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The interplay of the spectral representation and the renormalization group is investigated from a global
nonperturbative point of view. A simple physical behavior is strongly indicated for quantum electrodynamics at high
energies, with features resembling strong-interaction duality and critical phenomena. Also included is a
renormalization-group derivation of the Goldberger-Treiman relation in ps-ps theory.

I. INTRODUCTION

The last decade has witnessed a tremendous in.-
terest in the renormalization group (RG). Yet,
there have been surprisingly few discussions of
the relation between HG functions and spectral
functions. ' Our purpose is to fill this lacuna, and
to trace the relation in its logical, mathematical,
and physical aspects. On the one hand we shall
illustrate how the spectral representation accom-
modates a HG fixed point, the concept which has
proved so fruitful in the understanding of critical
phenomena, ' on the other hand we explore the im-
plications of the HG for the structure of the spec-
tral function in the high-energy region. ' For the
most part the discussion is restricted to the case
of the photon propagator in quantum electrody-
namics (QED). However, emphasis is on its glo-
bal aspects rather than on perturbation theory;
the latter will be used as a guide only when not in
conflict with general principles such as positivity
and analyticity.

The organization of the paper is as follows.
Section II deals with the fixed-point nature of the
bare charge e„. We show that the fixed-point be-
havior may be inferred without use of asymptotic
theorems in the infrared' or the ultraviolet, ' even
for cases where the Gell-Mann-Low' function'
g(e,') or the Callan-Symanzik function' P(e) fail
to exist in a global sense. The only case in which
the derivation breaks down turns out to be when
the functions do exist but are identically zero.""
Some evidence is provided in favor of the view
that if the physical charge e approaches e„&~ the
theory becomes free. Also given is a simple
bound on g(e,').40 Section III deals with the as-
ymptotic behavior of the spectral function. Here,
unlike the case of Green's functions, the differ-
ential form of the HG equation is not directly ap-
plicable. We find, however, that the integrated
version of the HG equation is likely to apply; in
that case a dualitylike'~" relation is obtained be-
tween the massive and the massless electron
theory. '" (A simple proof of the nonanalyticity~"

II. THE FIXED-POINT NATURE
OF THE BARE CHARGE

Our purpose in this section is to provide a criti-
cal derivation of the following results:

(i) The bare charge e„ is independent of the
physical charge e
and therefore'4

(ii) &,=e'/e '-0 as e'-O.
Before giving our own, we shall have a brief look
at the previous derivations.

The first one is due to Gell-Man and Low. ' In
their derivation, an effective charge e~ associated
with momentum A, is introduced, which inter-
polates between e and e„ for X=0 and X= ~. The
charge e, is shown to satisfy an equation of the
form

x'(de, '/dh') = y(1/X', e,') . (2.1)

(We shall. often set the electron mass m equal to

of g is also provided in this connection. ) We pro-
ceed to argue that the scaling behavior of the pho-
ton propagator discovered by Gell-Mann and Low'
is the precise analog of the scaling laws" in
critical phenomena, with the mass of the polari-
zation current taking the place of the inverse of the
correlation length. Under this hypothesis, the P
function is directly related to the first moment of
the spectral weight of the inverse propagator. We
also show that the second moment is infinite under
more conventional assumptions. A corollary is
that the Schwinger term" in the current-current
commutator is divergent if e„=~. Section IV is
devoted to a general discussion, whereas ques-
tions of mathematical rigor are discussed in Ap-
pendix A. Appendix B contains a brief indication
of the extension to theories other than QED, the
example treated being the Goldberger- Treiman
relation'~ in ps-ps theory.

[Note added in proof The an.alyticity properties
of g have been investigated in detail by N. N.
Khuri, Phys. Rev. D 23, 22S5 (1981).]
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1.) A crucial approximation is then made in which
the X2 dependence of g is neglected for large X:

12(de~2/dX2) = g(e~2), g(e~2) —= $(0, e~2) . (2.2)

With this approximation it follows immediately
that e„2 is given by the zero of g independent of e,
i.e., e„' is a fixed point of Eq. (2.2).

Equation (2.2), however, is an autonomous differ-
ential equation in ink', whereas the original Eq.
(2.1) is not, so the global properties of their so-
lutions can be quite different. " The derivation
therefore left room for doubt, particularly in

view of the novelty of the result.
A different approach was adopted by Johnson,

Baker, and Willey, ' who imposed the requirement
of perturbational self-consistency. They have also
arrived at result (i), but later it was shown by
Adler~ that a rearrangement of their perturbation
series yields a different (although interesting) re-
sult, and the situation remained unclear.

Yet another approach' "became possible with
the discovery of the Callan-Symanzik equation'

whenever y, (e„) 1, where e„ is the first positive
zero of P. Unfortunately, however, it is not known

whether this condition holds or not." Another
difficulty is that the parameters e, e, and m, in

general, will have no direct physical significance;
the equations become easier to solve technicall. y,
but harder to interpret physically. In particular,
if dimensional regularization" with minimal sub-
traction is used, Z3 as a function of space-time
dimension d will have an essential singularity at
d =4."

With these remarks, let us turn to our deriva-
tion. We start with the photon propagator

D~, (k) „= (—g„„+„," ~

',' +gauge terms.k'
&

k'
(2.8)

In terms of the proper photon self-energy
(-g „k'+k„k„)II,(k') we have

d -'(k2 e2)- I+&e211 (k2) = I'&»(k )/k2 (2.9)

Theory and experiment strongly support the
spectral representation for II,(k') in the once-sub-
tracted form

[-x(&/sx)+ p(e)(&/&e)]e, '= &,I'"(- x')/e'x'. (2.3) dM k
(2.io)

In the asymptotic region X-, Weinberg's theo-
rem' indicates that the right-hand side may be
neglected order by order to give

[-~(e/sx)+ p(e)( s/s e)] e, '=o, (2.4)

and we recover the result that e„ is independent

of e, this time being given by P(e„)=0.
To infer the asymptotic behavior of a function

from an order-by-order investigation of its per-
turbation series, however, can be quite danger-
ous." Indeed, the infrared behavior of the elec-
tron propagator" ' provides an explicit example.
The RG arguments themselves give"

dM2
O~Z, =1 —e', p (2.12)

where gauge invariance and generalized unitarity
require the spectral weight p to be positive.

At A =0, II, vanishes, and the residue of the

photon pole in (2.8) is properly normalized,

d, (0, e') = 1. (2.1i)

I"or k' =-&' (spacelike), II, is a monotonically
decreasing function of X'. Since a zero of
1+e II,(-X.') would imply a spacelike pole for the
(transverse) photon propagator, we must have
&2-=1+e'll, (- )-0 or (Refs. 31, 7, and 69)

(p2 m2)g (p) (p2 m )-& 2n)e 2l8 22e (2.5)
For k2

which has a quite different behavior from each
term of its expansion

1 — e2 ln(P2 —m') + ~ ~ ~ .
8 ' (2.8)

The situation may be improved if the electron
mass rn is also renormalized multiplicatively, "'"
treating it on the same footing as e. In particular,
if a mass-independent renormalization scheme is
used, the HG equations take the form"

1 i dM2

e„e (2.14)

Barring pathological behavior, Eq. (2.12) re-
quires that

2, ' t' kki
Dz, (k)„„= „', ~

—g „+," ~+gauge terms,
(2.13)

so +3 is indeed the charge renormal ization con-
stant, "and we may write down the formula for the
bare charge

[—X(&/&X)+ p(e)(&/Se)+ ye(e)m(8/&m)]e~ '=0, (2.7) p(M2, e2) - 0 (M'- ~, e2& 0) . (2.18)

with appropriate parameters e and Q. This time
e), will have a limit independent of its initial value

It is well known that (2.12) and (2.15) are vio-
lated to any order in perturbation theory. " (A
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similar problem exists for vertex functions. ")
In particular, II(0) appears as a divergent (cutoff-
dependent) quantity. We also notice that an un-
subtracted dispersion relation may be written
down as

e2/e 2 d (k2 g2 e 2)/d (k2 e2) (2.24)

we may obtain the desired condition for physical
equivalence between the different parametrizations
(renormalization schemes') (0, e') and (X', e),'},

dM2
2(p) = f— p(M, e'),

with

11,(s) =II(s) —11(0),

QM
II(0) = M, P(M', e') =(I —&2)/e2.

(2.16)

(2.17)

(2.18)

This is just Dyson's relation, "since we may iden-
tify d, (k', A2, ez') and ez' as the bare propagator
and the bare charge associated with the cutoff X."

We emphasize that the relation between e' and
eq2 is required to be invertible. Indeed, for k'= 0
and k2=-A2, Eq. (2.24) reduces explicitly to

e'=e 'd, (0 X' e 2) e '=e'd (-X' e') (2.25)

However, as first recognized by Gell-Mann and
Low, the multiplicative renormalizability of QED
allows us to study the limit as the cutoff is re-
moved. The first observation to be made is
that the spectral representation itself provides a
natural cutoff for II(0):

(2.19)

Evidently

11„(0)= 11,( ~')=11(0) II( q2). (2.20)

Comparison of (2.20) with (2.17) suggests a re-
normalization scheme in which subtractions are
performed at a large spacelike momentum k2

rather than at the on-shell value k2=0, e.g. ,
we replace (2.17) with

11„(k')=11(k') —ll(- ~') . (2.21)

The condition corresponding to (2.11) for the new

propagator function" d, (k', &', &&') =[1+e„211,(k')] '
is then

d,(- X2, X2, e„')= 1. (2.22)

d 83 dq 'e 83e (2.23)

Here we have written e„ to indicate the new ex-
pansion parameter in perturbation theory, since
under (2.22) it is no longer equal to the physical
(on-shell) charge defined, for example, by
Thomson scattering. However, the basic postulate
of renormalization theory is that observable quan-

tities in QED are finite and uniquely determined
in terms of the physical charge e and the physical
electron mass m; the amplitudes constructed from

d, (k', X', e~2) and e„' should therefore be those for
a certain value of e.'4 (We restrict the change in

the renormalization scheme so that m is unaffec-
ted. ) By observing that the structure of the

Schwinger-Dyson equations" is invariant under
the group of (finite) multiplicative renormali-
zatio n23 36 37

=—d(- s, 0, e ),') . (2.26)

In modern language, there are no infrared diver-
gences as m 0 if the photon propagator is sub-
tracted off-shell. ' Therefore, for p, = —k =sf'

e„'=e22d(- s, m2/X2, e„')=e„2d(- s, 0, e,2), (2.27)

where we have used (2.22) and the invariance re-
lation which follows from (2.24):

2d(k2/I(2 m2/p2 e 2) e 2dQ 2/y2 m2/y2 e 2)

(2.26)

Equation (2.27) says that for X»m, the change
in the normalization point X'- p,'=SR' induces a
transformation on the effective charge T,: e„'
-e„'=e2'd(-s, 0, e„'), which is ((ependent only on
s = p'/X'. This is analogous to the situation in
classical mechanics where time translation T,:
((I(t),p(t))-(q(t+s), p(t+s)} depends only on s
= (t+s)- t for closed systems. Stated more form-
ally, Eq. (2.27) gives a nonlinear realization of
the multiplicative real half-line, whereas a class-
ical dynamical system gives a nonlinear realiza-
tion of the additive real line.

As usual, an essential role is played by the gen-
erator of infinitesimal transformations. " In this
case it is obtained simply by differentiating by s
and then setting s =1:

~'(«„'/d~') = (siss) ~,., e„'d(-s, 0, e„'} (2.29).
Evidently, this is just the Gell-Mann-Low equa-

In other words, global invertibil. ity is essential"
if the multiplicative RG (2.23) is to be realized by
a change in the subtraction point, or equivalently,
a change in the cutoff.

Now the central observation of Gell-Mann and
Low' is that when d, (k', X', e„') is written in

terms of the variables s = —k2/X2, m2/X2, and e22,

it has negligible dependence on m2/X2 when X» m
and s W1:

d,(-sX', X2, e„')= d(- s, m 2/X2, e22)
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tion (2.2) with

g(e, ') =(siss) I, , e„'d(—s, 0, e 2). (2.30)
g2

However, as mentioned before, it is questionable
whether the X dependence may be really neglected in
(2.2V). Therefore, let us consider what may be legit-
imately derived from the exact form (2.1). It will
turn out that we must have result (ii) apart from
the exceptional case mentioned in the Introduction.

To this end, we combine the spectral represen-
tation equations (2.11)—(2.18) with the RG equa-
tions (2.19)—(2.30). We immediately obtain

1 dM2
2

— 2= M2 ~2 p(M e))
e~ e„M +X

dM'
p(M', e') (x ~ 1), (2.31)M'+

which shows that e„' indeed approaches e„' but
with a rate not faster than X '. Also,

P(1/1', ee')=ee fdM (, '), p(ee', e (lP, ee'))

(2.32)
i.e., g(e~'), if it exists, is positive and bounded

by e 2 40g41

Further properties follow in conjunction with
invertibility [Eq. (2.25)]. When e~' is plotted
against X' (Fig. 1), it is easy to see that inverti-
bility forbids different curves from intersecting.
This result also follows immediately from (2.1)
itself; integral curves of an ordinary differential
equation must form a flow. Since e~2 is an in-
creasing function of X for given e2, it follows
that when e' is considered as a function of e„' and
X', it must decrease with increasing X' (Fig. 2).
Since e' is bounded from below, there must exist

FIG. 2. The relation between e and X for fixed e)„.

a limit

e~'= lime'(X', e~') (e~' fixed) . (2.33)

(In the following, lim is to be understood as limq
unless otherwise indicated. )

It is also seen that e' decreases with decreasing
e„' for fixed X' (Fig. 1). Therefore, there exist
only two possibilities for e '.

(1) e ' = 0 for e„' below a certain value;
(2) e~'&0 for all e„'&0.
As we shall see, possibility (1) is favored; in

this case, result (ii) must hold since

2

(im()(1/\', e )=lime f (ee, 1), p[lle' e (1' e ))

e 80~Z, (e') = —;&, -0 (e'-e~'=0, e~' fixed).

(2.34)

As for possibility (2), there is a serious dif-
ficulty. ' Let us assume e~'&0. Then it follows
from (2.15) and (2.32) that for a fixed e~'

g2 j =e (M2+1), p(, e )=0, (2.35)

i,.e. , ll)(eq2) vanishes identically. "
It is evidently important that this reasoning fails

to apply for e '= 0. This we may expect to be the
case, since perturbation theory gives

2m2~ 4~2 'I '~2
p(M, O)= 2 1+ —

2 I
1 —

2 I 8(M2 —4m2)

1 (M'- )12g2 (2.38)

FIG. 1. The trajectories of e)„plotted vs X .

in contrast with (2.15), i.e., the limit of p as
(M', e') -(~, 0) is dependent on the path of
approach [see also (3.14)]. It should also be
noticed that result (ii) must hold not only
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F(n) z (I )n/2P(n)
3 5 (2.37)

when g(e„) is finite and nontrivial, but also when
limp(&', e„) is infinite or nonexistent, since
"(1)~(ii)"and "(2)mg existent but zero" imply
that "g nonexistent~not (2)~(l)~(ii)." In any
case, the Gell-Mann-Low equation (2.1) together
with possibility (1) gives result (ii)."

Let us now turn to the implications of the Cal-
lan-Symanzik equation. ' We may briefly recall
its standard derivation. 44 The starting point is
again the relation between the renormalized n-
photon proper vertex and its bare counterpart

s 1 d 1 dM2 Bp 2 d 1
+ M2 e2

e ~ M +$2 Se2 ' de e

Therefore, among the following outcomes,
(1') P(e) is finite and nontrivial,
(2') P(e) is finite but identically zero,
(3'} limP(1/X, e) is nonexistent,

(2.44)

(1') and (3') are possible only if result (i) is true.
Finally, having seen that e is indeed likely to

be independent of e,"we may inquire into its con-
sequences. By taking the limit e't.e„ in (2.14),
we obtain

where X is the cutoff; the bare quantities are de-
noted with the subscript b. The operation dM2

, p(M', e')-0 (e'te„2), (2.46)

8 8 8 t 8
m =m + m — e8m, „8m, „8m, ~)ee (2.36) which strongly suggests that

is applied and then the limit X -~ is taken (with e
and m fixed) to give

[ m(& /& m) +p(e)(&/se) np(e—)/eJ I'"' = a,l'"',
(2.39)

where"

8 8
P(e) =limm, e= —limX — e. (2.40)8m &' 8y

P(e) = IimP(1/X, e), (2.41)

Implicit in the derivation is that the relation
between e and the (cutoff) bare charge e~ is in-
vertible, and that the limit in (2.40) exists. I'n

perturbation theory, the first requirement is triv-
ially satisfied (formal power series are always in-
vertible}, whereas the second one may be shown
to be equivalent to the renormalizability of QED
and hence also satisfied.

However, a global assessment is also necessary
if the Callan- Symanzik equation is to be used for de-
riving the global properties of QED. We have already
seen that invertibility, if taken in a global sense,
is nontrivial. (As before, we may adjust the cut-
off so that e~=e„.) As for the existence of P, we
rewrite (2.40) as

p(M-', e')-p(M2, e„')=0 (e2~e„') (2.46)

III. THE STRUCTURE OF THE SPECTRAL
FUNCTION

Let us now explore in more detail the connection
between the RG functions and the spectral func-
tions. (We assume the former to be existent and
nontrivial. ) We start with

(2.2)

(2.40)

since p is positive. Applying generalized unitarity
to (2.46), we find that for the critical theory with
e= e„, the vertex functions for the process y*
(virtual photon)- anything (on-shell) must vanish.
(This may seem strange for e„=~; however, re-
call that e is factored out from II.) In particular,
for e = e„&~, there is no (virtual) photon-photon
scattering"" due to the Jost-Schroer-Federbush-
Johnson (JSFJ) theorem 4"' F.urther application
of crossing and analyticity" then yields the result
that the theory is free "(Th.is conclusion for
e= e„&~, however, raises the paradoxical ques-
tion as to what happens to Thomson scattering
when eke„.}

, 8 1 8 1
eP(1/x, e) =X'

e„' 8e2 ~e„' (2.42)

which integrates to

G ( e),') = y (e') x', (3.1)

The numerator of (2.42} vanishes as X- ~ (e is
fixed now),

, 8 &, X'—
2 2

= — dM, 2 2,2 p(M y
8 } 0

sx e~ (M+X) '
(243)

whereas the denominator goes as

where

d2 dIn/(e') = . . . lnG(e„') =—,"„.(3.2)(e„)
Since g(e~ ) &0 for 0&e„'&e, @=a(e~') is mono-
tonic and may be inverted to give e„'=E(z}. In

terms of F, (3.1) becomes
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e,'=e'd, ( &-', e')= &—(&f (e')&'},

a well known result. '"
We also have

[-~(&/»)+P (.)(s/s. )]11(-~')-=o,
[-&(s/») +P(e)(s/se)]11, (-&') —= 2P (e)/e',

a result familiar from e'-e annihilation. "
In perturbation theory"

(3.3)
e}t J, , r(( (e') X'M'). (3.)3)M2+1 2

[The existence of such a correlation is somewhat
reminicent of the situation observed in deep-in-
elastic scattering. " See also (3.44).]

To proceed further, we sharpen (3.1) and (3.8)
into

(s.5)

limp(X M, e (A. , e~ ))= limr(P[e2(X2, e„2)])(.~M2}

= r(G(e„2)M') (s.14)

Therefore, to lowest order in e

(()) (e') = exp(-12''/e'+ const}

and22, 26, 52

(s.6)

2 12m 2

in[a'/G(e ')]+const
(s.v)

for fixed e,' and M'& 0. In particular, since
&(O) =0 and G(e„')= ~,

r(O) =1/12'', r(-) =O.

Then, instead of (2.35), we have

4(e),'), 4 = (M2, 1)mr( (eX'}M')

(3.15)

(s.16)

p(M', e') =r(p (e')M'), M'» 1, (3.8)

since p is the absorptive part of (e~d, ) '. Indeed,
under (3.8), we may recover (3.3)

1 1 d~'
--, + 2 p(X'M2, e )

dM2 r (y(e') X'M').
e„2 ~2+1 (s.9)

(Note that e„' is independent of e'.)
A word, however, is in order. As mentioned in

the Introduction, we cannot hope for

[-M(8/BM) +P (e)(8/Be)] p(M, e2) = Q, (3.1Q)

since &p/&M will have strong threshold singulari-
ties. Therefore, Eq. (3.8) is to be interpreted as
in duality, "i.e., r describes the average behavior
of p. In fact, if we introduce the quantities

~p(M', &2) -=p(M', e2) r(y(e')M'),
6P (1/A. , e) —= P (1/X, e) -P ( e),

(s.ii)
(s.12)

we obtain the following relation between the falloff
of the "bumps" 4p and the 'background" r,

Given (3.3) and (3.6), it is not surprising that (2.12)
and (2.15) should fail to hold in perturbation theory.
We may also give a heuristic argument in favor of
(2.12). It is well known that the lowest-order result
for p [Eq. (2.36)]corresponds to the process where
an e' and an t. travel apart freely after they are cre-
ated, leading to a divergent vacuum polarization.
However, the Coulomb attraction should tend to sup-
press such polarization, particularly at short dis-
tances. "

In view of (3.3), it is natural to assume that

and similarly as in (3.9)

1 1
e ' e ' M'+G(e ') (3.1V)

These equations may also be recast as

(s.18)

e = e„'l 1+ ", Ink'
l12'2 ) j.n g2 (s.2o)

corresponds to taking the lowest order in the per-
turbation expansion of (F)(eq'} (Refs. 5V and 18)

g(e„') 1 (e 21l 1 (e '
e' 3(4w / 4(4v2

(t.(s) ioi& e„' '
3

—
288)l 4v~ + ( )'') (s.si)

and substituting it into (3.V)."
Although we have put m =1 so far, it is easy to

see that here we are dealing with the massless
electron theory, '" since for fixed e„', m'/A, '-0
may be realized either by X- ~ or m-0. (In the
latter case, ~ serves as the subtraction point as
in Sec. II.) In fact, we may easily generalize
(3.1V) into

g(&(s))=z&'(z) . (s.i9)
Equation (3.16) shows explicitly that the region

eq'40 corresponds to M'40 for r(M'), whereas
e~' 4 e„' corresponds to M'4 . In particular, it
is not surprising that Landau and others"'" should
have run into difficulties since their formula
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12' 2e~'d(-s, 0, e~') —=
ln[G(e„') s]+const ' (3.23)

Also, by taking X 0 in (3.22) keeping k2 and e~2

fixed, we find that on-shell normalization for d is
possible in the massless electron theory if and

only if e„'&~. This result may also be obtained
by taking m - 0 in

e'd, (n'/m', e') =F[-y (—e2) 0'/m'], (s.24)

showing that the limits ~- 0 and m- 0 are commu-
tative.

The fact that the photon propagator in the mass-
less theory is essentially a function of G(e~')k'/X'
only may also be expressed as a homogeneous RG
equation characteristic of fully massless theo-
ries (perhaps we should call it the Coleman-
Weinberg" equation),

[x'(~/st') + p ( e,') (~/&e„')] e„'d (0'/x', 0, e,') = 0 .
(s.25)

It is worth noting that (3.25) re(luires p(e„) to
be nonanalytic at the origin. " Let us assume the
contrary. To be specific, we shall take the per-
turbation theory result (3.21). Then f rom (3.2)
(Ref. 22)

e~'d( —s, 0, e„') e„' M'+G(e„') s
(3.22)

which identifies r as the spectral weight of the
massless electron theory. In particular, "for
s =-lP/A. '-0

made to converge to any value zp This leads to
the result that z, F'(z, ) = 0 for arbitrary z„ i.e. ,
I{)(g)—= 0 again.

Evident, ly, the same reasoning applies to a
zero of higher order for P, although it would be
strange indeed if perturbation theory failed to
give correct results for an analytic function, As
for a first-order zero

y(C) =ar+o(V),

G{f)= g'~' x analytic function of f,
(3.31)

(3.32)

(M*) = jaM'c(M', e')& (3.33)

Then the numerator and the denominator of (2.42)
are, respectively,

dM', , p(M', e') =—,, (3.34)

A,
~

we may either rely on the argument above or we

may use (3.16). (Take &= eq'- 0 to obtain a con-
tradiction. ) P(0) 40 may be ruled out by (2.32}for
one; therefore, )(t)(e q') must be nonanalytic at eq'
=0 a,s claimed. " [See Note added in Proof. ]

So far, we have concentrated on the rela-
tion of the Gell-Mann-Low function to the spec-
tral function. Let us now proceed to that of the
Callan-Symanzik function. Although (2.41) and

(2.42) already give an implicit relation, a more
explicit form may be obtained if we allow our-
selves to assume that

G(f) =nap (- ) xi xanaly-t'ic function of f .

(s.26)

so

e P(e) = -(M')de'/d(M'), (s.s6)

Now from (3.25)

e ~d(k /X 0 e )=F( G(e )k /)P-) (3.27)

which we may write as6'

Since the left-hand side should be cut analytic in

tt,
' for 0 & g~'& e„', so must be the right-hand side,

i. e. , F(z) is analytic in z except for a cut along
the negative z axis. On the other hand, from the
normalization conditions

d( —1, 0, e,') =1,

(a/as) ~, ,e q'd(-s, 0, e ~') = P(e ~'},

(s.28)

(2.30)

C=F(z), .=G(l),
zF (z) = |(t) .

(s.29)

(3.30)

However, E(I. (3.30) entails a difficulty, for let
us take the limit g-0. The right-hand side ob-
viously goes to zero. But by (3.26), G(t) has an
essential singularity at the origin, so z may be

and the principle of anaj. ytic continuation, we have

dM pM e =1 e (3.37)

Besides giving a direct relation between p and

P, an appealing feature of (3.37} is that it allows
us to rewrite (3.3) and (3.8) as

e'd (-&' e') —= F{&'/(M'})

p(M', e') =- r(M'/(M')),

(3.38)

(3.39)

i.e., asymptotically the scale is set by (M'}, which
may be interpreted as the mass squared of the
polarization current.

This is strikingly similar to the scaling laws"
in critical phenomena, ' particularly since in both
cases the relevant length scales $ and (M') ' '
diverge as we approach the critical point (e =e
for the latter}." There is one difference; in
critical phenomena, the length scale is given es-
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sentially by

(-2 —p &2 )(0)

but in our case

(3.40)

(3.53)1+y (e) =lima in[LP(1/&, e)/P(e)] .
Experience with (M') & ~ suggests that we in-

quire whether

(M') =e-'r"'(~) (3.41) (M ) = f dM'M P(M, e ) & (3.54)

if e„=~. This is, however, to be expected; cri-
tical phenomena is related to infrared behavior,
whereas we are dealing with ultraviolet behavior.

We also note that with (3.33)

1 1 (M2) 1 1
e 2 e 2 y2 y(e2)$2 G(e 2)

(3.42)

Comparison with (3.17) gives the normalization"

(3.43)

which in turn leads to a superconvergence rela-
tion'4

dM bp(M ee} =0 (3.44)

We may view (3.44) as an expression of global
duality. 'e This leads us to expect that (3.44) may
be valid even if (M') = ~.

Further information may be obtained from the
Callan-Symanzik equation for the j-fold mass
insertion term" '

may be true. If (3.54) does hold, so must (3.33};
then a little calculation yields

e' X'S
1+y (e) =limSlne e)

d( d (M)l=P('
deI,

'"@'
de &M')' ~'

Without loss of generality, we may set

(M ) de (e)
(M')' P(e)

(3.55)

(3.56)

(M4) e- dq
&M')*, O(n)

(3.57)

or

(3.56}

On the other hand, the Schwarz inequality gives

The positivity of P(e) and (M") for 0&e& e„ fixes
the limits of integration to be either

[m(8/8m) + p(e)(8/8e —2/e) —j(1+y,(e)}]a~i"")(p')

= ~~"r"'(k') (3 45)

Introducing the notation

(M')/(M')'& e'/(l-Z, )& e'.
Therefore, we must have either

(3.59)

(3.60)
~~e -'= ~~r")(-X2)/e'X's)t s

m = -X(8/8X) + P(e)(8/8e),

(3.46)

(3.47)

(3.48)

or

eg6} )& 2

0
e I e I

~ d. u(n)
(3.61)

we may rewrite (3.45) as"
2 —e jgl(ee)(e Jj(e )g))Je e

it
(3.49)

However, Eq. (3.60} is impossible since there is
a contradiction as e 4 e„. Equation (3.61) also has
a serious difficulty: Perturbation theory gives

In particular,

8 e 26P(1/A. , e) g(l/Xe, e„m)
~ 8 1 P(1/y )

(3.50)

2

y,(e) = + o(e'),

2

J(e ) =- +qine + ~ ~ ~
6m

e2 t

(3.62}

2 b,P 8 8', = -(1+y (e)) + S ln —~P—in LP—e„' .
P(e) 8e 8e

(3.51)

To any order in perturbation theory'

lim(h&'e„m/6&e„2) =0 (e fixed, j=0, 1) . (3.52}

We have seen that for j =0, Eq. (3.52) must be true
for the exact sum if we are to obtain a nontrivial
P. Therefore, let us assume that (3.52) is also
true globally for j=1. Then it follows that

implying that the left-hand side vanishes faster
than exp(-6v'/e') as e' -0. Therefore, we
conclude that (M ) is unlikely to be finite, i.e.,
even if the average mass squared of the current
is finite, its fluctuation is not."

So far, we have not touched on the question of the
finiteness of e„' or Z, '." Since S, may be inter-
preted as ((bare photon )physicalphoton) P,"'"itmay
be said that it would be surprising if Z, were
actually to decrease as the coupling is turned off,
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as is the case for e„'(~. However, in view of our
meager knowledge concerning the true situation
in quantum field theory, ' surprises are not ex-
cluded" and we shall consider both e„'(~ and
e '=~

(1") e '& ~ . In this case we have

d'xe'~" 0 T*j„zj„0 0

=i(-g „k'+k„k„)f dM', , o(M', e'), (3.69)

d4~eiAx 0 j ~ j 0 0
d„(k', e') 1 dM'

k2 k2 k2 M2

g '=1+ dM' M' e' &~

8z (x -z0

where

o(M e )=e ~d(M e }~ M p(M e ).
If (M')&~, then we also have

2

p, =g dMMoM e
P e'

(3.63)

(3.64)

(3.65)

(3.66)

(3.67)

f dM
, e'p(M', e') = 1 . (3.72)

if (M') & m, we further obtain the asymptotic be-
havior

=i(—g k' + k k,)k'o(k', e')2m'(k, )8(k') . ( 3.70)

In particular, (3.67) implies the Schwinger-Wilson
operator-product expansion'4 for the commutator

4 ~

t'j,(x),j,(0) j =, (,)
—& &„&(x ) 6(x ) + ' ' ', (3.71)

since the Schwinger term" is known to be a c
number. "

(2") e ' =~. In this case we have the sum rule"

since"

1 p,
'

(M') = Iim&' ~d, &». —
2 (3.68)

g(e,') = G(e,') =-e,',

e'd, (k', e') =- &f&(e')k',-
(3.73)

(3.74)

Furthermore, (3.42) gives g'(e„') = —1, saturat-
g the bound (2.32). This is in contradiction with

the result""' that p has an infinite order zero at
e„'. Unfortunately, it is not clear whether this
should be taken as a sign that e„' and (M') cannot
be both finite, or that the expansion scheme em-
ployed in Befs. 9 and 16 is not valid. "

We may also rewrite the results in terms of the
electromagnetic current using the relations

e'D~,(x),„=—P(e') (-g,„+8„&„)

1 1
.0+ gauge terms. (3.75)x ~z

Also, the spectral representation for the propaga-
tors involve an extra subtraction for (M') &~:

d„(k', e') 1 P(e')
k2 k2 e2 k2 M2 o(M e ) (3.76)

d ex'"*( ~OT*j„(x)j,(0) ~0) =i(-g~„k'+k„k„) —,k'+ dM, 2o'(M, e )
4(e') . (3.77)

This would be a difficulty, if the covariarit T*
product were simply the T product. However, it
is well known that the T product is not covariant"
in the presence of a Schwinger term, so it is quite
possible that extra terms arise from the seagulls
necessary for covariance.

Qn the other hand, since seagulls do not contri-
bute to the absorptive part, Eqs. (3.66) and (3.70)
continue to hold for e„'=~. However, this time
the short-distance singularity is stronger than in

(3.71) for both (M') & ~ and (M') = ~, since

(3.78)

[@or (M') =~, Eq. (3.78) is evident since (3.63)
continues to hold but (3.64) is now divergent; for
(M') & ~, the result follows from (3.66) and (3.74)
and (M') =~.j To summarize, given (3.52), the
Schwinger term is finite if and only if e„' and (M')
are both finite.

Finally, we mention that although we have
modified the number of subtractions in (3.76), it
is not possible to modify our starting point (2.10)
into

dM jp
11,(k') =P a,.(-k')'+ . . .p(M', e'), (3.79)

i=o

since a, o0 would violate (2.11), whereas a„g0 for
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n ~ 1 would lead to e,'-0 as X-~. (For a„&0,
there are spacelike poles as well. )

IV. DISCUSSIONS

We hope that our discussion of the RG based
on the spectral representation has been instruc-
tive, even though much of the material in Sec. II
was not essentially new. In particular, we hope
we have clarified the reason why such a seemingly
trivial group of transformations [Eq. (2.23)] should
lead to such a nontrivial result as a fixed bare
charge independent of the physical charge. The
crucial aspect was how the group was realized,
particularly its generators.

On the issue of the physical charge and the bare
charge, there has been a proposal" that the phys-
ical charge rather than the bare charge should be
the zero of g, assuming that such a zero exists.
This possibility is attractive in a certain sense,
since, in principle, it allows a theoretical deter-
mination of the fine structure constant. Unfor-
tunately, we have seen that this solution is in-
compatible with the spectral representation and
the customary assumptions concerning renormali-
zation theory.

There has also been a suggestion" that e may
be, in fact, a nontrivial function of e, as in super-
renormalizable theories. " However, since this
requires P (e) —= 0 globally, we would be forced to
reject the perturbation series for P as a red her-
ring. But then, why not the series for the anom-
alous magnetic moment?

Sometimes the results (i) and (ii) have been op
posed on the ground that bare perturbation theory
would be meaningless if the bare charge were in-
deed fixed. This argument we may counter with
several replies. One is that in practice the expan-
sion parameter of bare perturbation theory is the
cutoff bare charge e~, not e„. Another (deeper)
one is that all the renormalized theories with
0&e &e„so solve the same bare Hamiltonian. "

However, perhaps the most compelling argu-
ment in favor of (i) and (ii) is that it leads to the
picture of high-energy QED outlined in Sec. III:
scaling, duality, similarity with critical phenom-
ena, and the relevance of zero electron mass
and "bare photon mass" p, ." Admittedly, much
was conjectural. Also, from a logical point of
view, the situation is always precarious: One
abstracts from perturbation theory only to deny
it. However, in our opinion, the simplicity and
the consistency of the emergent picture provides
ample justification. We hope the reader will
agree.
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In the text, we have freely interchanged the
order of limiting procedures. However, it is
known that such procedures are often dangerous
when spectral weights are involved, ' "a canonical
example being the Lehmann- Symanzik- Zimmermann
(LSZ) conditions"

o), (A2)

l.e. ,

0p&t nnpt 0 — gt~-& n

0)-(f g)]. (A3)

Therefore, we shall give a more rigorous treat-
ment below. " Fortunately, it turns out that the
conditions required for such a justification are
quite mild, although, of course, whether the con-
ditions are actually satisfied or not is a question
which cannot be answered at the present moment.

The positivity of p and the monotonic conver-
gence theorem ensure (2.12) and (2.43) without
any additional assumptions. For (2.35) to hold,
it is sufficient that the convergence in (2.15) is
locally uniform for e'&0. Since by hypothesis
e ' &0, the integrand is bounded by const/(M'+ 1)',
and Lebesgue's theorem is applicable.

More stringent conditions are required for
(2.44). A sufficient one is that Bp/Be' be contin-
uous ln M' and

dM Bp

M +~ Be. . .(M, e ) (A4)

the convergence being locally uniform for e'&0.
As for (2.46), a weaker version

(A5)lim inf p(M', e') =0
2$ 2

follows rigorously from Fatou's lemma.
We may continue in a similar fashion for See.

III. However, in view of its more heuristic na-
ture, we shall leave the details to the interested
reader.

APPENDIX 8

Our analysis of the RG in the text was facilitated
by the Ward identity, "which allowed us to work
only with the photon propagator. For theories

to thank Dr. A. D. Sokal for discussions and refer-
ences. This work was supported in part by the
National Science Foundation under Contract No.
NSF- PHY-78-23952.
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other than QED, a straightforward generalization
of our analysis would require the analyticity
property of vertex functions, which is considerably
involved. " Therefore, we shaQ not pursue it fur-
ther here. Instead, we shall show how it is still
possible in other theories to use the RG with only
propagator s at disposal.

As mentioned in the Introduction, the example
given will be the Goldberger- Treiman (GT) rela-
tion" in ps-ps theory. The Lagrangian is

2 =N(iy, e"—m)N ——,'v'(I 1+ p, ') v' —igNy, 7'Nn'

——(m'v')'.
4t

We define the axial-vector current 4'„and the off-
shell pion decay constant f,(k') by

A~ = Ny„ys(7'/2)N,

(Bl)

(B2)

(B3}
We may also introduce the proper A' —m' part
-ik„P'll,""(k') and the pion proper self-energy
6'~II""(A,2} so ths.t

C

f (P2) —11(11)($2)/[I + II (02)($2) ] (B4)

In perturbation theory, both satisfy once-sub-
tracted dispersion relations

where the (arbitrary) subtraction point -X' reflects
the mixing of Zy„y,(7'/2}N and s„w' under renor-

malization.
However, we know that II,'"'(k') must, in fact,

obey an unsubtracted relation; let us assume
that this is also true for II,""(k'),

(11)($2) —11(11)(y2) 11(11)( yP) (B7)

(B8)

Then we may unambiguously define the on-shell
decay constant f, by

II (11)(~2) (Bo)

As before, we may view ~' as a cutoff; this leads
us to the RG equation"

Iim[-A(8/M)+ p {s/eg) + p (8/spy) + y]II'"'( p,') =C,

(B10)

If (B7) and (B8) are true, then (B10) reduces to

[p,(a/sg}+ p„(s/sg) + y]f, = C

or up to a solution of the homogeneous equation

(B12)

f,—= 8m/6g, (B13)

which is precisely the GT relation.
Again, given (B13), it is not surprising that

(B8) should fail to hold in perturbation theory. "
What is surprising" is that the derivation, al-
though incomplete, "does not make any use of the
smallness of the pion mass. " In a sense, we
have returned to the original derivation of the GT
relation, rather than to its successors based on
PCAC.
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