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The nucleon-energy correlation o. (E„E,), where EC, and E, are the kinetic energies of the outgoing nucleons, is

studied in the weak neutral disintegration of the deuteron, v + d ~v + n +p. The studies are made in all five (S, P,
T, A, and V) variants of the neutral-current weak-interaction Lagrangian. The study in the region of low kinetic

energies of the nucleons provides means to distinguish between the axial-vector and tensor couplings.

I. INTRODUCTION

The existence of neutral currents in &8= 0 pro-
cesses has been established in high-energy neu-
trino reactions but its space-time and isospin
structure is still a subject of considerable theo-
retical study. While most of the theoretical an-
alysis of the experimental results has been done
in V-A theory, ' there have been some attempts
to analyze various experiments in S, I', T inter-
actions. ' These theories are not ruled out from
the data in particle-physics processes. It has
been stressed' that nuclear-physics processes
can play a decisive role in elucidating the space-
time and isospin structure of these fundamental
interactions. It is in this connection that much
emphasis has been recently placed on the process
v(v)+ d- v(v)+ n+P, both theoretically and ex-
perimentally. ' The experiments of Pasierb et
al. at reactor energies' provide a clear signature
for the presence of either axial-vector or tensor
interactions. However, the Los Alamos Meson
Physics Facility (LAMPF) and ANL experiments
planned at intermediate energies' would provide
information about the isospin structure of neutral
currents. This is because at these energies the
final dinucleons can be produced in various iso-
scalar and isovector states as emphasized by Ali
and Dominguez. In a recent, experiment Pasierb
ef a/. ' have found

o,„,, = (3.8+0.9) x 10"cm'/v.

This result is in fair agreement with the Wein-
berg-Salam theory. It can also be explained in the
helicity-flipping theories with tensor interactions.
The strength of the tensor coupling constant de-
rived from this process' is however smaller than
the coupling constant derived by Adler et al. ' but
seems consistent with the strength implied by a
study of earlier data in astrophysics and particle-
physics processes. '

Since this reaction has been observed, further
analysis of this experiment can be made. With
this motivation we have presented a discussion of

another observable v(K„K,), i.e. , the energy cor-
relation of the outgoing nucleons which can be
useful in determining the structure of neutral cur-
rents. This correlation at low energies has been
earlier discussed by Frahm' in V-A theories of
weak interactions. We have extended his work by
giving a complete theoretical formulation of this
problem in all the variants of the weak-interac-
tion theory, i.e., V, A, S, P, and T. The ex-
pressions for o(K„K,) are derived in this paper,
which can be used to study this process at higher
energies and momentum transfer relevant to the
experiments planned at ANL and LAlV[PF. The
general expressions for o(K„K,) which include
the effect of final-state interactions have been
derived in all cases. The numerical calculations
have, however, been made only at low energies
corresponding to the experiments of Pasierb et
a/. ,

' where only S waves are produced in the final
state. The numerical results in the helicity-con-
serving theories with V-A currents are evaluated
in the Weinberg-Salam model. In Sec, II, we de-
scribe our formulation. In Sec. III we discuss
the numerical results and compare them with the
work of Frahm. "

II. FORMULATION

In the following we calculate the matrix elements
for the process vd-vnP in the helicity-conserving
V, A theories as well as in the helicity-flipping
S, I', T theories.

A. Helicity-conserving (V, A) theories

The matrix element for the process is

% = &(k')y, (1 —r, )~(k)(np l~'oI d ) (2.1)

where k and k' are the initial and final lepton (neu-
trino) momenta measured in the deuteron rest
frame and (np ~P, ~d) is the hadronic matrix ele-
ment derived in the impulse approximation"

(np P, ~
d) = —

Qp ( r)(A', e""~' + A",e "'~' )&f&, ( r)«,
2

(2.2)
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with (1= k —X' as the three-momentum transfer
p, (r) is the initial deuteron wave function and

(]])&(r) is the final dinucleon wave function where
we are considering only the singlet proton-neutron
state. AN (N=]p), n} is the nonrelativistic reduction
of the single-nucleon operator T„", given by

where

FN( 2) FN( 2) i/
q iiFN( 2)

(4M ]

FN(q2) FN(q2) + FN(q2) (2.6)

F (q') = F"(q')+ 2F".(q'),

g"„—(q')r, r, &.",—(q')r, q, , (2.3)
and p' = p+ q/2, where p is the relative momen-
tum of two nucleons inside a deuteron.

where

N (q2} 1 (2 )1/2g F(0) (q2) + 1
Zg F(3)(q2)

t t

+ ) (1 )1/2g ~(8) (q2)
t

gN(q2) 1 (a}l/2g g
(0) (q2) + 1

zg g (3) (q2)

+ ) (1)1/2g g(8)(q2)

(2.4)

*/ qaPN FN(q2) d~ + ZFN (q2)gE ~ N jJA 2M
~0

«( 2) ]~1 (l ~[ O'AP'( q(q(

(2.6)

a = + 1 describes the process v+ P -v+ P and &

= - 1 describes the process v+ n- v+ n.
The nonrelativistic reduction of the matrix

element described by E(l. (2.3) is derived as"

B. Helicity-flipping (S,P, T) theories

The matrix element for the process in 8, P, T
theories of the neutral current can be written in
the impulse approximation as'

[V (1 —|r8)V()2P
(
A )(f) + V (J(/]p(ttP ( ii(g ((f)

6

where

—2V(T0(V()2P
~
A0,. I d)] p (2.V)

(ep [A [d) =f Pre)[[A e'e"r + Ae ' "&']P,(P)d'r,

(ep[A g [d) J Pe(P)[A(e' '& + A",e ' '&']P(r)dr

(2.8)

&eP [de [d) =fPr»(r)[d(e"'" + d" ed. 'i ]P,(r)d»

and

2

('(q p, ,p, )+ pl2'(P, , ——,P,) -~, ,q,l+ Q2'(P, , — p, )+ e„,P,D

. T".(q') --
+ i ', o q(o,qj —(r~/q, ), . (2.9)

2 o''9 N 2 '~& &pqo«= ' q 2M'('' ' q ~(M (& I' 2M"(q)'
where the total nucleon form factors F«8(q2), FNN(q2), and T)«gq2) are defined as'

3 (q ) 2 (3 ) ggQF2 (q' ) + Cg« F2 '(q') + 1 (1 }1/2 ~(8)( 2)

FN(q2) (2 )1/2g F(0) (q2) + 1 fg F(3) (q2) + 1 (1 )1/2g F(8)(q2) (2.10)

T N (q2) 1(a)1/2g F(0) (q2) + 1
~g F(3)' (q2) + 1 (1)1/2g F(8) (q2)

t t
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Again & = + 1 describes the process v+ p- v+ p
and E = —1 describes the process v+ n- v+ n.

In order to calculate the matrix element from
Eqs. (2.2) and (2.8) we use the Hulthen wave func-
tion for the deuteron, i.e.,

where

c = 1 —cos'8, —cos'82 —cos'9»

+ 2 cos8, cos82 cosg„ (2.1s)

with

np 'i' n+ pi) e ""—e 8"
,.(r) =

2n(n+ P) P- »'
(2.11)

&(K„K,) =
(4 „E',~ d (cos8») 'd (cos8,)4z) E„M

1 t7
1

v'c

(2.14)

n= 46 MeV, p= 237 MeV.

Using a plane wave for the final-state wave func-
tion, i'jKi' is calculated in V, A and S, P, T theories
and the expressions thus obtained for i3R i' are given in
Appendix A(1). The effect of final-state interac-
tions is studied by calculating the matrix elements
with the final-state wave function which takes into
account the rescattering effects of outgoing nucle-
ons. To do this Qz(r) in Eqs. (2.2) and (2.8) has
been expanded in terms of the angular momentum
wave functions and the final-state interaction has
been incorporated through the phase shifts fol-
lowing standard methods. "

i% i' is then calculated in V, A and S, P, T the-
ories and the expressions thus obtained for i'% i'
are given in Appendix A (2).

C. Nucleon-energy correlation function a(K&, K2)

The differential cross section for this process
is given as

do= 6'(p,'+ p,'+ k' —k —d) i%i'(2w)'

d

O'P,' d'P,' d'k'
(2v)'2E,' (2v)'2E2 (2v)'2E„'

where (E„k) is the four-momentum of incident
neutrino, M is the deuteron mass, and (E,', p,'),
(E,', p,'), and (E„',k') are the four-momentum of
outgoing proton, neutron, and neutrino, respect-
ively.

The correlation function o(K„K,) is obtained by
integrating Eq. (2.12) over the final neutrino mo-
mentum

PPf /

o'(K„K,) —
(4 ),

did did
S(E,'+ E2+ E„' —E„—M„) i~ i1 2 Et

(2.13)
where E„' is calculated using conservation of mo-
mentum. After performing the angular integra-
tions with the help of the 6 function in Eq. (2.13),
the correlation function o'(K„K,) is derived to be

1
cos8» = —[E"—E ' —P,"—P"

+ 2E„(p( cos8|+ pq cos82)],
(2.16)

and the values (d„co„and v„v2 are given in Ap-
pendix B.

III. NUMERICAL RESULTS AND DISCUSSION
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0/dKf dK2 K2y for |S—S transitions in
the Weinberg-Salam model in helicity-conserving theo-
ries without final-state interactions (FSI) and with FSI
at proton kinetic energies (a) K~ = 1.5 keV, (b) K~
=15 keV, (c) Ki—- 150 keV, and (d) K~=900 keV, for
fixed incident neutrino energy 8„=5.5 MeV.

General expressions for the nucleon-energy cor-
relation function o(K„K,) are given in Eq. (2.14)
for V-A. and S, I', T theories. Numerical evalua-
tion of Eq. (2.14) has, however, been made at
low energies where only S states in the final state
are produced. This corresponds to the low-energy
experiments of Pasierb et al. ,' where some events
have been observed. We defer the numerical eval-
uation of these equations at higher energies until
results from the ANL experiments, etc. , become
available. In the following we give numerical re-
sults for the nucleon-energy correlation for the
cases discussed in Secs. IIA and IIB.
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A. Without final-state interactions

In the Weinberg-Salam model the dominant con-
tribution comes from the isovector axial-vector
currents and corresponds to the transition from
the 'S deuteron state (neglecting D states) to the
singlet S neutron-proton state. The 'S- 'S tran-
sition is not allowed due to the absence of iso-
scalar axial-vector current in this model. The
contribution from the isoscalar vector current
to this transition is highly suppressed at low en-
ergies due to CVC (conserved vector currents).
The correlation function is therefore calculated
in the Weinberg-Salam model taking the axial-
vector coupling constant g„'= 1..24. The results
are shown in Fig. 1 for various values of the nuc-
leon kinetic energies.

To evaluate the correlation function in helicity-
flipping (S, p, T) theories, only the form factor for
the tensor coupling is required since the process
under consideration takes place predominantly
through tensor coupling. It is found that the tran-
sition from triplet S state to singlet S state is
achieved through the isovector tensor coupling
(G'r ). In these theories the triplet-S-to-triplet-

1
S transition is also possible through the isoscalar
coupling (Gz ). The numerical estimates are
made for these transitions using G~ and G~ given

1
by Adler et al. ' The results are presented in Fig.
2 for the S-'S transition. For the 'S-'S tran-

sition the results are identical to these curves
but are multiplied by a constant factor (Gr /G'r )'
(Ref. 14).

B. Final-state interactions

(a) F~ r(p,y) = [sin(p, r + II~ r)

—e ~&.&"sins ],
(b) &~ r(p,r) = (1 —e ~.r")sin(p, y +&»),

(3.1)

(3.2)

where 5s ~ are the singlet and triplet g-p scatter-
ing lengths. The parameters ~» and ~» are
given by"

ST - ~ST )
~~=1.215 fm ' g~ =1.244 fm '. (3.3)

Using

as=-23. 678 fm, xs=2. 51 fm,

a~= 5.396 fm, g~=1.724 fm,

we find

~~=1.249 fm ~ and ~'~=1.447 fm '. (3.4)

Using the above values for as ~ and ~s» the phase
shifts of these low energies are calculated from
the equation

The effect of final-state interactions is evaluated
from Eq. (2.14) only for S states. The following
two forms of the wave function have been used".

10
without F5I-----with FSI (3.5)

ll
40&15

rvD g

10

Using these forms for the wave functions, the
radial matrix elements Ks, K~ defined in Eqs.
(A10) and (A11) are easily evaluated. For the
'S-'$ transition the results are shown in Figs. 1
and 2. The two wave functions given in Eqs. (3.1)
and (3.2) give essentially the same result. For
the 'S- 'S transition which is possible in helicity-
flipping theories, the results are found to be small
as compared to the 'S- 'S transition in both cases
discussed in Sec. III B.' The dominant transition
is therefore the '$- 'S transition even in these
theories.

C. Discussion and comparison with Frahm's work

10 10
NEUTRON KINETIC ENERGY (koV)

10

FIG. 2. d IT/dK(dKp K2, for S—S transitions in
the quark model in helicity-flipping theories, without
FSI and with FSI at proton kinetic energies (a) K~ =1.5
keV, (b) K~ = 15 keV, (c) K~ = 150 keV, and (d) K~ = 900
keV, for fixed incident neutrino energy E„=5.5 MeV.

The results presented in this paper can be ef-
fective in determining the tensor current couplings
as the energy correlation function offers a distinc-
tion between the axial-vector and tensor case.
While the present experimental result on p, +d- p,
+~+p can be explained by a reduced tensor cou-
pling, ' the determination of the energy correlation
function would clearly confirm its presence or ab-
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sence. For a fixed proton kinetic energy the
o(K„K,) falls off rapidly with the neutron kinetic
energy. The fall is more rapid in the case of ten-
sor coupling than in the case of axial-vector cou-
pling. The overall difference in the numerical
values of o(K„K,) in these two cases is, however,
more pronounced at small nucleon kinetic ener-
gies. It is at these kinetic energies that the re-
sults are most affected by inclusion of final-state
interactions. Theoretically, this is the region of
low kinetic energies, which offers a clear distinc-
tion between two theories. Experimentally it would
be presumably very difficult to perform experi-
ments at such small kinetic energies. It would be
interesting to find out the range of nucleon kinetic
energies which are observed in the experiments
of Pasierb gt gl. ' In order to get information on
the isospin structure of the neutral currents, one
needs to go to higher energies where higher states
are produced in the final state due to the transition
induced by isoscalar currents. The formulation
developed in Sec. II would be useful in analyzing
the experiments at higher energies.

In an earlier work Frahm" has calculated the
correlation function o (K„K,) for this transition.
He has considered ti'-4 theory and has used the
following wave functions for the initial and final
states:

y, (~) =(yi2 )"',--
yq( 0) = sin'(p, r+6~)/p, r.

If we take the limits of ~ —y, P- ~, q 0, and

~~ ~-~ in our final expressions, the results of
Frahm are reproduced. Our results are therefore
more general and further extend the work of
Frahm. We have used more appropriate wave
functions for the initial and final states. The ef-
fect of using a Hulthen wave function instead of
an exponential wave function is to soften the peak
in o(K„K,). The q dependence of the matrix ele-
ments occurring in Eqs. (Al), (A6), (A9), and
(A13) which has been neglected by Frahm does
not contribute at low energies but would show up
at higher energies.

We have presented a complete discussion of the
energy correlation function &r(K„K,) in all the
five variants of the weak-interaction theory. At
low energies relevant to the reactor antineutrino
energies only the axial-vector and tensor couplings
contribute. The correlation. function is sensitive
enough to distinguish between the helicity-conserv-
ing and helicity-flipping neutral-current couplings
due to different energy dependence in the two
cases and should be experimentally pursued. The
results presented here can be easily extended to
the higher energies and q' applicable to the ANL
and LAMPF experiments, where higher waves
can be produced. We have, at present, deferred
such a study until further experimental results
become available.

APPENDIX A: RESULTS FOR MATRIX ELEMENT SQUARED

1. Without final-state interactions

~9R( is calculated using the Q, (r) given in Eq. (2.11) and plane waves for the final state. The following
results are obtained for V, A and 8, P, T cases.

(i) V, A ease:

~m ~'= 2' G'I E,Eg E„'P( ' P), , I ~ '~ q) I i

' ~ q
I g, „(P - &)' 2P, 'q' A p,q && p-,q). - (Al)

where

k k''l~ p,' ~
k ~ k'~ 1 k gk'q 2 (E k' p+E'k p) 2 k'pk p,

s +A q ~ 3@ gf 3~2 ( E E', P 2~2

1 (q'E„E„' —k jk'-j),(,), , 2 (E„'k ~ j-E„k q) 1 (k ~ p,k ~ q —k ~ jk' p, )

+ &„'(q')g„'(q'), ~,~ p — for the 'S state,
V V

(A2)
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2 (E,k' ~ p, +E„'k ~ p ) 2 k' ~ p,k ~ p,

,(,)
1 (q'E„E„'-k qk" q) (,) (,)

2 (E„'k j-E,k' q) 1 (k p.k' q-k p k j)
2M 3E„E„' M 3E E' M 3E„E„'

+ 2Q (q~)g„(q'), ', —' for the triplet-S state,
1 (k p,k' q —k jk'p, )

V V

(AS)

A= a'+P, '+ q'/4, B= P'+P, '+ q'/4, (A4)

( m, , )(p,
'

~p'

) (A5)

(ii) (S, P, T) case:

" ((P —&)'2P', q' A —P,q I,B P,q)— (A6)

where

8 l
r q 3 E E ~l 3M Pj E E Gy(q ) r (q )

V V V V V V

q' ].
+ G~"(q') 4M, 3

1 —
E E, ~

for the 'S state
V V

(A7)

—2G&(q )&r, (q )4M
"

3E E", + 2G&'(q')4 ~3 ~
1—,

~
for the 'S state.

V V 4MS( E„E„' (A8)

2. VAth final-state interactions

~%i
~' is calculated using the g,.(r) given in Eq. (2.11) and the final-state wave functions given in Eqs.

(3.1) and (3.2). The following results are obtained for V, A and S, P, T cases.
(i) V, A. case:

~gg ~'= 26~C'M E,'E'E„'E„Z 'g (A9)

where 8~ r are given in Eqs. (A2) and (A3) and Kz r are given as

I 2nP(n+ P) '~' 1 ( . , 2nq, q, 2P, , q(a) A~ r=,—„~sin5» tan ', —tan ',—— tan ' ' —, —tan '
$P —&j ~ P q i " 2A —q 2(1gr 2B —q 2Pg z,

i
1

f&+ P,q i
1

B+P,q+ cos6» —,ln~ . ' —pin (A10)
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2QP(o+ P) 1 ( . ~ 2lxq ~
( 2~s'r q l

~ ( 2Pq ~ 2Ps~ rq

l Pc
I

] s T PA &

1
Pcq

I

Li ~~+Pcq
&-p.qi

' &sr-p.q
' B-p.q&

' B,', -p.q. &
'

with

+s T + ST& pS T p+ S T& (A]2)
A s r =,' r'+ P,'+ q'/4, Bs r = Ps r'+ P, '+ q'/

and A, B are given in Eq. (A4).
(ii) S, J', T case:

IX. I'= 2'sa'M„E;Z~„Z„Z, ,'6:, „(A13
where Ks r are given in Eqs. (A10) and (All) and
6:s r are given in Eqs. (A7) and (AS) .

APPENDIX B: LIMITS ON COSO AND COSH

(i) &o, = max(cosg»)

=+1, if k'+k& p~+p', ,

(ii) u, =max(cosg„)

v, = min(cos8, ) =xy —[(1—x') (1 —y')]'~',

v, =max(cosg, ) =«y+[(1-x')(1-y')]'»', (86)

k+O' '-PI2-PP
if k' +k & p', +p', , (B4)

2

The limits of integration in Eq. (2.14), where
~„~,are the minimum and maximum values of
cos8» and g„g, are the minimum and maximum
values of cosg„are given as (see Frahm" for a
detailed discussion)

(i) ~, = min(cos8»)

=-1, if lp', —p', I+k'&k,

where

x = (s'+p,"—p", )/2sp'„

y = (s'+k' -k")/2sk,

s = (p,"+p,"+2p'y', cosg„) .

(B7)

(SS)

(ii) ~, = min(cosg»)

&2 ~2

if lp' -p'I+a'&k (B2)2' pp P 1 2
k=lkl, k'=1k'I, pl=llll, p'. =ll'.

I (S10)

The quantities k, k', p'„and p', are the magnitude
of momenta k, k, p,', and p'„ i.e. ,

*Present address: Physics Section, Zakir Hussain
College of Engineering and Technology, Aligarh
Muslim University, Aligarh, Uttar Pradesh, India.

~There are excellent reviews available on the subject;
see A. K. Mann, in The Unification of Elementary
Eorees and Gauge Theories, proceedings of the Inter-
national Conference on Parity Nonconservation, Weak
Neutral Currents, and Gauge Theories, Fermilab,
1977, edited by D. B. Cline and F. E. Mills (Harwood
Academic, New York, 1979); Aachen-Bonn-CERN-
London-Oxford-Saclay Collaboration, Aachen Report
No. PITHA-NR 103, 1978 (unpublished).

2S. L. Adler, E. W. Colgazier, Jr. , J. B. Healy, I. Kar-
liner, J. Lieberman, Y. J. Ng, and H. S. Tsao, Phys.
Bev. D 12, 3501 (1975);ibid. 11, 3309 (1975); H. Fisch-
bach, J. T. Gruenwald, S. P. Bosen, H. Spivack, and
B. Kayser, Phys. Bev. Lett. 37, 582 (1976); Phys.
Bev. D 15, 97 (1977); Jihn E. Kim, P. Langacker, and
S. Sarkar, University of Pennsylvania report, 1973

(unpublished); A. K. Mann, see Bef. 1; S. K. Singh and
S. A. Khan, J. Phys. 6 3, 591 (1977); G. V. Dass and
P. Bamababu, Indian Institute of Technology, Bombay
report, 1979 (unpublished); K. S. Lackner, Nucl. Phys.
8153, 505 (1979); ibid. B153, 526 {1979);Wu Chi Min,
Phys. Lett. 89B, 218 (1980).
J. D. Walecka, invited paper presented at the Confer-
ence on the Present Status of Weak Interaction Phys-
ics, Indiana University, 1977 (unpublished).

4The experimental results of an early experiment with
reactor antineutrinos are already available, J. H.
Munsee and F. Reines, Phys. Rev. 177, 2002 (1969);
V. K. Bogatyrev, Yad. Fiz 12, 753 (1970) [Sov. J. Nucl.
Phys. 12, 407 (1971)]; H. S. Gurr, F. Beines, and
H. W. Sobal, Phys. Rev. Lett. 33, 179 (1974);
E. Pasierb, H. S. Gurr, J. Lathrop, F. Beines, and
H. W. Sobel, ibid. 43, 96 (1980); for earlier work in
this process see S. K. Singh and S. A. Khan, J. Phys.
G 3, 591 (1977); S. K. Singh, Phys. Rev. D 11, 2602



NUCLEON-ENERGY CORRELATIONS IN vd ~ vnp

(1975); F. T. Avignone III and Z. D. Greenwood, ibid.
17, 154 {1978);H. C. Lee, Nucl. Phys. A294, 473
(1978); A. Ali and C. A. Dominguez, Phys. Rev. D 12,
3673 (1975); S. L. Mintz, ibid. 18, 3158 (1978); T. Ah-
rens and T. P. Lang, Phys. Bev. C 3, 979 (1971); C. P.
Frahm, Phys. Bev. D 3, 663 (1971); Yu. V. Gaponov
and I. V. Tyutin, Zh. Eksp. Teor. Fiz. 47, 1826, (1964)
[Sov. Phys. —JETP 20, 1231 (1965)].

~E. Pasierb, H. S. Gurr, J. Lathrop, F. Beines, and
H. W. Sobel, Phys. Rev. Lett. 43, 96 (1980).

H. S. Gurr, F. Reines, and H. W. Sobel, Phys. Rev.
Lett. 33, 179 (1974); the experimental analysis from
the Argonne experiment should be coming very soon
[see S. J. Barish et a/. , Phys. Rev. D 16, 3103 (1977)];
T. %. Donnelly and R. D. Peccei, Phys. Rep. 50C, 1
(1979); F. H. Boehm and R. Slansky, in Proceedings of
the Los Alamos Scientific Laboratory Meeting on Pro-
gram Options in Intermediate Energy Physics, 1979
(unpublished).

S. K. Singh and S. A. Khan, Z. Phys. A (in press); S. K.
Singh and S.A. Khan, J. Phys. G 3, 591 (1977).

Adler et al. (Ref. 2).
SS. Derenzo, Phys. Rev. 181, 1854 (1969).
ioC. P. Frahm, Phys. Rev. D 3, 663 (1971).
~~We have followed the method discussed in S. K. Singh,

Ph. D. thesis, Carnegie-lVlellon University, Pittsburgh,
1972 (unpublished).
In deriving Eq. (2.5) and also Eq. (2.9) we have used
the notation and metric of J. D. Bjorken and S. D. Drell,
Relativistic Quantum Mechanics (McGraw-Hill, New
York, 1964), Vol. 1.
S. K. Singh, Nucl. Phys. B36, 419 (1972); L. Durand,
III, Phys. Rev. 127, 1393 (1961).

~48. A. Khan, Ph. D. thesis, Aligarh Muslim University,
Aligarh, India, 1980 (unpublished).
E. Truhlik, Nucl. Phys. 45B, 303 (1972); L. Durand
III, Phys. Bev. 127, 1393 (1961).


