5(m, r),
—4VT

~2

where H5 is one of a class of functions defined by

x' 'ax 1
H, (m, r)—= +(r~ r)—

I (&) (x'+m')'~' exp[(x'+m')' ' —rm] —1
(2.11)

It is of interest to study the high-temperature behavior of Q. Naively, one would think that because
m « 1 in this limit, it would be sufficient to expand the integrand of (2.11) as a power series in m and in-

tegrate term by term. Unfortunately, such a power series about m =0 does not exist due to a branch point
at m =0. (In practice, if one attempts such an expansion of H~ about m =0, one finds coefficients which

are, in general, divergent integrals. ) A high-temperature expansion for H~ can however be computed by a
more sophisticated technique which is fully described in Appendix A. First, we introduce a second class of
functions:

G((m, r) = J x' 'gx 1
(r~ r)— —

exp[(x +m )'~ —rm ]—1
(2.12)

In Appendix A, we show how to calculate expansions for Gl and H| for m «1. The results are given by
(A28) and (A36), respectively. Using (A7) and (A8), we see that knowledge of G~ and H~ will give us G~

and H~ for all positive odd l. We therefore find the following result for 0 in the large-temperature limit:

Q(T, Vp) HT T (m ——2p, ) T(m p, )
~ p (—3m —p ) m 4m. T 3—y+

V 45 12 6m. 247T 1677 4]
m' m4p2

T2 ' T2
+0 (2.13)

We remarked earlier that
~
p,

~
& m was required

in order that the functional integral converge. In
(2.13), we see that this requirement ensures that 0
is real.

C. Thermodynamics of the ideal Bose gas

1 BQP= v a~

(2.14)

(2.15)

(2.16)

Given the thermodynamic potential as a func-
tion of p, V, and T, all the physical quantities may
be calculated. For example, the pressure P, charge
density p—:Q/V, entropy S, and energy U are
given by

and U=TS —Pv+ppv. In Ref. 8, we have given
the explicit high-temperature expansions for the
above quantities. They are easily derived using
(2.13). Here, we wish to concentrate only on the
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expression for the charge density p. The exact ex-

pression is given by

T'
p= G3(m, r), (2.17)

where m:—Pm, r =p/—m, and the function G3 is
defined in (2.12). In more familiar terms, we may
write

d kp= (nt, —nk),
(2m )'

(2.18)

where nk = 1/I exp[13(Ek —p)] —1 J and nk is ob-
tained from nk by replacing p by —p. Equation
(2.18) illustrates that nk, nk may be interpreted as
the number density for particles and antiparticles,
respectively. Our previously obtained result

~ p ~

& m is seen in this context to be a requirement
that the number densities be non-negative. In the
nonrelativistic limit, the presence of antiparticles
should be negligible. This is indeed the case and in
Appendix B we show that in this limit we regain
the standard textbook results.

Thus Tc is given by

p= 3 77lTC
1

(2.20)

At temperatures T & Tz the charge density in the
k+0 state is

(2.21)p(k &0)= , mT =p-
Tc

The remaining charge density in the k =0 state is

FIG. 1. The temperature dependence of the chemical
potential for an ideal Bose gas of mass m with fixed Q
and V.

D. Bose-Einstein condensation
p(k =0)=p 1— T

'
Tc

(2.22)

p= 3pT (2.19)

In Ref. 8 we discussed some properties of Bose-
Einstein condensation in the case of a relativistic
Bose gas and briefly summarize some of those re-
marks here. The question which we ask is this:
%hat is the requirement for Bose-Einstein conden-
sation to take place at relativistic temperatures (i.e.,
T» m) and what is the nature of the phase tran-
sition?

Consider (2.18), which is an equation for the
charge density p as a function of T and p. Since p
is a physical quantity and p is a derived quantity,
(2.18) is in fact an implicit formula for p as a
function of p and T. For T above some critical
temperature Tc, we can always find a p & m satis-
fying (2.18). Below Tc no such p can be found
and we interpret (2.18) as an expression for the
charge density of the excited states. [Clearly the
ground state k =0 is given zero weight in the in-
tegral (2.18).] The critical temperature Tc at
which Bose-Einstein condensation occurs
corresponds to p =+m (the sign depending on the
sign of p). For T & Tc,

~ p ~

as shown in Fig. 1.
The exact value of Tc is determined by setting

~ p ~

=m in (2.18). For T & Tc && m we may use
(2.13) and (2.15) to find

+s the temperature is lowered the fraction of
+

charge in the k =0 state increases to unity.
It is perhaps worthwhile to note that the neces-

sary condition for an ideal Bose gas of mass m to
condense at a relativistic temperature ( Tc» m) is
that p && m . Conversely, in the nonrelativistic re-
gime, we may apply the standard textbook results
to see that T~ &&m provided p &&m .

These results allow us to make some interesting
observations about massless bosons with net
charge. Since

~ p ~

& m, we see that p =0 for
massless bosons; it appears that (2.18) implies that
p=0. But using (2.20) we see that Tc ao and-—
hence all the net charge of an ideal gas of massless
bosons resides in the Bose-Einstein condensed
ground state. Of course in the case of a photon
gas, no conserved quantum number exists; hence

p =0 and no Bose-Einstein condensation takes
place.

It is of interest of examine the adiabatics (lines
of constant S in the T Vplane) with the t-otal

charge Q fixed. For an ideal nonrelativistic Bose
gas, it is well known that the adiabatics satisfy
TV =constant. ' Furthermore, in the nonrela-
tivistic limit, the temperature at which Bose-
Einstein condensation first occurs is
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2m

m p'g( —)

2/3

(2.23)
III. INTERACTING BOSE GAS

WITH p@0

(where N =Q; see Appendix B). Therefore, it fol-
lows that one cannot change between the uncon-
densed and condensed phases by varying T and V
adiabatically.

We find very different results for a ideal Bose
gas in the ultrarelativistic regime. By examining
the leading terms in the relativistic expressions for
the entropy and charge density, we find that the
adiabatics satisfy TV'~ =constant. On the other
hand, according to (2.20),

A. Incorporation of p in an O(N) model

To investigate the effects of a chemical potential
on an interacting system of bosons we will examine
a field theory of N real scalar fields with the
O(N)-invariant Hamiltonian

a =1,2, . . .,N
' i/2

(2.24)

where m0 and A,0 are the unrenormalized parame-
ters. This theory has N(N —1)/2 conserved
charges

so that if we begin in the uncondensed phase and
raise the temperature adiabatically we will eventu-
ally enter the condensed phase at some very large,
relativistic temperature. [In the presence of in-
teractions, however, this does not occur. See Fig.
4(b).]

The formalism we have provided also allows us
to discuss thermodynamics in the general case of d
space dimensions. Here we summarize how the
nature of the Bose-Einstein phase transition
depends on d. The generalization of (2.17) to d
space dimensions is straightforward:

=ir '+" I TG(mr)
2

(2.25)

If d is odd, then G~ can be obtained from 6 i and
~i [(A28) and (A36)] by using the recursion rela-
tions [(A7) and (AS)]. In the case that d is even, it
is 62 and H2 that are needed. These have also
been calculated in Appendix A [see (A16) and
(A18)]; using the recursion relations all the higher-
(even-) order functions can be found.

%e now note that Bose-Einstein condensation
will not occur if the following condition is satis-
fied: for any fixed p and T it is possible to find a
p obeying

~ p ~

& m (i.e., an r such that
~

r
~

& 1)
which satisfies (2.25). The results of d =1 and 2
space dimensions are noteworthy: In two space di-
mensions, the Bose-Einstein phase transition occur
for massless bosons but does not occur for massive
bosons. In one space dimension there is no Bose-
Einstein phase transition at all. These results have
also been noted by other authors; for more details
and references we refer the reader to Ref. 8.

3 0Qab= d XJab ~ (3.2a)

Jab 4a irb '4irai Jab NaV 4b PbV 4a

(3.2b)

8 j,b ——0. (3.2c)

A quantum state of the system is specified by the
eigenvalues of a complete set of mutually commut-
ing charges. The maximum number of mutually
commuting charges is X/2 for lV even and for de-
finiteness we will always take X even.

A gas of these bosons in thermal and chemical
equilibrium is specified by the temperature T, the
volume V, and the expectation value of various
charges. The existence of such a net charge
prevents the system from being invariant under the
full non-Abelian group. [For example, an ensem-
ble with a net value for (Qi2)&0 is only invariant
under O(2) X O(N —2).] To describe such a sys-
tem in the grand canonical emsemble one intro-
duces a chemical potential p,b for each charge
whose expectation value is specified. Thus (3.1) is
replaced by

1 .0~—2pabjab ~ (3.3)

V ~ 0 -0
+dab =brac jcb Jacgcb (3 5)

This equation has several implications which we
would like to discuss. First, suppose that the only

where p,b
———pb, . The chemical potentials enter

in the canonical momenta,

(3 4)

and modify the equations of motion so that (3.2c)
is replaced by
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(3.6)

ja=j,". . .a (a=1,2, . . ., N/2) .

The only nonzero chemical potentials are

1M =P2a, 2 (a=1,2, . . ., N/2) . (3.7)

If none of these vanish then the only conserved
currents are those displayed in (3.6) and the full
symmetry of the ensemble is [O(2)] . By using
(3.4) these currents can be written more explicitly
as

j."=42 Id 42 +~ I (—42 1+42—
B„j"=0 (a=1,2, . . ., N/2) .

(3.&)

non-zero chemical potential is @12 ———11421+0.
The conserved currents are j,"~ for a, b & 3, and j]2.
This just reflects the fact that an ensemble with

(Q12 )+0 and all other charges zero is only invari-
ant under O(2) X (N —2). As a next step one
might try to have two nonzero chemical potentials,

1M12
———1M21+0 and p13 ———tu, »+0, corresponding

to some fixed values of (Q12) and (Q»). This
fails, however, because in this case neither j &2 nor

j ~3 are conserved. Thus it is not possible to specify
the expectation value of two noncomrnuting
charges. (An alternative argument is to note that
the partition function of the grand canonical en-

semble is a weighted sum over partition functions
of the canonical ensemble. A11 the quantum states
which contribute to a particular canonical partition
function must be eigenstates of the charge opera-
tors. Consequently only a mutually commuting set
of operators can be used. )

In our model the maximum possible number
nonzero chemical potentials in N/2. (Recall N is
even. ) A convenient set of mutually commuting
charges is Q,2, Q34 Q56 . which we label'

3 0Qa=Q2a —1,2a= d X Ja ~

We will compute the grand partition function
appropriate to these charges,

exp( —PQ)=TrI exp[ —P(H —p Q )] j,
(3.9)

from which we can obtain all thermodynamic
quantities by differentiating the thermodynamic
potential Q(T, Vp). [See (2.14)—(2.16).] At low
temperatures we will find that the ground state has
the property

(o~y, ~0)=—y.~O. (3.10)

4.=4.+0.',
then the charge operator contains a c-number piece

Q =V~.(4Z. 1+42.')+Q.',
where Qa contains the terms either linear or qua-
dratic in the operators P'. (Note that Q' still
depends on p,a.) We emphasize that in a finite
volume V the spatial integral which defines Q
converges and the charg= is fully conserved':

d Q =0.
dt

The symmetry breaking occurs in the ground state
[characterized by (3.10)], which is an infinite
superposition of states with different numbers of
charged, zero-momentum excitations. The
ground-state expectation value of the charge is

(0
~ Q ~

0)= Vp (y +y ') .

This contributes to the thermal average charge
density:

The symmetry associated with Q, is then spon-
taneously broken because the ground state is not an
eigenstate of Qa. If we shift the field operators

Tr[ Q exp[ —P(H —
1 2Q2)1 j

TrI exp[ —p(H —pzQ2, )] j

Tr[ Q' exp[ —P(H —pxQI„)] j
114a 42a —1 42a V T [ [ 13(H Q& )] j

(3.11)

We will later show that the transition to the broken symmetric phase is just the onset of Bose=Einstein con-
densation in the ultrarelativistic regime. The first term in (3.11) is the net charge density in the Bose-
Einstein condensed (zero-momentum) ground state. ' The second term is the net charge density in the excit-
ed (nonzero-momentum) states. Both contributions depend on temperature; their sum remains constant. No
charge disappears from the system despite the spontaneous symmetry breaking. This is precisely analogous
to the more familiar fact in the superfluid phase of He, although the global phase symmetry associated
with baryon number is spontaneously broken, the net baryon number of the system never changes. '
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B. The p-dependent effective potential

For mo &0 the ground-state expectation values (0
~ P, ~

0) all vanish at high temperature but not at low
temperature. With no chemical potentials this pattern of symmetry breaking is determined by the value of
the constant c-number P which minimizes the effective potential P"(P):

exp[ P—VK(P)] =exp W(J) —fdx P,J,

fox= f—'Zr f Z'x.

(3.12)

(3.13)

Here P, =5W/5J, and W(J) is the generating functional for the connected, finite-temperature Green's func-
tions:

exp[ W(J)]=N f [dn. ][dP]exp fdx[in;P, A(ir, P—)+P,J, ] (3.14)

The normalization constant N is the same as in (2.3). If we substitute the definition (3.14) into (3.12) it is
convenient to shift the integration variable from P to P+P and use J, =d&ldg, to obtain'

exp[ PVP (P—)]=Nf [der][dP]exp. fdx i~,P, A(—ir, P+P)+P,' d". (3.15)

That part of A (ir, P+.P) which is quadratic in P defines a P-dependent, effective propagator from which

&(P) may be computed perturbatively.
To investigate how the introduction of chemical potentials p~, p2, . . ., pe&2 in the high-temperature phase

will affect the transition to the less symmetric, low-temperature phase we compute the p-dependent effective
potential

exp[ PV&(P—)]=Nf [der][dP]exp. fdx in;P, A(ir, P+—P)+P, +pJ'd.
In the above (and subsequent) equations a is summed from 1 to N and a is summed fro 1 to N/2 [see (3.6)].
The value of P which minimizes P"(P) is the ground-state expectation value of the quantum field and deter-

mines the phase structure of the system. At that value of P the right-hand side of (3.16) is precisely the

grand partition function. The thermodynamic potential (3.9) is therefore the minimum value of &:

Q(T, Vp)
V dw'/d)=0 '

For the ¹omponent model the integrals over m; in (3.16) are Gaussian and yield

(3.17)

exp[ —PVP (P)]=N'(P) f [dP]exp ~ fdx ~(P+P)+P,
dP,

(3.18)

~(p)= , p, p, ——,(—&p—,) (&p, ) , idio p'
, (p—)'——

1 2
isa((b2a —142a 02akn —i )+ i, Pa (42a —I+02n ) ~ (3.19)

(3.20)

In W(P+P) we separate out terms independent of P and linear in P by defining W(P;P) to contain all the
terms quadratic, cubic, and quartic in P:

The functional W(P) is essentially the Euclidean Lagrangian except that it depends on the external medium

via p. The corresponding classical potential is

~0(0)= iriov + 4i
('(( ) yP (((2a—i+02
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~(0+0) ~p(0) '4 iP (42 —102 02 'k2 —1)+~(0 0)
dP,

(3.21)

(3.22)

The p, -dependent term is a total time derivative and can contribute only a surface term to (3.18), but due to
the periodic boundary conditions P(r+P) =P(r) the surface terms all cancel. The term in (3.21) that is
linear in Pa cancels when substituted into (3.18) and yields

exp[ PV—&'(P)]=X'(13)f [dP]exp, Jdx W(P;P)+P,'d.
~(P)=~p(P)+ ~'(P) . (3.23)

Thus &' is the sum of all the quantum corrections to the effective potential.
One might think that the way to proceed is to use all the terms in the truncated Lagrangian W(P;t)}) that

are quadratic in P to define a P-dependent propagator and perturb in the cubic and quartic terms. For
2)ua=0 it is well known that if mp &0 and P is small the P-dependent mass is negative and prevents each

functional integral in the perturbation series from converging. To avoid this it is necessary to include more
of the dynamics in the "unperturbed" part of W(P;P). We have found it very convenient to do this by in-

cluding an arbitrary self-interaction term —,X,b(t},pb as follows:

~(k'0 }=~p(4'0)+ ~I(0'0»
~p(P;P)= , P—aP—a , (~4—a }—(~Pa) ', M'ab—d—ahab

iP'a(02a —1((2a 02ati2a i}+pea (—02a —1+4'2a } ~

(3.24)

(3.25)

(3.26)

where we have introduced an effective mass term
defined as

term linear in P in (3.22) requires that each di-

agram be one-particle irreducible. The momentum

integrations take the form

M,b
—— mp + p 5,b2 2

6

p ~
+ 0a0b+~ab

3
(3.27}

dk

Vertices are determined by Wz(P;P).

(3.30)

We will use Wp(P;P) to define the P-dependent,
p-dependent propagators D,b..

(D '),b i (I,b+—M,b ), (3.28)

where the matrix I,b is block diagonal and each
block is 2&(2 of the form

~2a, 2a —1 ~2a, 2a

co~ +k —pa

2p~~

—2@~~

N~ + k —pa
(3.29)

where co„=2nnT [compare (2..6}]. Using this pro-
pagator we may compute &' as the sum of all
closed-loop, connected Feynman diagrams. The

C. Computation of the effective mass M2(T)

For small P (even though mp ~0) the mass
term (3.27) will be non-negative at high tempera-
ture provided X accounts for the higher-order
dynamics properly. Thus X should be determined

by a self-consistent criterion. Any such criterion is
equivalent to summing an infinite class of di-

agrams in perturbation theory. We require that
this infinite class be renormalizable by itself. Since
the N-component theory is renormalizable for any

N, the diagrams at a fixed order in A, which must
be renormalized together are those with the same
N dependence. Among the diagrams with I loops
the largest N dependence is N .

Thus we are led to investigate the leading N
behavior (at fixed A,1V) of our model. ' ' In the
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general expression (3.27) for M,b the off-diagonal
terms (Ao/3)p, pb are negligible for large N. It is
convenient to choose Xb diagonal,

~ab ~ah~0 ~ (3.31)

M =mo +. P +Xo.
6

Inversion of (3.28) gives a block-diagonal propaga-
tor with each block 2X2 of the form

2a —1,2a —1 2a —1,2a

D2~2~ 1 D2~2

2p~Q)~

A~ +(2@~„) unco—s ~n:—co k +M —p

(3.33)

To compute the full, radiatively corrected propa-
gator we must compute the proper self-energy to
all orders. For large N the cubic part of Wi(P;P)
in (3.26) is negligible; we keep only P interactions
and quadratic insertions of —,P Xo. Figure 2

displays all contributions to the proper self-energy

through three-loop order. Each P vertex contri-
butes a factor A&&/6 and the group indices do not
couple the loops. Thus, for example, the contribu-
tion of Fig. 2(d) is

so that the effective mass is also diagonal (in the

large-N limit):

M,b =5,bM
(3.32)

The sum of all the contributions to the proper
self-energy is completely independent of the choice
of X&since it cancels between Wo(P;P) and

Wi(P;P). We can make our job easy by choosing
Xp to satisfy the self-consistent equation

Xo—— fdk D„(k) . (3.35)

(3.36)

N/2
1 E pD„(k)= i g ——

cu„'+(&—p )

&+pa
~, '+(E+p )'

E—:(k +M )'

When substituted into (3.36) the summation over
frequencies co„must be performed and gives

A,O~2 1VA,O g I 1 A,p

(3.37)

With this choice all the self-energy diagrams gen-
erated by Wi(P;P) (3.26) cancel among themselves.
Therefore in the large-N limit the full self-energy
is simply Xo and the full propagator is (3.33). It is
convenient to use (3.32) to write (3.35) as a self-
consistent equation for M:

fdkD, (k) .
6 6

The trace of the propagator (3.33) yields

'2
Ap

6 aBgb fdk D,a(k)D,&(k)fdk'D„(k') .
(3.34)

t)J(M,p, )
,p

—P(E —p~)
J(M,p, )= g Tf I In[1 —e ]

(2n. )

(3.38)

(o) (&) (c) (~) (e) (&)

(g) (~) (1) ( j )

FIG. 2. All contributions to the proper self-energy

through three-loop order. Because of the self-consistent
choice (3.35) for Xo, all diagrams cancel (a+b =0,
c+d =0, e+f =0, g+h+i +j=0) so that the full

propagator is given by (3.33).

(3.39)

All explicit dependence on temperature and chemi-
cal potential is contained in the finite integral J'.
The divergent integral in (3.37) may be regularized
in d =3—2e spatial dimensions. To keep A,o di-

mensionless in d dimensions it is necessary to re-

place kp by A,~ ' where p is an arbitrary mass
scale. The regularized integral is

2~ I- g~k 1 M M
(2m)~ E 4g 4n p

1 1——+y —— (3.40)
2
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so that (3.37) becomes
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so that (3.41) becomes

P +A,oNM ln
4~p

kp
+y ——+ J',

2 3

M =m (o.)+ P +A,(o)NM ln
A(o) p

—
2 M

6 0

A(o) J'. (3.44)

(3.41)
N =N/48&

To renormalize (3.41) we use a modified minimal-
subtraction scheme' to define finite parameters A,R

apd mR

We now have a finite equation for M . (In subse-

quent equations we will not display the argument
cr of the running parameters. ) The apparent
dependence on 0. is illusory because from

1 1 — 1 1+N —+In(4' ) —y+ —,
A,o E

1 1 ~oN 1+ —+ In(4m ) —y+ —,

mR mo mo

(3;42) (3.45)

We may define a running coupling constant and
running mass

dm

d0
(3.46)

1 1

A,(o ) A,g o.

A,RÃ
2+ ln

m (o) mg mg

(3.43)

it is easy to check that the solution to (3.44) satis-
fies dM /d0. =0.

Comparison of (3.39) with (2.9) shows that J is
equivalent to the thermodynamic potential for N/2
ideal gases. The high-temperature expansion is
given by (2.13):

—NET NT M T p~ T(M —p~ ) p~ (3M p2)—
a=1 6m. 24m.

XM 4n T
ln

2
—y+ —„+ (3.47)

1—g+ — +

Differentiating with respect to M gives J' and hence the high-temperature expansion of (3.44):

6 72 12m
(3.48)

We postpone the application of this equation until
we have computed the effective potential and its
m1nlmum.

D. Computation of ~(P)

To calculate the effective potential in the large-
X limit' requires summing an infinite number of
graphs with p-dependent propagators (3.33) and ef-
fective mass (3.44). We can avoid this difficulty

d W(P;P) ~0
~z(

$2
(3.49)

In the functional integral representation (3.22) for
the quantum corrections P ' we may neglect the
term linear in P, for large N and obtain

I

by using a trick suggested by Schnitzer. ' ' In the
present context we note that W(P;P) as given by
the sum of (3.25) and (3.26) depends on P, only
through the term (A,o/6)P in the large-N limit.
Thus
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d ~'(P)
dP

6 fdKD„(k) . (3.51)

f [dP]P exp fdx W(P;P)

f [dP]exp fdx W(P;P

(3.50)

2dF(i) M2(4)d2 (3.55)

(3.56)

This is the fundamental equation which determines
the finite function P . To obtain the full potential
W we need only add the finite p, terms in (3.20):

w(p) =~($)——,p~'(4zn —i+4za )

We emphasize that the right-hand side contains the
full, not the bare, propagator. Because we have
summed the bubbles in Fig. 2 to obtain the proper
self-energy this propagator is known. Comparison
with (3.35) shows that

2d~'(i) =X (i)o (3.52)

(3.53)

Thus we can sum all the leading N contributions to
the effective potential by solving this differential
equation.

The solution &' is of course divergent since Xo
is divergent. If we write (3.52) in terms of the fin-
ite function M,

P" (P) &
——, m P +—J(m,p, ) . (3.57)

To solve (3.55) we note that F' can depend on jh

either explicitly or implicitly through M so that
(3.55) actually means

BP dM BP
ay'+ dj' aM'

By differentiating (3.44) we know that

(3.58)

The F which solves the differential equation (3.55)
is only determined to within a P-independent con-
stant. This constant is irrelevant for determining
the pattern of symmetry breaking, but is necessary
for the thermodynamic properties (e.g., the pres-
sure). The boundary condition we impose is that
for X=O the solution should reduce to the known
ideal-gas result:

then it is useful to define

F(P)—= —,mo'P'+, (P')'+ ~'(P) (3.54)

dM A, AE ~ -l M
6 2 0

B J(M p)
aM2aM2

.

II——J
3

(3.59)

so that (3.53) becomes The complete solution to (3.58) is then '

r

F(P)= —,'m2P +—(P )2+ M —AÃln +ln
4t 2 0 0

1

4

+J——(J')2 —A,ÃJ'M ln +Ci,
6

(3.60)

2 0
1

4

To verify that this is the solution it is necessary to
use the implicit equation (3.44) for M as well as
(3.59). This is the exact solution in the large-Ã
limit. All dependence on p and T is contained in
the known function J (3.39). One additional check
of (3.60) is that although the subtraction mass o.

appears explicitly as well as implicitly via A, (cr) and

m (o ) one can show that d W/ der =0 by using the
self-consistent equation (3.44) for M .

E. Some properties of 7

To determine the pattern of symmetry breaking
we must minimize & with respect to all the P, . It
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[a/2]= '

a+1
1f Q =odd

2
(3.61)

is convenient to introduce a bracket notation as
follows:

At very high temperatures we will find M &pa
(for all a) so that the minimum of V occurs when

Ag
all P, =0. In this region we may put P =0 in

(3.44) and determine M from

if a =even .

This notation allows (3.56) to be written

M =m +A,NM ln +—J'.M A,

0' 3
(3.65)

XP[ /2]0. '. (3.62)

(3.63)

The scalar-boson mass matrix is the value of the
second derivative

d~F'
p z

n
=(M P(, /2))—&,b+ 2 Nabab ~

dP, drab

(3.64)

evaluated at the minimum of the potential.

Since F' depends on P only through P =P,P, the
extrema of the potential are determined from the
vanishing of

dF'

Q

=(M P(, /2—))P, .

By contrast, we will later use (3.63) to show that at
low temperatures the potential minimum occurs
when one of the chemical potentials becomes equal
to M and P +0. In this region (3.44) determines

as

p, —m —A,Np ln J/

(3.66)

This will be our general method of evaluating & at
its minimum.

We will be interested in computing the thermo-
dynamic functions pa and S in the various phases
and must therefore differentiate the minimum
value of F with respect to p~ and T [see
(2.14)—(2.16) and (3.17)]. It is useful to first use
(3.44) to rewrite F in (3.60) as

g (P) =M2 + ~ + —,M Xln
2

1 +J+Cp,
4 A,

(3.67)
4 — [m [Cz= ——,m N ln

0
1V 1—+—
4 A,

dP
dpa

1 d p n2 ~('(+/2)lpgapa a=1

+,M + (V T fixed) .
2dg BJ

dpa ()pa

(3.69}

A
This may depend on a particular p via P, M, or
J

dJ dM J BJ
( V T f d)

dpa dpa Bpa

(3.68)

When (3.67) is differentiated the coefficient of
dM /dp~ cancels because of (3.44). A simple cal-
culation gives

In differentiating (3.67) all dependence on the
quantity dM /dT again cancels so that

dy- i ", ddt'
dT ~ ~~('/ l dTa=1

+ —,M + ( V,p fixed) .2dP BJ
dT aT

(3.70)

(3.71}

We will also need to compute the T derivative of
This dependence can occur in P, M, and J:

dJ dM J, BJ
(V f. d)

dT dT BT
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F. The symmetric phase G. Spontaneous symmetry breaking without p,

BJ
P =

Bp~
(3.72)

Before analyzing in detail the various cases of
spontaneous symmetry breaking it is helpful to
first summarize the common features of the high-
temperature P =0 phase. We remind the reader
that because of (3.5) the number of conserved
currents depends on how many nonzero chemical
potential are present. If there are p nonzero chem-
ical potentials, the symmetry of the high-
temperature phase is O(N —2p) X [O(2)P'.

The thermodynamicyotential 0 is obtained in
this region by putting P, =0 in &. Consequently
the charge density and entropy obtained by setting

P, =0 in (3.69) and (3.71) are

To illustrate the use of (3.65) and (3.66) we first
discuss the standard situation in which all @~=0
(i.e., no net charges). At high tempertatures (3.63)
shows that the minimum of P occurs when all

P, =0 because the M which solves (3.65) is posi-
tive. At low temperatures (3.63) shows that the
minimum of V occurs when M =0 and P +0.
For simplicity we may choose Pz

——P3
=Pz ——0 and use (3.66) to compute

—m ——J'(0,0)
6 p A,

3

6
(

p(
N

72

S=- BJ
aT' (3.73)

( Tc T), —
12

(3.78)

Since J in (3.39) is just a sum over N/2 ideal gas
contributions we have essentially incorporated all
interactions (in the leading-N approximation) into
one function M . However, the interactions appear
nontrivially in the pressure and energy,

P= —m,
(3.74)

U TS=~+ +PgPu ~

V V

because all terms in (3.67) contribute, not just the
ideal-gas function J.

For m ~0 and NA, small it is clear from (3.48)
that we are always in the region T &&M. The ul-

trarelativistic expansions of (3.72) and (3.73) are
the same as in Sec. II:

where the critical temperature at which the sym-

metry breaks is'

72 im'i
NA.

(3.79)

H. Spontaneous symmetry breaking with one p

We now investigate what happens to a system
with one nonzero charge Qi, as T is lowered. In
the high-temperature phase (3.64) demonstrates

that two bosons have mass M —p and the
remaining N —2 bosons have mass M . The sym-

metry is thus O(2) X O(N —2) as claimed.

Associated with this breaking are N —1 massless
Goldstone bosons (Pz, Pi, . . . , P~) and one massive
boson (Pi).

p ~ T p + 0 ~ ~

L 2Nn T
V 45

Qa 15 Pa
2NH T

(3.75)

(3.76)

(3.77)

(Ij Qi and Vfixed

We first discuss the T evolution with fixed
charge density pi. At very high T there is no
spontaneous symmetry breaking so that according
to (3.75)

with the last result being the quotient of the previ-
ous two. If the system is cooled with Q~ and V

fixed then (3.75) requires that p~( T) increase as
1/T as T is lowered. If, on the other hand, the
system is cooled with Q~ and S fixed (as is the
case in cosmological applications} then p~(T) de-

crease linearly with T according to (3.77}.

pi(T)=3pi/T' .

In this region pi(T}&M(T), where
' 1/2

NA, TM(T)= m +
72

(3.80)

(3.81)

from (3.48) (recall m ~0). As the temperature is
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reduced there is a value Tci at which (3.80) be-
comes equal to (3.81):

1/2
3p1 2 NXTC1

(3.82}

(3.83)

As illustrated in Fig. 3(a), this temperature is al-

ways larger than the usual critical temperature T~
(3.79) which applies when pi ——0. How much
larger T~1 is than Tc depends on how large the
background charge density p1 is. The value of the
chemical potential at TC1 is the fixed value

1/2
N~TC1

pc= m +

fp
/

/
Tc Tc&

(p) m &0

and satisfies

24p c
pi —— (pz —m ) . (3.84)

At the temperature T~1 the transition to the
broken-symmetric phase occurs. From (3.63) the
minimum of w in the region T & T&1 is at
M(T}=pi(T) and P3 P4 —— —P+ —0 but Pi
+$2 +0. Fol' simplicity we clloose iti2=0 so tllat
(3.66) determines

6 2 2 2 P1
Pi ———p, —m ANp, , ln—

A, 0

I
I

Tci

(b} m «0

FIG. 3. The temperature dependence of p~(T) with

Qi and V held fixed. For T & Tci the effective potential
minimum occurs at M(T) =p~(T) and p~(T) is deter-
mined by (3.86). In (a) where m &0 the symmetry
would break at Tc jf there were no Qi. In (b), the
symmetry breaks even though m &0.

(3.85)

A
Pi=Pili

aJ
~Pl M =@1

(3.86)

This is an implicit equation for p1 in terms of
known quantities. Comparison with (3.11) shows
that the first term is the charge density in the
Bose-Einstein condensed (k =0) ground state, '

Pi(k =0)=iM (3.87)

This spontaneous breakdown of the Qi symmetry
is the ultrarelativistic form of Bose-Einstein con-
densation; to show this we compute p1. According
to (2.15) and (3.17) we must differentiate the
minimum value of & with respect to p1 keeping T
and Vfixed. Using (3.69) with pi@0 gives

and the second term is the charge density in the
excited (k &0) states,

BJ
pi(k &0)=— (3.88)

For T & T&1 the entropy is similarly obtained by
differentiating the minimum value of W with
respect to T keeping p, i and V fixed. From (3.71)
this gives

BJ
M=@)

(3.89)

Before evaluating these expressions it is useful to
use the original integral representation (3.39) for J
to display

pi(k&0)= I dk 1 1

expf@E+Vi) 1
—I

(3.90)
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The ideal-gas form of this result confirms our in-

terpretation of (3.88) as the charge density in the
excited states.

To compute the charge densities in the high-
temperature limit we use (3.47) to obtain

681 2 2 XA T
pi(k =0)= pi —m—

72

p, (k &0)=—, T p, i .

(3.91)

Although each of these changes with T their sum
is the fixed value p1. This gives a cubic equation
for pi(T). For temperatures just below Tci the
approximate solution is

(N —4)Apc(Tci —T )
pt(T)=pc— 2

. (3.92)
144[pc +(A,136)Tc ]

Substituting this into (3.91) and using (3.84) gives

T
'

pi(k =0)=pi 1—
TC1

(0«T&Tct) .

(3.93)

(3.94)

As T is reduced further pt(T) continues to de-

crease as shown in Fig. 3(a), although (3.92} is no
longer a good approximation. At T =0 the value

of the chemical potential is po=pi(T =0) and sa-

tisfies

This is the same behavior as found in (2.22} for the
ground-state charge density of the ideal gas. In
the present context it corresponds to a
temperature-dependent vacuum expectation value

$1'=
3
(Tci' —T') (0«T&Tc]) .

(2) Qt aitd Sfixed

For most cosmological applications V changes
with temperature but Qi and S are fixed. In the
high-temperature region (3.77) requires that p, i(T)
decrease linearly with T:

2NmtQ. i
P1 (3.96)

In this region pi(T) &M(T), where

1/2
NETM(T)= m + (3.97)

For m &0 there is a temperature Tc1 at which

pi(T) becomes equal to M(T):
1/2

2NH Qi —,N) Tct'
1S S 72

TC1——m + .(3.98)

Again Tc1 is greater than the temperature Tc
(3.79) at which the symmetry would break if there
were no net charge. See Fig. 4(a). We have as-
sumed that Qi /S is small enough so that (3.98) has

6PP 2 2 3 PP
pi= (po —m ) —6Npo ln (3.95) (e}m &0

We emphasize here that in the case under dis-
cussion (i.e., m & 0 and AN« 1), cond, ensation al-

ways occurs at relativistic temperatures. This is
true because Tc»& M as can be seen from (3.81).
In addition, we note that for T & Tci, pi » M in

accord with the conditions noted in Sec. II D.
Although we have concentrated on the case

m &0, it is important to note that spontaneous
symmetry breaking also occurs where m ~ 0. If
p1&& m the critical temperature will be ultrarela-
tivistic and (3.82) still applies. The temperature
dependence of p(T) is shown in Fig. 3(b). If
p1« m then the nonrelativistic reduction of
(3.65) and (3.66) leads to the standard results for
interacting Bose gases. '

M(T) &

(b)m &0
FIG. 4. The temperature dependence of p~(T) with

Q~ and S fixed. In (a}, rn'&0, the symmetry breaks at
T~~ and for T & Tc~ the effective-potential minimum oc-
curs at M(T)=JM&(T) with p&(T) determined from (3.86)
and (3.89). In (b), m &0, and the symmetry never
breaks.
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a real solution. [However, see (4.7).]
At Tc& the broken-symmetry phase ensues. The

minimum of the potential is computed as in the
previous discussion. In particulat (3.85) —(3.90)
still apply and JM~(T) =M(T). At high tempera-
tures, but below Tc» the charge in the Bose-
Einstein condensed ground state and the excited
state becomes

m &0). In this limit, we find that

S
p, (T)=m —T—.

I. Spontaneous symmetry breaking
with two p's

(3.104)

Q&(k =0) 6P& 2 2 ~gT
S A,

p~ —pl

Qi(k & 0) p& 2 45
S 3 2/m T

45

2NHT
(3.99)

A, Tg )B:—pc+
(3.100)

The ground-state charge is then given by

Qi(k =0)
~
m'~ Qi

S 2B2 S

2

1—
TC1

(0« T & Tc, ) . (3.101)

As the temperature drops well below Tc& (3.101)
ceases to apply. In the region T~O, p~(T)
behaves differently than was the case in (3.95). We
find that T»M(T)=p, ~(T) throughout the con-
densed region. To keep Q~/S fixed it is necessary
that p&(T)~0, with the specific form being

The requirement that the sum of these terms be T
independent gives a cubic equation for p~(T). If
Pc is the value (3.98) at Tc, then just below Tc,
the approximate solution is

(%+2)Ap, c 2 zPi(T)=P c ( Tc)' —T') (0« T & Tc)),
144B

(3.105b)

where for simplicity we have $2 ——0 and P4
——0.

The behavior of a system with two net charges
Q& & Q2 &0 is now easy to surmise. For brevity we
discuss only the case of fixed V and only for
m &0.

At very high temperatures p, (T) &p2(T) since
Q» Q2. Consequently Fig. 3(a) applies and the
symmetry is broken at TcI. At temperatures just
below Tc~ the Q2 symmetry is still good; in this
region p2(T) &p~(T) =M(T) and p2(T) increases
as T falls. Some of the Qt charge has Bose-
Einstein condensed but none of the Q2 charge has
condensed.

At Tc2 & T&~, pz becomes equal to p~ and M as
shown in Fig. 5. The Q2 symmetry breaks; some
of the Qq charge begins to condense, and the Q&
charge continues to condense. For T & Tc2, p» p„
and M are all the same functions of T, e.g., p(T).
The charge densities in the Bose-Einstein con-
densed ground state (k =0)' and the excited states
(k &0) for T & Tcz& Tci a«

pi(k =0)=p0i' (3.105a)

p2(k =0)=p

p&(k & 0)=p2(k &0)= , T p, — (3.106)

EA~ Qi

135 S
T3

fm'/
(3.102)

This behavior is shown in Fig. 4(a). Near T=0
the ground-state charge becomes

Qi« =o) Qi 1—
S S Tp

(0(T«To),

»[m'f
0

(3.103)

The above discussion pertains to m &0. %hen
m &0, Fig. 4(b) shows that adiabatic cooling will
not lead to symmetry breaking at all (assuming
Q~/S is small). Note that as T~O, we enter the
nonrelativistic regime (unlike the case where

/
I

Tc Tc2 Tc 1

FIG. 5. The temperature dependence of two chemical
potentials with Q~, Qz, and V held fixed assuming
Q~ &Q2 and m &0. The Q~ symmetry breaks at To~
and the Q~ symmetry breaks at Tcq.
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The vacuum expectation values must satisfy (3.66}:

6 2 2 M, T
0i +0& =—p —m — . (3.107)

72

p(P, —Pi )=C. (3.108)

The condensed charges may therfore be expressed
as

pi(k =0)= p —m-3p, 2 2 %AT
72

(3.109a)

3p 2 2 iVA, T2
p2(k =0)= p —m—

A, 72
C
2

'

(3.109b)

where C satisfies

6p 2 2 NATC= p—
T=Tc2

(3.110)

The condition that the sum of (3.106) and (3.109a)
be fixed at pi gives a cubic equation determining

p, (T). [The condition that the sum of (3.106) and
(3.109b) be fixed at p2 gives the same cubic equa-
tion after using pi —p2

——C.) The behavior of p(T)
is illustrated in Fig. 5.

At this point it is clear how the inclusion of a
third charge density p3&pz &p~ should proceed. In
particular for T & Tci, we see from (3.106) that the
excited charge densities will all be the same and
from (3.109) that the condensed charge densities
will differ only by additive constants.

IV. DISCUSSION

We have demonstrated the equivalence of finjte
temperature symmetry breaking and Bose-Einstein
condensation. For charges associated with a global
symmetry there is no particular reason why the
universe should be neutral. For charges associated
with a local gauge symmetry the universe must be
neutral only if it is gravitationally closed. Obser-
vational evidence favors an open universe and we
therefore need experimental tests to measure any
net charges.

Furthermore, since the total charge densities pI and

pi are constant their differences must also be con-
stant. Thus

A. Inclusion of fermions and gauge bosons

In a gauge theory the thermodynamic potential
Q(T, V,p) is still obtained by performing a func-
tion integral with pQ in the exponent. Since the
allowed charges must be mutually commuting (as
shown in Sec. III A), we may take them as simul-

taneously diagonal. Each real boson or chiral fer-
mion denoted by

~

i ) is thus an eigenstate of Q,

Q ~i)=q; ~i), (4.1)

with eigenvalue q;. In calculating 0, each such
species behaves as if it had chemical potential pq;.
Of course, the charge density is still obtained by
computing the derivative with respect to p [as in
(2.15)]. In the ultrarelativistic limit (neglecting all
masses} this gives

(Q) =6T p+Vr
2

(4.2)

where the sum is over each polarization of fermion
and real boson.

The phenomena we have described may be appli-
cable in the breaking of chiral symmetry, of SU(5),
of horizontal flavor symmetries, etc. For definite-
ness we concentrate on the SU(2) )&U(1) elec-
troweak symmetry. One must first fix the choice
of two mutually commuting charges. If we choose
electric charge and weak isospin, the functional in-
tegral contains

peQe+psT3 (4.3)

and an electrically neutral configuration implies

p, (T)=0. However, using Ts Q, —I'we m——ay
rewrite this as

(pe+ps}Qe pi I— (4A)

so that in this basis an electrically neutral configu-
ration implies p, (T)= —pi(T). Thus the numeri-

cal value of one chemical potential conveys no
physical information unless the complete set of
charge operators is also specified.

We shall adopt the basis (4.3). Then as shown in
Fig. 4(a), the presence of a net value for ( Ti )+0
necessarily raises the temperature at which the
electroweak symmetry breaks. At any T & Tc the
Higgs vacuum expectation value is automically
larger [see (3.66)) and the Fermi coupling G au-

tomatically smaller than if (T ) =0. Consequent-

ly as the universe cools the neutrinos decouple
from matter at a slightly higher temperature than
in the standard scenario. At the temperatures of
nucleosynthesis ( T= MeV) p, ( T) is falling as T
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[see (3.102)] and the effect of the modified value of
the Fermi coupling on the helium abundance is
quite negligible.

B. Rcmalks

There are several aspects of this problem that we
have not pursued and which may merit further in-
vestigation. First, there is a problem of examining
more realistic Higgs potentials. We have used the
large-X limit in order to obtain a self-consistent
equation for M ( T) )0. It would be desirable to
develop a self-consistent scheme that does not re-
quire N large. ' This would allow study of more
complicated models with several Higgs multiplets.
A particularly interesting case is that of Langacker
and Pi in which the U(1) of electromagnetism is
broken during a finite temperature interval but is
restored at small temperature. In such a system
the effect of a net background charge and the phe-
nomena of Bose-Einstein condensation is obviously
more complicated.

Second, we have mostly ignored gauge bosons.
It is possible for the gauge bosons to undergo
Bose-Einstein condensation just as the scalars do.
For example, in QCD without colored scalars a
system with net color (e.g., as labeled by A, 3 and A, &)

will necessarily lead to condensation of color
gluons. There may also be a technical problem
when gauge bosons are present. For a non-Abelian

group an ensemble with net charge cannot be in-

variant under all the group operations. As em-

phasized in Sec. III A, the presence of a chemical
potential Iu associated with a particular charge Q
explicitly breaks the conservation of those charges
which do not commute with Q. The corresponding

gauge bosons have masses proportional to p even

at very high temperatures. It is not clear if this
endangers the renormalizability of the theory.

Third, we note an intriguing property of the

Bose-Einstein condensation when Q and S are fixed
(as in the early universe). From (3.96) and (3.97)
we see that at very high temperatures both p(T)
and M(T) are linear in T T.he condition that at
very high temperatures p, (T) (M(T) therefore puts
a bound on Q/S:

Q 5 A,

(4.7)

We have previously assumed that this bound was
satisfied and found that for m &0 Bose-Einstein
condensation eventually occurs [see Fig. 4(a)] and
for m & 0 Bose-Einstein condensation never occurs
[Fig. 4(b)]. However, if Q/S is so large that (4.7)
is not satisfied, then the charge is Bose-Einstein
condensed even at infinite temperature (regardless
of the sign of m ) and remains condensed at all

lower temperatures. This could modify the stan-

dard cosmology.
Note added in Proof. After completion of this

work we became aware of a paper by J. Kapusta,
Phys. Rev. D 24, 426 (1981), treating the same
subject. Our conclusions agree qualitatively; how-
ever, we do differ on a number of technical details
[e.g., compare Kapusta's (1.29) with our (2.20)]. In
particular, we emphasize that the chemical poten-
tial is a dependent parameter to be calculated from
the known charge density. We explicitly do this in
our computations.

ACKNOWLEDGMENTS
We are grateful to W. Fischler and P. Langacker

for very helpful discussions. This work was sup-

ported in part by the National Science Foundation.

APPENDIX A: THE ULTRARELATIVISTIC
LIMIT OF GI AND HI

In this appendix we evaluate the integrals GI and
HI used in the text. The appropriate dimension-
less variables are m =m/T and r=p/m; the phy-
sical region is m )0 and

~

r
~

(1. We define

r

gt(m, r) = x dx
exp[(x '+ m ') 'r' —rrn ]—1

(A 1)

(x +m )'~ exp[(x +m )'~ —rm] —1
(A2)

The functions of interest are

Gt(m, r)=gt(m, r) gt(m, r), ——

H (mt, r)=ht(m, r)+ht(m, r)—
and satisfy

(A3)

(A4)

Gt(00)=0 (l)0)

Ht(0, 0)= (1)2) .
I —1

(A5)

(A6)

We may derive recursion relations among the GI
and HI by taking derivatives with respect to m and
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dHI+& r m=—GI &

——HI —i ~

dm l
(AS)

Consequently, knowledge of G~ and H& [plus the
initial conditions (A5) and (A6)] will yield GI and

HI for all positive odd I. Similarly, given G2 and

H2 we can compute GI and HI for all positive even
l. We remind the reader that the functions with l
odd (even) are the ones relevant for thermodynam-
ics in an odd (even) number of spatial dimensions.

A. The small m expansion of 62 and H2

integrating by parts:

dGI+ ) m mr= IrH( ~ )
——G( i+ ~l i (A7)

where Lii(z) is the polylogarithm function

Li((z) —=
& ( 1n—t)' 'd-t

1(l) o t —z ' =in

By successive integration of the identity

82~2

exp(y) —1 y

(82k are the Bernoulli numbers) and using

(2~)2k( 1)k+1+

2(2k)!

where k is a positive integer, we find

in[1 —e «]=lny ——
2

(Al 1)

(A12)

(A13)

It is fairly simple to obtain closed expressions
for G2 and H2. In the expressions for g2 and h2
we substitute t =exp[ —(x +m )'~ ] and find

00 1 k+1
+ g g(2k)

k=1 2'

'2k

exp( —m )

gz(m, r)=— lnt dt

exp( —rm ) t—
=Li [e'" " ]—m in[1 —e' " ]

(A9)

2

Li2[e «]= +ylny —y—
6 4

2k+1
( —1)" 'g(2k) y

k (2k + 1) 2m.

(A14)

h~(m, r)= J dt

exp( rm ) t— —

= —in[1 —e'"-"], (A10)

(A15)

Substituting these expansions in (A9) and (A10),
we end up with

G2(m, r)=2rm 1 ——, ln[m (1 r)]+ g — Ck
( —1) g(2k) m

, k(2k+1) 2m.

2k

(A16)

2k (2k+ I)(g ( —2J —1)r

0 (2j+1)!(2k—2j)! '

H2(m, r)= —ln[m (1—r )]+m+ g [(1+r) +(1—r) ]

2k

(A17)

(A18)

B. The small m expansion of G~ and H~

Unlike the previous case there are no closed forms available for the odd-I functions. Our strategy here
will be totally different and based on an identity previously used by Dolan and Jackiw'.

1 1 i p=———,+2+
exp(y) —1 y

'
) y2~(2mp)2

(A19)

We substitute the identity into the integrands of G~ and H~ and integrate term by term. Actually, the in-
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(A20)

where

tegration over x must be performed with a convergence factor x ' (0 & e & 1) in order to ensure that all in-
tegrations are finite. At the end of the calculation we may safely take e—+0.

Applying this technique to Gi yields

G] (m, r }=I+2 g Lr,
p=1

x +m (1—r~) (1—r )'~

x +m (1—r )—(2mp)~
Lp =2Tm

x +m 1 —T + 2' + 4gpp'm

(A21)

(A22)

We expand the integrand of (A22) as a power
series in m and integrate term by term. For illus-

tration, consider the term linear in m:

L(]) 2 I gd x (21rp)2 2

[x~+(2') ]

rm
&

3—e
&

1+a
(2np)'+' 2 2

(A23)

. 3+& 1 —6'

2
"

2

, +O(e ) .
(2np)'+'

Summing over p gives

(A24)

(A25)

p=1
(A26}

rm+O(—e) . (A27)

Higher-order terms in the m expansion are
straightforward (one can safely set e=O in the
remaining terms). The integration over x can be
done easily and the sum over p just gives
Riemann's zeta function. We present the final re-

I

suit:
mr

G](m, r )= rm+ 2—mr
(1 r2)]/2

. 2k+1

H](m, r )=I'+I"+2 g M~,
p=1

where

(A29)

(A28)

~here a1 ——1, a2 ——2r + —,, a3 ——3r +—,r +—,.4 &S 2 &S

Note one apparently puzzling feature of (A28):
from its definition we expect G](m, r ) to be an odd
function in m, whereas (A28) does not satisfy this
property. The resolution of this puzzle is to note
that we assumed rn )0 in computing (A21). For
m &0 one would obtain the opposite sign for I
Therefore, we conclude that G](m, r ) is in fact an
odd function in rn but it is not continuous at the
point m =0. However, G](m, r) does have a defin-
ite limit as m ~0 from the positive side. Because
m &0 corresponds to the physical region, it is clear
that the appropriate zero-mass limit involves the
limiting procedure just described.

We now turn to the computation of II]. Using
(A2), (A4), and (A19) we find:

I~=2 x dx

x+m(1 —r)
(A30)

x 'dxI"=— = ——+ln —+0(e),
(x'+m )'

(A31)

x +m 1 —r + 2'
0 x +m J p + 2~p + 4~ppm

(A32)
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We expand the integrand of (A32) as a power
series in m and integrate term by term. As before,
we may set @=0in all but the term leading in m.
The leading term gives

~(1) 2
x dX

x~+(2irp)

Hi(m, r)=, +ln +y
m (1 r)—'/

+ g ( —1) g(2k + 1)bk
k=1 2

' 2k

(A36)

[1—eln2n. +O(e )] .1

Summing over p and using

g(1+e)=—+y+O(e),1

(A33)

(A34)

where b1 ——r + —,, bz ——r +3r + —,, b3 ——r + —,r
+ , r—+—„.Note that (A36) is valid for m & 0;
actually H& (m, r) is an even function in m.

where y is Euler's constant, we find

2 g M~"'= —+y—ln(2ir)+O(e) .
p=1

(A35)

Notice that when we add (A31) and (A35) the e=0
singularity cancels and we may safely take e~0.
The computation of higher orders in m of (A32) is
straightforward and the end result is

APPENDIX 8: THE NONRELATIVISTIC
LIMIT OF Gr AND H

Large m corresponds to the low-temperature
(nonrelativistic) limit. We may derive asymptotic
expansions for g; and hi directly as follows. Sub-
stituting w =exp[m —(x +m )'/ ] into (Al) and
(A2) yields

1 i ( —in')i '(2m —in')' '(rn —inca)
gI(m, r) = dco,

r(l) exp[(1 —r)rn ]—co

1 ' ( —lna) ) '(2m —inn) )
hi(m, r) = de .

exp[(1 —r)m ]—co

Writing
k

(Bl)

(B2)

(2—
1 )I/2 —1 (2—)i/2—

o I (l/2 —k)k!
—into

(B3)

and using (Al 1) to perform the w integrations, we find

r(I /2) " 1 1

r(I) „~,r(I/2 —k)k!
mr —+k Li„+I/,(e'-" )

+I' —+k+ 1 Lip+1/2+1(e
2

. k+1—I/2
r(l/2) ~ r(l/2+k) . ,„„- 1

r(l) q 0 I (I/2 —k)k!

(B4)

(B5)

[g&(m, r) —gi(m, —r)] .Q T
V

(86)

From (B4) the leading term in the large-m expan-
sion of g3 is

It is now easy to obtain the familiar results in
the large-rn limit. For example, as noted in (2.17)
the charge density is

g (m, r)= —,(2@m )' Li (e'" "
) . (B7)

By definition (r —1)m =(p m)/T, where —the p
that appears in this paper is related to the chemical
potential of nonrelativistic thermodynamics by

pNR
——p —m. Thus,

~ p ~

& m is equivalent to
—2mc &pNa &0 ( where we have put back the
speed of light). In the nonrelativistic limit (c~ 00 )
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(r —1)m
~NR =~ (88)

we regain the familiar result —oo &pNR &0. More
precisely, the nonrelativistic limit corresponds to
T «m (i.e., m && 1). We define

is exponentially sma11. That is, the contribution of
the antiparticles is exponentially small in the non-
relativistic limit. Furthermore, in this limit Q =N
(number of particles) since pair creation is sup-
pressed. The end result is

Then,

g3 ( m, r)-——,(2trm )' Li3/2(ZNR 'e )

(2
—3)1/2 —2%

ZNR

3/2
mT

Lt3/2(zNR) ~

V 2a

which is the standard result.
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